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INTRODUCTION

Let I =[0,1] and 7 : I™ — I™ be a pigcewise expanding

transformation. For n = 1, Laso

ta and Yorke [1]

have proven the existence of an absglutely continuous
invariant measure p with respect to Llebesgue measure.
If f is the density of u with respect to Lebesgue

measure m on I™, then it is well-

known that f is

the fixed point of the Frobenius-Perron operator P;.

Ulam conjectured that it might be po
finite-dimensional operators which ap
whose fixed points approximate the

ssible to construct
proximate P, and
fixed point of P,

[2]. In [3-6], this conjecture is proven for a class of
one-dimensional piecewise expanding transformations.

Recently, the above conjecture is p

roven for general

finite rank operators through indicating an arbitrary

doubly-stochastic tridiagonal action

matrix [7]. In

[8], Jablonski has shown that a class of piecewise C?2-
transformations of the n-dimensional cube [0, 1]™ has

an absolutely continuous invariant
dimensional version of Ulam conje
with finite rank projection operat

measure. An n-
cture was proven
ors for Jablonski

transformations (see [9]). The aim of this paper is to

prove the above version of Ulam conj
ski transformations with general fini
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a Special Action Matrix
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nite rank approximations of Frobenius-Perron operators is extended
sformations from projections to general finite rank operators through
n matrix. The convergence is proven in the case for which the action
doubly-stochastic and tridiagonal.

through indicating a particular doubly-stochastic tridi-
agonal action matrix.

Let m; denote Lebesgue measure on I’. For j =
n, let m = m,. The space of all Lebesgue integrable
functions on I™ is denoted by L' and the space
of all essentially bounded (with respect to Lebesgue
measure) functions on I™ by L*. The transformation
7 :I™ — I™ is written as:

T(mlf”vxn):(@l(zla"' axn),"' »Son(xl»"' »xn))7

where for ¢ = 1,---
from I™ into [0, 1].

A measurable transformation 7 : I* — I™ is
nonsingular if m(A4) = 0 implies m(77!(A)) = 0. For
nonsingular 7 : I™ — I", Frobenius-Perron operator
P, : L' — L! is defined by the formula:

/P,fdz:/ fdz,
A T=1(A)

where A C I™ is measurable. It follows that for z =
(1, Zn),

,n, wi(xy, -+ ,xn) is a function

an
P f(a) = _/ F(y)dy.
1 - Oxy ([T, [0.=:])

The operator P, has many interesting properties {10].

Suppose £ is a positive integer. An €™ x £* matrix
(called action matrix) will be associated to each finite
rank approximation operator, which in the case of
projection will be identity. The convergence of this new
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scheme is proven when the action matrix is a special
type of doubly—stochastxc and tridiagonal.

Let 8 = {Dy,---,D,} be a partition of I" such
that p < o0, i.e.,

4
UDj=1", D;nDi=0 for j#k
~

A partition 3 of I™ is called rectangular if for any
1<j<p Djisan n-dimensional rectangle.

Definition 1

A transformation 7 : I™ — I™ is called a Jablonski
transformation if it is defined on a rectangular partition
of I"™ and is given by the formula:

T(l'la X)) = (‘Plj(xl)’ T 1‘~Pnj(xn))»

where (z1,--,z,) € Dj, 1 £ j < p, D; =
[T [asj, bi) and @i; - [aij, big] — [0,1]. If by =1
for some ¢, then [a;;, bi;) means [a;;,b;j].

Cartesian product of the sets A; is denoted by
[Ii; Ai and P;, the projection of R™ onto R™71,
glven by:

Pi(xlv"' 7xn) = (xlv"' y Li—1yTid1, """ ,xn)~

Let g : A — R be a function on the n-dimensional
interval A = [],[a:,b). For a fixed i, a function
VAg with n — 1 variables (21, ", Zi-1, Tit1," ,Tp)
is defined by the formula:

‘/‘LAgE‘/'Lg:sup{Zig(xlv 7$‘]LC’”' 7$n)

k=1

_g(x17..‘ ,xf—l’... 7xn)l

iai=.’t?<w}<---<xf=bi, TGN}.

For f : A — R, where A = [}, [a:, b, let:

VAf = inf{/
P;(A)

almost everywhere, Vig measurable},

Vig dmn-y1:9=f

and VAf = sup,c;c, VS If VAf < oo, then f is a
bounded variation function on A and its total variation
is VAf,

In the next section, the finite rank operators
based on an action matrix will be presented and the
corresponding convergence theorems are proven.
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APPROXIMATION OF INVARIANT
DENSITIES

Let 7 : I™ — I™ be a Jablonski transformation and for
any positive integer ¢, let I" be divided into £" subsets
of equal measure I, I, . .. , I;» with:
Th—1 T,
e b e 3

-1 mn 9 — 1 T9g .
Ik‘[ ] ’e)x[ ; ’e)x x

for some 71,72,...,7n = 1,2,...,€ and m(lx) =
L g =1,2,...,0* Suppose Ix’s change according
to the following quasi-code:

k:=0;
FOR r,:=1 TO ¢ DO
FOR r,_1:=1 TO ¢ DO

' 1
FOR r:=1 TO ¢ DO (1)
k=k+1;
L= (872, ) x o x [ )

For simplicity, in what follows, sometimes £ is denoted
by ¢. Let:

P, =gm{I,nt7 L)), s,t=1,...,q,

and P, = (P;;) [9]. Suppose A, is the g-dimensional
linear subspace of L', spanned by {x,}i_;, where x,
denotes the characterlstlc function of I,. Now, suppose
that A, = (as;) is a given g x ¢ doubly-stochastic and
tridiagonal (DST) matrix and let P, = PyAg. Note
that P, may be considered as an operator Py = Py(7) :
Ay — Ay, given by:

P()x, = Z Pt X,

t=1

Since the product of two stochastic matrices is stochas-
tic, it is concluded that if A} = {3°]_jcex, 1k 20
and 377 _, cx = 1}, then P, maps A} to a subset of Aj;
thus, there exists a fixed point f, € A, of P, such that
I fell = 1 for all £ [6].

Let A = [vy,... v,,] be a p-dimensional subspace
of L', spanned by v; € L', i=1,...,p. For given u; €
L>,i=1,...,p, the ﬁmte rank operator Q : L' — A
is defined by the tensor notation, Q¢ = E —1 Ui ® v,
where for f € L', (u®v)(f) = ([} fu)v. The numbers

/ ujvi:aij (i,j:l,...,p)

define a p x p matrix 4, = (ai;), which is called the
action matrix of the operator @, (for notation and
terminology see [11]).
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Here, the choice of the functions v; and u; is as

follows:
- X.‘ 1= 1)~ an
uj=¢ x, + "+CzXq J=1..
where:
¢} =qa;, ¢t =cly =qb;,

aj _>_ 0 (] = 1,...
diagonal of the DST matrix A, an
1,...,¢ — 1) are the elements of the

,q) are the elements of the main

d b >0(@G =
“diagonals” just

above and below the main diagonal of the DST matrix

Ay
The corresponding DST actia

n matrix A, =

tridiag(a;, b;) of the operator Q, satisfies:

a1 +b =1,
bioi+ta;i+b=1 i=2,--- ¢g+1,
bq—l +Clq =1.
It follows that:
Uy =qarx, +Qb1X2,
uj=gbj_1xj-1+9a;x;+qbix 41, |F=2,...,¢—1,

g = gbg—1Xq—1 + qagX,.

Definition 2

For f € L' and for any positive mtege
is defined by:

9

Z(uk ®'Ulc f)v

Qe(f) =

where v, = i, ukzzj 1 Jx] k=1,...

ré,Qe¢: LY — A,

,q) and

the corresponding action matrix of the operator Qs is

the matrix A, defined as above.

Remark 1

It is not hard to prove that for any| ¢, the operator
Q¢ : L' — A4 is a Markov operator, and B, f = QP f

for any f € A, [6,7].
In the rest of this paper, it shall

Ay is a ¢ X ¢ DST matrix of the form:

A

A[ ]

be assumed that

M. Mohseni-Moghadam and M. Panahi

where A is an £ x ¢ DST matrix given by:

(al bp 0 0 xE 0 ]
bi ay by 0 - 0
© (3)
% be—z ap-1 bpy
o - 0 be_1  ay

In what follows it is assumed that the action matrix
of the operator Q, in Definition 2 is of the Form 2.
Clearly,

Gipe=aa;, (G=1,...6p=0,... 1 _1)
=t
=gbi (1=1,...,4-1;,p=0,... 0" 1-1).
Remark 2

It is clear that for f € L! as £ — oo, the sequence
{Qef} convergesin L! to f and in particular if f € A,,
then the sequence {P,f} converges in L! to P, f. For
details see [6,7].

Lemma 1
If feL then VI"Q,f <3VI"f.

Proof

Forany 1 <k < g, let I, = [T, [(r: = 1)/,7:/8) =
Hz 1 Jr, where, for 1 < ¢ < n, r; assumes the values

1,2,...,¢. Iy change according to the quasi-code
Relation L. Fork=1,--,q, m(Iy) = []r., m(J,,) =
1 Let:

q

¢
Qh (f) = Z (url ® v"‘l)(f)7
ry=1
where v,, = X, (#1), ur = Zﬁ 1 ¢y (o=

L...,0, (ur, ® vrl)(f = (f; fur,dz,)v,, and the
corresponding action matrix of the operator le is as
Form 3. Hence, ¢} = éa] and ¢/*t! =
G=1...,6v=1,.

the followmg is deﬁned:

u+1 = eb
.,€—=1). Fori = 2,...,n,

3

Z (ur; ® v )(f),

ri=1

Qli(f) =

where v, = x, (z:), u, = E;-1 ;v (ri =
L..oy8), (un ® v )(f) = (J, furdzi)v,, and the
corresponding action matrix of the operator Qe is an
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¢ x ¢ identity matrix. Hence, c; = and ¢} = 0 for
v#35(,v=1,...,¢0). It is obtained that:

Qef(z) = Q. Qe -+~ Qe f(z) = ([1i21 Qe f(2)-
It follows that (see [6,7]):

VI Qef=V" (172, Qe =V Qe[ =1 ;2:Q0) f

o [V (e
. 3‘/1'11] (H]:l,];ﬁ Qfg)f

ifi #1,
ifi=1.

Now it is shown that for any ¢,

/In 1V11 (=1 j2: Qe f(IToy ji025)

< | VI ede) @)
For ¢+ = 1, the Relation 4 was proven in Lemma
6 of [9 If i # 1, then for t = 1,2,---,€*!
let I}7Y = TIIj_, ;4 Jr;, where r; assume the
values 1,2,...,¢. I ! change according to the

quasi-code Relation 1 when k is replaced by ¢, Ix
by I’ ! and the loop for r; is eliminated. It
is clear that for ¢t = 1,2,---,6* 1 m(I}™!) =
=1 s m(Jr;) = 7=t. For simpliﬁcatlon notation

f(mlv 71:?7"'1 n) f(z1,~~,a:k 17 ",l'n) is de-

kk— -
noted by f; 1,. I1)— ;4 dz; by [I;z dz; and €271
by M. It is obtained that:

H;‘L.—_l,j;éinjf(ﬁ, Ty Xp) =
M
3 (w @v)(f)
t=1
where:
U = X]i"—l(xla"' yLi—1,Tig1, " Vo) = X,

M
=Y cu, (t=1,---,M),
v=1
(ue @u)(f) =

( fut dry---

n—-1

dz;_1dziy; - dTa)vy,

and the corresponding action matrix of the operator
HJ L Qq, is similar to Form 2, but the number of
iterations of the matrix A defined by Form 3 equals
¢"2%, Hence:

Cj+pl Maj

et G=1,...,6

v+pl+l _  vipl

v+pé - cu+p£+1 = Mb'/

C
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(v=1,...,0-1; p=0,... 072 -1)

Forany 0 =10 <z! <---
r
erI?:l,j#ierf(xl’ T vzi'c) e axn)
k=1

- H;=1,j¢injf(5”1»"' 2T T

_le/ flok=1

k=1 t=1

M
(3 x0T 0835 ) xd
v=1

T
= /1 ] DMy i Qe f (@, 2d o1 20)
T k=1

a H?:l,j;eiQ'-’jf(ml»"' AL

k,k—1
/ ( / fek
[n 1 k 1 t= 1 ]‘n—l

Z CVXV nj;eidxj) Xt(Hj;gidzj)

v=1

1 MM
= [ S )
k=1

=1 v=1 t=1

) .’L‘n)l(Hj#idl'j)

M — M
kk—1(_ .
=5 [ U T )
k=1 v=1

Z/ |FER=1)( H;;ezd%)

i

- /n_l £ T
=1

It
N\
5

=
—

5

-

8
-

3]

3
S

/Iﬂ_lvilﬂ (H;=1,j¢inj )f(H;'Lzl,j#idmj)

I . .
< [V T i)

Recall that if f,g € L! and f = g a.e., then Q.f =
Q.9 a.e. Also, the measurability of V;!" g implies the
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measurability of V/" Q,g. Now,

V,-Iﬂszzinf{ - 1VI"h(HJ 1 12:025)

th=Q.f ae., V;I"h measurable}

sinf{/z VT QT jpdes) 9= f

ae, VI'Q,g measurable
. I"

< 31nf{/1n lV (171 Qe )9
(H;‘;Lj#idxj): g=f

ae., VI"g measurable

< 3inf{/ Vi 9(ITfey jmies) tg=f

Jn—1

a.e., V,-I"g measurable} :3V{nf.

Therefore,

"Q.f = ma<xV "Q.f <3 max Vif=3vVl'f m

The following result is established in [8].

Theorem 1

Let 7 be a Jablonski transformation, where:
7(2) = (p15(21), -+, onj(zn)), T € Dj.

)= i_nf{[ inlf ]|<p§j|} > 2, then for any f € L':
bl @if,045

Inpff < Kq|Iff +aV1"f>

where K is a constant depending on 7 and a =
2271 <1

Lemma 2

Let 7 be a Jablonski transformation,
T(iE) = (‘plj(l‘l)y to )Sonj(xn))y x € lDJ‘,

and f; € A, be any fixed point of Py(7
If:

with || fef| = 1.
=inf{ inf |yl. 6
lir,lj {[ailjr.lb.'j] l‘pwl} >

then the sequence {V'" f;}52 | is bounded.

M. Mohseni-Moghadam and M. Panahi

Proof

By Remark 1, f, = B, f, = Q¢ P f, for all £. Hence, by
Lemma 1 and Theorem 1, it is obtained that:

VI o=V QP f <3V P, f,
<Kl fell + VT £1) = 3K, +3aV!" £y,
where K; >0 and 0 < a < . Since VI" f, < 0,
V" f, < 3K, /(1 - 3a)m

The following self-adjoint property of Q,, which was
not needed in [6], plays a vital role in the sequel.

Lemma 3
Forany f € L', £=1,2,---, and measurable subset A
of I™
/ XxAQefdx =/ fQexadz.
In In
Proof
| xa@Qus@da

:/ XA(x)Z(/ F®) Y hxs(y)dy)xe(2)dz
m k=1 Im j=1

kz:;/l f U)ZC X dy)/ xa(x)xx(z)dz

I
[\/ﬂg
T
S,
g
o
&

y)dy) /1 xa(@)dz

q

; /1 /Ik Fy)ekxalz)dzdy

]
i~

xa(z)dzdy

q q
= [ 1@ %03 dxwinn@da
" j=1 71" k=1

= [ f@Qex, @iz

Theorem 2

Let 7 be a nonsingular Jablonski transformation with
partition {Dy,---,D,} and

= inf{ inf -]} > 6.
11_1’1‘7 {[aijr,lbij] ISO'L],}

Suppose P, has a unique fixed point. Then for any
positive integer ¢, Py(1) has a fixed point f; in A, with
lfell = 1 and the sequence {f;} converges weakly to
the fixed point of P;.
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Proof Hence:

From Lemma 3 of [8] and Lemma 2, it is known that the
set {fe}§2, is weakly and relatively compact in L'. Let
{fe;} be a weakly convergent subsequence of {f¢}52,
and let f = lim;_ o f¢; weakly. Then, for any g € L*,

<|[ o= o)z

+ /I" 9(fe; — Qe; Pr fo;)dz

,»(QQXA ~ Xa )dil:
< [ Ihg iy xa - xalds
1"

= / |he;|Qe;xa — Xxaldz
{lhe, |2 K}

[ ot = Pefraa

+ / \he, 1@, x4 — Xald2
{|he,; 1<K}

<2 / \he, M+ 1Qe, xA-x Ak
{{he |2K} {lhe;|<K}

2/ lhgj|dx
{lhe, 12K}

The first term approaches zero since f,, converges
weakly to f as j — oo. From Remark 1, Q¢ Prfe; = +K/ 1Qe, x4 — xaldz.
P[ fe; = fi;, hence, the second term is identically zero. In

Now the last term is considered. Because of the
weak continuity of P, [10, p 43], P, f, converges weakly
to P.f as j — oo. It will be proven that Q¢ P fo,
converges weakly to P.f as j — oo. It is enough
to show that for any measurable subset A of I", the llm he;(Qe;xa — xa)dz =0.

+ /‘”l g(Ql,‘PTfZ]‘_PTf)d'T

(5)

IA

The first term is less than € and by Remark 2 the second
term approaches zero as j — oo. Thus:

following is obtained: - In
By Lemma 3,
lim X4 Qe hue;dzx =/ X 4 hdz, jllm f XAQ¢ he;dx = hm ’ he; Qe, X 4dx
e m I oo n n
where hy; = P fy; and h= P, f. :jlir{:o . he;(Qejxa — xa)dz

From Corollary IV.8.111in [12, p 294],
+ lim / he;x adz

j—o0
/Ehgj (m)dl‘ — 0 as m(E) — 0 :/ hXAd.’L‘.
uniformly in j. Because ||he,|| = 1 and hy, > 0 This means that the last term in Relation 5 approaches
J )y - !
from Theorem 7.5.3 in [13, p 296], he,’s are uniformly zeto.
integrable, i.c. Therefore, it is established that for any g € L*°,

| st@)f(a) - P fla)dz =0.

/ {he;ldz — 0 as K — oo,
{lhe, |2 K} It follows that P.f(zx) = f(z) almost everywhere.
Therefore, any weakly convergent subsequence of {f¢}

uniformly in j. Therefore, for any € > 0, there exists converges weakly to a unique fixed point of P. Hence,

K > 0 such that for all j: fo— f weaklyas £ — co. @
Corollary 1
If the fixed point of P, is not unique in Theorem 2,

2/ lhe, |dz < €. then any weak limit point of {f¢}32, is a fixed point of
{lhe; 12K} P,.
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Theorem 3
Let 7 be a nonsingular Jablonski traj
A = inf; ;{infjq .y l0ls1} > 1. St
unique fixed point. For an integer k
let ¢ = 7F and f, be a fixed point of

1 k—1
9, = Egpﬂfb

nsformation with
uppose P, has a
such that AF > 6,
P;(¢). Define:

Then, {g,} converges weakly to the fixed point of P,.

Proof

Since P, is a weakly continuous operator [10, p 43],

Theorem 2 implies that g, — g = 1 Zf;é P.; f weakly
as { — oo. Therefore,
L& =
PTg:EZPij:'EA FP.f=gy,
Jj=1 Jj=0
where f is the fixed point of Py = P,i|ie., Py f = f.m

Corollary 2

If the fixed point of P, is not unique in Theorem 3,
then any weak limit point f of {f,}22, is a fixed point

of Py and g = %Z;:é P,;f is a fixe

fe; — f weakly asi — oo, then g, =
g weakly as ¢ — oo.
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