Research Note

Markov Finite Approximation of Frobenius-Perron Operator for Higher-Dimensional Transformations with a Special Action Matrix

M. Mohseni-Moghadam* and M. Panahi¹

In this paper, the set of finite rank approximations of Frobenius-Perron operators is extended for higher-dimensional transformations from projections to general finite rank operators through indicating an arbitrary action matrix. The convergence is proven in the case for which the action matrix is a special type of doubly-stochastic and tridiagonal.

INTRODUCTION

Let I = [0, 1] and $\tau : I^n \to I^n$ be a piecewise expanding transformation. For n = 1, Lasota and Yorke [1] have proven the existence of an absolutely continuous invariant measure μ with respect to Lebesgue measure. If f is the density of μ with respect to Lebesgue measure m on I^n , then it is well-known that f is the fixed point of the Frobenius-Perron operator P_{τ} . Ulam conjectured that it might be possible to construct finite-dimensional operators which approximate P_{τ} and whose fixed points approximate the fixed point of P_{τ} [2]. In [3-6], this conjecture is proven for a class of one-dimensional piecewise expanding transformations. Recently, the above conjecture is proven for general finite rank operators through indicating an arbitrary doubly-stochastic tridiagonal action matrix [7]. In [8], Jablonski has shown that a class of piecewise C^2 transformations of the *n*-dimensional cube $[0,1]^n$ has an absolutely continuous invariant measure. An ndimensional version of Ulam conjecture was proven with finite rank projection operators for Jablonski transformations (see [9]). The aim of this paper is to prove the above version of Ulam conjecture for Jablonski transformations with general finite rank operators through indicating a particular doubly-stochastic tridiagonal action matrix.

Let m_j denote Lebesgue measure on I^j . For j=n, let $m=m_n$. The space of all Lebesgue integrable functions on I^n is denoted by L^1 and the space of all essentially bounded (with respect to Lebesgue measure) functions on I^n by L^{∞} . The transformation $\tau:I^n\to I^n$ is written as:

$$\tau(x_1,\dots,x_n)=(\varphi_1(x_1,\dots,x_n),\dots,\varphi_n(x_1,\dots,x_n)),$$

where for $i=1,\dots,n,\ \varphi_i(x_1,\dots,x_n)$ is a function from I^n into [0,1].

A measurable transformation $\tau: I^n \to I^n$ is nonsingular if m(A) = 0 implies $m(\tau^{-1}(A)) = 0$. For nonsingular $\tau: I^n \to I^n$, Frobenius-Perron operator $P_\tau: L^1 \to L^1$ is defined by the formula:

$$\int_A P_\tau f dx = \int_{\tau^{-1}(A)} f dx,$$

where $A \subseteq I^n$ is measurable. It follows that for $x = (x_1, \dots, x_n)$,

$$P_{\tau}f(x) = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \int_{\tau^{-1}(\prod_{i=1}^n [0, x_i])} f(y) dy.$$

The operator P_{τ} has many interesting properties [10]. Suppose ℓ is a positive integer. An $\ell^n \times \ell^n$ matrix (called action matrix) will be associated to each finite

rank approximation operator, which in the case of projection will be identity. The convergence of this new

^{*.} Corresponding Author, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, I.R. Iran.

^{1.} Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, I.R. Iran.

scheme is proven when the action matrix is a special type of doubly-stochastic and tridiagonal.

Let $\beta = \{D_1, \dots, D_p\}$ be a partition of I^n such that $p < \infty$, i.e.,

$$\bigcup_{j=1}^{p} D_{j} = I^{n} , D_{j} \cap D_{k} = \emptyset \text{ for } j \neq k.$$

A partition β of I^n is called rectangular if for any $1 \leq j \leq p$, D_j is an *n*-dimensional rectangle.

Definition 1

A transformation $\tau: I^n \to I^n$ is called a Jablonski transformation if it is defined on a rectangular partition of I^n and is given by the formula:

$$\tau(x_1,\cdots,x_n)=(\varphi_{1j}(x_1),\cdots,\varphi_{nj}(x_n)),$$

where $(x_1, \dots, x_n) \in D_j$, $1 \leq j \leq p$, $D_j = \prod_{i=1}^n [a_{ij}, b_{ij}]$ and $\varphi_{ij} : [a_{ij}, b_{ij}] \to [0, 1]$. If $b_{ij} = 1$ for some i, then $[a_{ij}, b_{ij})$ means $[a_{ij}, b_{ij}]$.

Cartesian product of the sets A_i is denoted by $\prod_{i=1}^n A_i$ and P_i , the projection of \mathbb{R}^n onto \mathbb{R}^{n-1} , is given by:

$$P_i(x_1, \dots, x_n) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n).$$

Let $g: A \to \mathbb{R}$ be a function on the *n*-dimensional interval $A = \prod_{i=1}^{n} [a_i, b_i]$. For a fixed i, a function $V_i^A g$ with n-1 variables $(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ is defined by the formula:

$$V_i^A g \equiv V_i g = \sup \left\{ \sum_{k=1}^r |g(x_1, \dots, x_i^k, \dots, x_n)| - g(x_1, \dots, x_i^{k-1}, \dots, x_n)| \right\}$$

$$: a_i = x_i^0 < x_i^1 < \dots < x_i^r = b_i, \quad r \in \mathbb{N}$$
.

For $f: A \to \mathbb{R}$, where $A = \prod_{i=1}^{n} [a_i, b_i]$, let:

$$\begin{aligned} \mathbf{V}_i^A f &= \inf \Big\{ \int_{P_i(A)} V_i g \ dm_{n-1} : g = f \\ &\text{almost everywhere,} \ V_i g \text{ measurable} \Big\}, \end{aligned}$$

and $\mathbf{V}^A f = \sup_{1 \leq i \leq n} \mathbf{V}_i^A f$. If $\mathbf{V}^A f < \infty$, then f is a bounded variation function on A and its total variation is $\mathbf{V}^A f$.

In the next section, the finite rank operators based on an action matrix will be presented and the corresponding convergence theorems are proven.

APPROXIMATION OF INVARIANT DENSITIES

Let $\tau: I^n \to I^n$ be a Jablonski transformation and for any positive integer ℓ , let I^n be divided into ℓ^n subsets of equal measure $I_1, I_2, \ldots, I_{\ell^n}$ with:

$$I_k = \left\lceil \frac{r_1 - 1}{\ell}, \frac{r_1}{\ell} \right) \times \left\lceil \frac{r_2 - 1}{\ell}, \frac{r_2}{\ell} \right) \times \cdots \times \left\lceil \frac{r_n - 1}{\ell}, \frac{r_n}{\ell} \right),$$

for some $r_1, r_2, \ldots, r_n = 1, 2, \ldots, \ell$ and $m(I_k) = \frac{1}{\ell^n}$, $k = 1, 2, \ldots, \ell^n$. Suppose I_k 's change according to the following quasi-code:

$$k := 0;$$

$$FOR \ r_n := 1 \ TO \ \ell \ DO$$

$$FOR \ r_{n-1} := 1 \ TO \ \ell \ DO$$

$$\vdots$$

$$FOR \ r_1 := 1 \ TO \ \ell \ DO$$

$$k := k + 1;$$

$$I_k := \left[\frac{r_1 - 1}{\ell}, \frac{r_1}{\ell}\right) \times \cdots \times \left[\frac{r_n - 1}{\ell}, \frac{r_n}{\ell}\right).$$

$$(1)$$

For simplicity, in what follows, sometimes ℓ^n is denoted by q. Let:

$$P_{st} = qm(I_s \cap \tau^{-1}(I_t)), \quad s, t = 1, \dots, q,$$

and $P_{\ell} = (P_{ij})$ [9]. Suppose Δ_{ℓ} is the q-dimensional linear subspace of L^1 , spanned by $\{\chi_k\}_{k=1}^q$, where χ_k denotes the characteristic function of I_k . Now, suppose that $A_{\ell} = (a_{ij})$ is a given $q \times q$ doubly-stochastic and tridiagonal (DST) matrix and let $\tilde{P}_{\ell} = P_{\ell}A_{\ell}$. Note that \tilde{P}_{ℓ} may be considered as an operator $\tilde{P}_{\ell} = \tilde{P}_{\ell}(\tau)$: $\Delta_{\ell} \to \Delta_{\ell}$, given by:

$$\tilde{P}_{\ell}(\tau)\chi_{k} = \sum_{t=1}^{q} \tilde{P}_{kt}\chi_{t}.$$

Since the product of two stochastic matrices is stochastic, it is concluded that if $\Delta_{\ell}^1 = \{\sum_{k=1}^q c_k \chi_k : c_k \geq 0 \text{ and } \sum_{k=1}^q c_k = 1\}$, then \tilde{P}_{ℓ} maps Δ_{ℓ}^1 to a subset of Δ_{ℓ}^1 ; thus, there exists a fixed point $f_{\ell} \in \Delta_{\ell}$ of \tilde{P}_{ℓ} such that $\|f_{\ell}\| = 1$ for all ℓ [6].

Let $\Delta = [v_1, \dots, v_p]$ be a p-dimensional subspace of L^1 , spanned by $v_i \in L^1$, $i = 1, \dots, p$. For given $u_i \in L^{\infty}$, $i = 1, \dots, p$, the finite rank operator $Q_{\ell} : L^1 \to \Delta$ is defined by the tensor notation, $Q_{\ell} = \sum_{i=1}^p u_i \otimes v_i$, where for $f \in L^1$, $(u \otimes v)(f) = (\int_{I^n} fu)v$. The numbers

$$\int_{I^n} u_j v_i = a_{ij} \quad (i, j = 1, \dots, p)$$

define a $p \times p$ matrix $A_{\ell} = (a_{ij})$, which is called the action matrix of the operator Q_{ℓ} (for notation and terminology see [11]).

Here, the choice of the functions v_i and u_j is as follows:

$$v_i = \chi_i$$
 $i = 1, \dots, q,$
$$u_j = c_1^j \chi_1 + \dots + c_q^j \chi_q \quad j = 1, \dots, q,$$

where:

$$c_j^j = qa_j, \quad c_i^{i+1} = c_{i+1}^i = qb_i,$$

 $a_j \geq 0$ $(j=1,\ldots,q)$ are the elements of the main diagonal of the DST matrix A_ℓ and $b_i \geq 0$ $(i=1,\ldots,q-1)$ are the elements of the "diagonals" just above and below the main diagonal of the DST matrix A_ℓ .

The corresponding DST action matrix $A_{\ell} = tridiag(a_j, b_i)$ of the operator Q_{ℓ} satisfies:

$$\begin{cases} a_1 + b_1 = 1, \\ b_{i-1} + a_i + b_i = 1 \\ b_{q-1} + a_q = 1. \end{cases} i = 2, \dots, q-1,$$

It follows that:

$$u_1 = qa_1\chi_1 + qb_1\chi_2,$$

 $u_j = qb_{j-1}\chi_{j-1} + qa_j\chi_j + qb_j\chi_{j+1},$
 $j = 2, \dots, q-1,$
 $u_q = qb_{q-1}\chi_{q-1} + qa_q\chi_q.$

Definition 2

For $f \in L^1$ and for any positive integer ℓ , $Q_{\ell} : L^1 \to \Delta_{\ell}$ is defined by:

$$Q_{\ell}(f) = \sum_{k=1}^{q} (u_k \otimes v_k)(f),$$

where $v_k = \chi_k$, $u_k = \sum_{j=1}^q c_j^k \chi_j$ (k = 1, ..., q) and the corresponding action matrix of the operator Q_ℓ is the matrix A_ℓ defined as above.

Remark 1

It is not hard to prove that for any ℓ , the operator $Q_{\ell}: L^1 \to \Delta_{\ell}$ is a Markov operator, and $\tilde{P}_{\ell}f = Q_{\ell}P_{\tau}f$ for any $f \in \Delta_{\ell}$ [6,7].

In the rest of this paper, it shall be assumed that A_{ℓ} is a $q \times q$ DST matrix of the form:

$$A_{\ell} = \begin{bmatrix} A & & & & & \\ & A & & & & \\ & & A & & \\ & & & \ddots & \\ & & & & & A \end{bmatrix}, \tag{2}$$

where A is an $\ell \times \ell$ DST matrix given by:

$$\begin{bmatrix} a_1 & b_1 & 0 & 0 & \cdots & 0 \\ b_1 & a_2 & b_2 & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & & & & \\ & & & & b_{\ell-2} & a_{\ell-1} & b_{\ell-1} \\ 0 & \cdots & & 0 & b_{\ell-1} & a_{\ell} \end{bmatrix}$$

$$(3)$$

In what follows it is assumed that the action matrix of the operator Q_{ℓ} in Definition 2 is of the Form 2. Clearly,

$$c_{j+p\ell}^{j+p\ell} = qa_j \quad (j = 1, \dots, \ell; \ p = 0, \dots, \ell^{n-1} - 1),$$

$$c_{i+p\ell}^{i+p\ell+1} = c_{i+p\ell+1}^{i+p\ell}$$

$$= qb_i \quad (i = 1, \dots, \ell - 1; \ p = 0, \dots, \ell^{n-1} - 1).$$

Remark 2

It is clear that for $f \in L^1$ as $\ell \to \infty$, the sequence $\{Q_\ell f\}$ converges in L^1 to f and in particular if $f \in \Delta_\ell$, then the sequence $\{\tilde{P}_\ell f\}$ converges in L^1 to $P_\tau f$. For details see [6,7].

Lemma 1

If $f \in L^1$, then $\mathbf{V}^{I^n} Q_{\ell} f \leq 3 \mathbf{V}^{I^n} f$.

Proof

For any $1 \leq k \leq q$, let $I_k = \prod_{i=1}^n [(r_i - 1)/\ell, r_i/\ell) = \prod_{i=1}^n J_{r_i}$ where, for $1 \leq i \leq n$, r_i assumes the values $1, 2, \ldots, \ell$. I_k change according to the quasi-code Relation 1. For $k = 1, \cdots, q$, $m(I_k) = \prod_{i=1}^n m(J_{r_i}) = \frac{1}{q}$. Let:

$$Q_{\ell_1}(f) = \sum_{r_1=1}^{\ell} (u_{r_1} \otimes v_{r_1})(f),$$

where $v_{r_1} = \chi_{J_{r_1}}(x_1)$, $u_{r_1} = \sum_{j=1}^{\ell} c_j^{r_1} v_j$ $(r_1 = 1, \dots, \ell)$, $(u_{r_1} \otimes v_{r_1})(f) = (\int_I f u_{r_1} dx_1) v_{r_1}$ and the corresponding action matrix of the operator Q_{ℓ_1} is as Form 3. Hence, $c_j^j = \ell a_j$ and $c_{\nu}^{\nu+1} = c_{\nu+1}^{\nu} = \ell b_{\nu}$ $(j = 1, \dots, \ell; \nu = 1, \dots, \ell-1)$. For $i = 2, \dots, n$, the following is defined:

$$Q_{\ell_i}(f) = \sum_{r_i=1}^{\ell} (u_{r_i} \otimes v_{r_i})(f),$$

where $v_{r_i} = \chi_{J_{r_i}}(x_i)$, $u_{r_i} = \sum_{j=1}^{\ell} c_j^{r_i} v_j$ $(r_i = 1, \ldots, \ell)$, $(u_{r_i} \otimes v_{r_i})(f) = (\int_I f u_{r_i} dx_i) v_{r_i}$ and the corresponding action matrix of the operator Q_{ℓ_i} is an

 $\ell \times \ell$ identity matrix. Hence, $c_j^j = \ell$ and $c_j^{\nu} = 0$ for $\nu \neq j \ (j, \nu = 1, \dots, \ell)$. It is obtained that:

$$Q_{\ell}f(x) = Q_{\ell_1}Q_{\ell_2}\cdots Q_{\ell_n}f(x) = (\prod_{i=1}^n Q_{\ell_i})f(x).$$

It follows that (see [6,7]):

$$V_{i}^{I^{n}}Q_{\ell}f = V_{i}^{I^{n}}(\prod_{j=1}^{n}Q_{\ell j})f = V_{i}^{I^{n}}Q_{\ell_{i}}(\prod_{j=1,j\neq i}^{n}Q_{\ell_{j}})f$$

$$\leq \begin{cases} V_{i}^{I^{n}}(\prod_{j=1,j\neq i}^{n}Q_{\ell_{j}})f & \text{if } i \neq 1, \\ 3V_{i}^{I^{n}}(\prod_{j=1,j\neq i}^{n}Q_{\ell_{j}})f & \text{if } i = 1. \end{cases}$$

Now it is shown that for any i,

$$\int_{I^{n-1}} V_i^{I^n} (\prod_{j=1, j \neq i}^n Q_{\ell_j}) f(\prod_{j=1, j \neq i}^n dx_j)
\leq \int_{I^{n-1}} V_i^{I^n} f(\prod_{j=1, j \neq i}^n dx_j).$$
(4)

For i=1, the Relation 4 was proven in Lemma 6 of [9]. If $i\neq 1$, then for $t=1,2,\cdots,\ell^{n-1}$ let $I_t^{n-1}=\prod_{j=1,j\neq i}^n J_{r_j}$, where r_j assume the values $1,2,\ldots,\ell$. I_t^{n-1} change according to the quasi-code Relation 1 when k is replaced by $t,\ I_k$ by I_t^{n-1} and the loop for r_i is eliminated. It is clear that for $t=1,2,\cdots,\ell^{n-1},\ m(I_t^{n-1})=\prod_{j=1,j\neq i}^n m(J_{r_j})=\frac{1}{\ell^{n-1}}$. For simplification, notation $f(x_1,\cdots,x_i^k,\cdots,x_n)-f(x_1,\cdots,x_i^{k-1},\cdots,x_n)$ is denoted by $f_i^{k,k-1},\ \prod_{j=1,j\neq i}^n dx_j$ by $\prod_{j\neq i} dx_j$ and ℓ^{n-1} by M. It is obtained that:

$$\prod_{j=1,j\neq i}^{n} Q_{\ell_j} f(x_1,\cdots,x_i,\ldots,x_n) = \sum_{t=1}^{M} (u_t \otimes v_t)(f),$$

where:

$$v_{t} = \chi_{I_{t}^{n-1}}(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}) \equiv \chi_{t},$$

$$u_{t} = \sum_{\nu=1}^{M} c_{\nu}^{t} v_{\nu} \quad (t = 1, \cdots, M),$$

$$(u_{t} \otimes v_{t})(f) =$$

$$(\int_{I_{n-1}} f u_{t} dx_{1} \cdots dx_{i-1} dx_{i+1} \cdots dx_{n}) v_{t},$$

and the corresponding action matrix of the operator $\prod_{j=1,j\neq i}^{n}Q_{\ell_{j}}$ is similar to Form 2, but the number of iterations of the matrix A defined by Form 3 equals ℓ^{n-2} . Hence:

$$c_{j+p\ell}^{j+p\ell} = Ma_j \quad (j = 1, \dots, \ell; \ p = 0, \dots, \ell^{n-2} - 1),$$

$$c_{\nu+p\ell+1}^{\nu+p\ell+1} = c_{\nu+p\ell+1}^{\nu+p\ell} = Mb_{\nu}$$

$$\begin{split} &(\nu=1,\dots,\ell-1;\;p=0,\dots,\ell^{n-2}-1).\\ &\text{For any } 0=x_i^0 < x_i^1 < \dots < x_i^{r-1} < x_i^r=1,\\ &\sum_{k=1}^r |\prod_{j=1,j\neq i}^n Q_{\ell_j} f(x_1,\dots,x_i^k,\dots,x_n) \\ &-\prod_{j=1,j\neq i}^n Q_{\ell_j} f(x_1,\dots,x_i^{k-1},\dots,x_n)| \\ &=\sum_{k=1}^r |\sum_{t=1}^M \left(\int_{I^{n-1}} f_i^{k,k-1} \left(\sum_{\nu=1}^n c_{\nu}^t \chi_{\nu}\right) \prod_{j\neq i} dx_j\right) \chi_t| \\ &\Rightarrow \int_{I^{n-1}} \sum_{k=1}^r |\prod_{j=1,j\neq i}^n Q_{\ell_j} f(x_1,\dots,x_i^k,\dots,x_n)| \\ &-\prod_{j=1,j\neq i}^n Q_{\ell_j} f(x_1,\dots,x_i^{k-1},\dots,x_n)| (\prod_{j\neq i} dx_j) \\ &\leq \int_{I^{n-1}} \sum_{k=1}^r \sum_{t=1}^M \left(\int_{I^{n-1}} |f_i^{k,k-1}| \left(\sum_{\nu=1}^m c_{\nu}^t \chi_{\nu}\right) \prod_{j\neq i} dx_j\right) \chi_t (\prod_{j\neq i} dx_j) \\ &=\frac{1}{M} \sum_{k=1}^r \int_{I^{n-1}} \sum_{\nu=1}^M (\sum_{t=1}^M c_{\nu}^t) |f_i^{k,k-1}| \chi_{\nu} (\prod_{j\neq i} dx_j) \\ &=\frac{M}{M} \sum_{k=1}^r \int_{I^{n-1}} |f_i^{k,k-1}| (\prod_{j\neq i} dx_j) \\ &=\sum_{k=1}^r \int_{I^{n-1}} |f_i^{k,k-1}| (\prod_{j\neq i} dx_j) \\ &=\sum_{k=1}^r \int_{I^{n-1}} |f_i^{k,k-1}| (\prod_{j\neq i} dx_j) \\ &=\int_{I^{n-1}} \sum_{k=1}^r |f(x_1,\dots,x_i^k,\dots,x_n) \\ &-f(x_1,\dots,x_i^{k-1},\dots,x_n) |(\prod_{j=1,j\neq i}^n dx_j). \end{split}$$
Hence:

$$\int_{I^{n-1}} V_i^{I^n} (\prod_{j=1, j\neq i}^n Q_{\ell_j}) f(\prod_{j=1, j\neq i}^n dx_j)$$

$$\leq \int_{I^{n-1}} V_i^{I^n} f(\prod_{j=1, j\neq i}^n dx_j).$$

Recall that if $f, g \in L^1$ and f = g a.e., then $Q_{\ell}f = Q_{\ell}g$ a.e. Also, the measurability of $V_i^{I^n}g$ implies the

measurability of $V_i^{I^n}Q_{\ell}g$. Now,

$$\begin{split} \mathbf{V}_{i}^{I^{n}}Q_{\ell}f &= \inf \left\{ \int_{I^{n-1}} V_{i}^{I^{n}}h(\prod_{j=1,j\neq i}^{n}dx_{j}) \right. \\ &: h = Q_{\ell}f \text{ a.e., } V_{i}^{I^{n}}h \text{ measurable} \right\} \\ &\leq \inf \left\{ \int_{I^{n-1}} V_{i}^{I^{n}}Q_{\ell}g(\prod_{j=1,j\neq i}^{n}dx_{j}) : g = f \right. \\ &\text{ a.e., } V_{i}^{I^{n}}Q_{\ell}g \text{ measurable} \right\} \\ &\leq 3\inf \left\{ \int_{I^{n-1}} V_{i}^{I^{n}}(\prod_{j=1,j\neq i}^{n}Q_{\ell_{j}})g \right. \\ &\left. (\prod_{j=1,j\neq i}^{n}dx_{j}) : g = f \right. \\ &\text{ a.e., } V_{i}^{I^{n}}g \text{ measurable} \right\} \\ &\leq 3\inf \left\{ \int_{I^{n-1}} V_{i}^{I^{n}}g(\prod_{j=1,j\neq i}^{n}dx_{j}) : g = f \right. \\ &\text{ a.e., } V_{i}^{I^{n}}g \text{ measurable} \right\} = 3\mathbf{V}_{i}^{I^{n}}f. \end{split}$$

Therefore,

$$\mathbf{V}^{I^n} Q_{\ell} f = \max_{1 \le i \le n} \mathbf{V}_i^{I^n} Q_{\ell} f \le 3 \max_{1 \le i \le n} \mathbf{V}_i^{I^n} f = 3 \mathbf{V}^{I^n} f. \blacksquare$$

The following result is established in [8].

Theorem 1

Let τ be a Jablonski transformation, where:

$$\tau(x) = (\varphi_{1j}(x_1), \cdots, \varphi_{nj}(x_n)), \ x \in \mathcal{D}_j.$$

If $\lambda = \inf_{i,j} \{ \inf_{[a_{ij},b_{ij}]} |\varphi'_{ij}| \} > 2$, then for any $f \in L^1$:

$$\mathbf{V}^{I^n} P_{\tau} f \le K_{\tau} ||f|| + \alpha \mathbf{V}^{I^n} f,$$

where K_{τ} is a constant depending on τ and $\alpha = 2\lambda^{-1} < 1$.

Lemma 2

Let τ be a Jablonski transformation,

$$\tau(x)=(\varphi_{1j}(x_1),\cdots,\varphi_{nj}(x_n)),\ x\in D_j,$$

and $f_{\ell} \in \Delta_{\ell}$ be any fixed point of $\tilde{P}_{\ell}(\tau)$ with $||f_{\ell}|| = 1$. If:

$$\lambda = \inf_{i,j} \{\inf_{[a_{ij},b_{ij}]} |\varphi'_{ij}|\} > 6,$$

then the sequence $\{\mathbf{V}^{I^n} f_\ell\}_{\ell=1}^{\infty}$ is bounded.

Proof

By Remark 1, $f_{\ell} = \tilde{P}_{\ell} f_{\ell} = Q_{\ell} P_{\tau} f_{\ell}$ for all ℓ . Hence, by Lemma 1 and Theorem 1, it is obtained that:

$$\mathbf{V}^{I^n} f_{\ell} = \mathbf{V}^{I^n} Q_{\ell} P_{\tau} f_{\ell} \le 3 \mathbf{V}^{I^n} P_{\tau} f_{\ell}$$
$$\le 3 (K_{\tau} \| f_{\ell} \| + \alpha \mathbf{V}^{I^n} f_{\ell}) = 3 K_{\tau} + 3 \alpha \mathbf{V}^{I^n} f_{\ell},$$

where $K_{\tau} > 0$ and $0 < \alpha < \frac{1}{3}$. Since $\mathbf{V}^{I^n} f_{\ell} < \infty$,

$$\mathbf{V}^{I^n} f_{\ell} \le 3K_{\tau}/(1-3\alpha).\blacksquare$$

The following self-adjoint property of Q_{ℓ} , which was not needed in [6], plays a vital role in the sequel.

Lemma 3

For any $f \in L^1$, $\ell = 1, 2, \dots$, and measurable subset A of I^n

$$\int_{I^n} \chi_A Q_\ell f dx = \int_{I^n} f Q_\ell \chi_A dx.$$

Proof

$$\int_{I^n} \chi_A(x) Q_{\ell} f(x) dx$$

$$= \int_{I^n} \chi_A(x) \sum_{k=1}^q \left(\int_{I^n} f(y) \sum_{j=1}^q c_j^k \chi_j(y) dy \right) \chi_k(x) dx$$

$$= \sum_{k=1}^q \left(\int_{I^n} f(y) \sum_{j=1}^q c_j^k \chi_j(y) dy \right) \int_{I^n} \chi_A(x) \chi_k(x) dx$$

$$= \sum_{k=1}^q \left(\int_{I^n} f(y) \sum_{j=1}^q c_j^k \chi_j(y) dy \right) \int_{I_k} \chi_A(x) dx$$

$$= \sum_{k=1}^q \sum_{j=1}^q \int_{I_j} \int_{I_k} f(y) c_j^k \chi_A(x) dx dy$$

$$= \sum_{k=1}^q \sum_{j=1}^q \int_{I_j} \int_{I_k} f(y) c_k^j \chi_A(x) dx dy$$

$$= \int_{I^n} f(x) \sum_{j=1}^q \left(\int_{I^n} \chi_A(y) \sum_{k=1}^q c_k^j \chi_k(y) dy \right) \chi_j(x) dx$$

$$= \int_{I^n} f(x) Q_{\ell} \chi_A(x) dx. \blacksquare$$

Theorem 2

Let τ be a nonsingular Jablonski transformation with partition $\{D_1, \dots, D_p\}$ and

$$\lambda = \inf_{i,j} \{ \inf_{[a_{ij},b_{ij}]} |\varphi'_{ij}| \} > 6.$$

Suppose P_{τ} has a unique fixed point. Then for any positive integer ℓ , $\tilde{P}_{\ell}(\tau)$ has a fixed point f_{ℓ} in Δ_{ℓ} with $\|f_{\ell}\| = 1$ and the sequence $\{f_{\ell}\}$ converges weakly to the fixed point of P_{τ} .

Proof

From Lemma 3 of [8] and Lemma 2, it is known that the set $\{f_\ell\}_{\ell=1}^\infty$ is weakly and relatively compact in L^1 . Let $\{f_{\ell_j}\}$ be a weakly convergent subsequence of $\{f_\ell\}_{\ell=1}^\infty$ and let $f=\lim_{j\to\infty}f_{\ell_j}$ weakly. Then, for any $g\in L^\infty$,

$$\left| \int_{I^n} g(f - P_{\tau} f) dx \right| \le \left| \int_{I^n} g(f - f_{\ell_j}) dx \right|$$

$$+ \left| \int_{I^n} g(f_{\ell_j} - Q_{\ell_j} P_{\tau} f_{\ell_j}) dx \right|$$

$$+ \left| \int_{I^n} g(Q_{\ell_j} P_{\tau} f_{\ell_j} - P_{\tau} f) dx \right|$$
(5)

The first term approaches zero since f_{ℓ_j} converges weakly to f as $j \to \infty$. From Remark 1, $Q_{\ell_j} P_\tau f_{\ell_j} = \tilde{P}_{\ell_j} f_{\ell_j} = f_{\ell_j}$, hence, the second term is identically zero. Now the last term is considered. Because of the

Now the last term is considered. Because of the weak continuity of P_{τ} [10, p 43], $P_{\tau}f_{\ell_{j}}$ converges weakly to $P_{\tau}f$ as $j \to \infty$. It will be proven that $Q_{\ell_{j}}P_{\tau}f_{\ell_{j}}$ converges weakly to $P_{\tau}f$ as $j \to \infty$. It is enough to show that for any measurable subset A of I^{n} , the following is obtained:

$$\lim_{j\to\infty}\int_{I^n}\chi_{{\scriptscriptstyle A}}Q_{\ell_j}h_{\ell_j}dx=\int_{I^n}\chi_{{\scriptscriptstyle A}}hdx,$$

where $h_{\ell_j} = P_{\tau} f_{\ell_j}$ and $h = P_{\tau} f$. From Corollary IV.8.11 in [12, p 294],

$$\int_E h_{\ell_j}(x)dx \to 0 \text{ as } m(E) \to 0$$

uniformly in j. Because $||h_{\ell_j}|| = 1$ and $h_{\ell_j} \geq 0$, from Theorem 7.5.3 in [13, p 296], h_{ℓ_j} 's are uniformly integrable, i.e.,

$$\int_{\{|h_{\ell_j}| \ge K\}} |h_{\ell_j}| dx \to 0 \text{ as } K \to \infty,$$

uniformly in j. Therefore, for any $\epsilon > 0$, there exists K > 0 such that for all j:

$$2\int_{\{|h_{\ell_j}|\geq K\}}|h_{\ell_j}|dx<\epsilon.$$

Hence:

$$\begin{split} \left| \int_{I^n} h_{\ell_j} (Q_{\ell_j} \chi_A - \chi_A) dx \right| \\ &\leq \int_{I^n} |h_{\ell_j}| |Q_{\ell_j} \chi_A - \chi_A| dx \\ &= \int_{\{|h_{\ell_j}| \geq K\}} |h_{\ell_j}| |Q_{\ell_j} \chi_A - \chi_A| dx \\ &+ \int_{\{|h_{\ell_j}| \leq K\}} |h_{\ell_j}| |Q_{\ell_j} \chi_A - \chi_A| dx \\ &\leq 2 \int_{\{|h_{\ell_j}| \geq K\}} |h_{\ell_j}| dx + K \int_{\{|h_{\ell_j}| \leq K\}} |Q_{\ell_j} \chi_A - \chi_A| dx \\ &\leq 2 \int_{\{|h_{\ell_j}| \geq K\}} |h_{\ell_j}| dx \\ &+ K \int_{I^n} |Q_{\ell_j} \chi_A - \chi_A| dx. \end{split}$$

The first term is less than ϵ and by Remark 2 the second term approaches zero as $j \to \infty$. Thus:

$$\lim_{j\to\infty}\int_{I^n}h_{\ell_j}(Q_{\ell_j}\chi_A-\chi_A)dx=0.$$

By Lemma 3,

$$\lim_{j \to \infty} \int_{I^n} \chi_A Q_{\ell_j} h_{\ell_j} dx = \lim_{j \to \infty} \int_{I^n} h_{\ell_j} Q_{\ell_j} \chi_A dx$$

$$= \lim_{j \to \infty} \int_{I^n} h_{\ell_j} (Q_{\ell_j} \chi_A - \chi_A) dx$$

$$+ \lim_{j \to \infty} \int_{I^n} h_{\ell_j} \chi_A dx$$

$$= \int_{I^n} h \chi_A dx.$$

This means that the last term in Relation 5 approaches zero.

Therefore, it is established that for any $g \in L^{\infty}$,

$$\int_{I^n} g(x)(f(x) - P_{\tau}f(x))dx = 0.$$

It follows that $P_{\tau}f(x) = f(x)$ almost everywhere. Therefore, any weakly convergent subsequence of $\{f_{\ell}\}$ converges weakly to a unique fixed point of P_{τ} . Hence, $f_{\ell} \to f$ weakly as $\ell \to \infty$.

Corollary 1

If the fixed point of P_{τ} is not unique in Theorem 2, then any weak limit point of $\{f_{\ell}\}_{\ell=1}^{\infty}$ is a fixed point of P_{τ} .

Theorem 3

Let τ be a nonsingular Jablonski transformation with $\lambda = \inf_{i,j} \{\inf_{[a_{ij},b_{ij}]} |\varphi'_{ij}|\} > 1$. Suppose P_{τ} has a unique **fixed** point. For an integer k such that $\lambda^k > 6$, let $\phi = \tau^k$ and f_{ℓ} be a fixed point of $\tilde{P}_{\ell}(\phi)$. Define:

$$g_{\ell} = \frac{1}{k} \sum_{j=0}^{k-1} P_{\tau^j} f_{\ell}.$$

Then, $\{g_{\ell}\}$ converges weakly to the fixed point of P_{τ} .

Proof

Since P_{τ} is a weakly continuous operator [10, p 43], Theorem 2 implies that $g_{\ell} \to g = \frac{1}{k} \sum_{j=0}^{k-1} P_{\tau^j} f$ weakly as $\ell \to \infty$. Therefore,

$$P_{\tau}g = \frac{1}{k} \sum_{j=1}^{k} P_{\tau^{j}} f = \frac{1}{k} \sum_{j=0}^{k-1} P_{\tau^{j}} f = g,$$

where f is the fixed point of $P_{\phi} = P_{\tau^k}$, i.e., $P_{\tau^k} f = f$.

Corollary 2

If the fixed point of P_{τ} is not unique in Theorem 3, then any weak limit point f of $\{f_{\ell}\}_{\ell=1}^{\infty}$ is a fixed point of P_{ϕ} and $g = \frac{1}{k} \sum_{j=0}^{k-1} P_{\tau^{j}} f$ is a fixed point of P_{τ} . If $f_{\ell_{i}} \to f$ weakly as $i \to \infty$, then $g_{\ell_{i}} = \frac{1}{k} \sum_{j=0}^{k-1} P_{\tau^{j}} f_{\ell_{i}} \to g$ weakly as $i \to \infty$.

REFERENCES

Lasota, A. and Yorke, J.A. "On the existence of invariant measures for piecewise monotonic transformations", Trans. Amer. Math. Soc., 186, pp 481-488 (1973).

- 2. Ulam, S. "Problems in mathematics", Interscience, New York, USA (1960).
- Ding, J. Du, Q. and Li, T.Y. "High order approximation of the Frobenius-Perron operator", Appl. Math. Compt., 53, pp 151-171 (1993).
- Ding, J. and Li, T.Y. "Markov finite approximation of Frobenius-Perron operator", J. Nonlinear Analy., 17(8), pp 759-772 (1991).
- Ding, J. and Li, T.Y. "Projection solutions of Frobenius-Perron operator equations", Int. J. Math. Math. Sci., 16(3), pp 465-484 (1993).
- Li, T.Y. "Finite approximation for the Frobenius-Perron operator: A solution to Ulam's conjecture", J. Approx. Theory, 17, pp 177-186 (1976).
- Mohseni-Moghadam, M. and Sabeti, R. "Markov finite approximation of Frobenius-Perron operator with doubly-stochastic tridiagonal action matrix", Appl. Math. Compt., 85 (1997).
- 8. Jablonski, M. "On invariant measures for piecewise C^2 -transformations of the *n*-dimensional cube", Ann. Polon. Math., **43**, pp 185-195 (1983).
- 9. Boyarsky, A. and Lou, Y.S. "Approximating measures invariant under higher-dimensional chaotic transformations", J. Approx. Theory, 65, pp 231-244 (1991).
- Lasota, A. and Mackey, M.C., Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, USA, p 43 (1985).
- 11. Franchetti, C. and Cheney, E.W. "Minimal projections in L_1 -spaces", Duke. Math. J., **43**(3), pp 501-510 (1976).
- 12. Dunford and Schwartz, "Linear operators. Part I. General theory", Wiley, New York, USA, p 294 (1963).
- 13. Ash, R.B., Real Analysis and Probability, Academic Press, New York, USA, p 296 (1972).