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Phragmen-Lindel6f Type Theorem for a
Class of Quasi-Linear Fourth
Order Parabolic Equations

F. Tahamtani* and K. Mosaleheh!

In this paper, a Phragmen-Lindelof type theorem for a class of quasi-linear fourth order parabolic

equations is proved.

INTRODUCTION

In this paper, the spatial behavior of solutions of initial-
boundary value problems for a class of quasi-linear
parabolic equations is considered. More precisely, a
Phragmen-Lindeldf type theorem is proved for a class
of parabolic equations of the form,

ug + A%u — Af(u) = 0.

Under a growth condition on nonlinearity f, the growth
rate of the nontrivial solutions of an initial-boundary
value problem for the above equation in unbounded
cylindrical domains with homogeneous boundary con-
ditions is established.

Phragmen-Lindel6f type theorems for some
classes of nonlinear elliptic and parabolic equations
have been obtained previously [1-13].

The results established here mainly follow the
ideas in [3,5,7], in which Phragmen-Lindeléf type the-
orems for some semi-linear fourth order elliptic and
second order parabolic and Navier-Stokes equations
have been derived.

PRELIMINARIES
Let:
Q:{zER":zleR+,
z' = (22,23,..,Tn) € Gz, C R},

be the interior of a semi-infinite cylindrical domain
where,

o, ={(z1,2') €Q: =z =7},
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and let 7 — &, be a mapping from R* into the family
of bounded domain subsets of R™'; furthermore,
suppose:

0 < @ < inf mes 6. < supmes 6, < 3,
T T

and Jo, is smooth. Let:
Q={(x1,2)€N: 0<az <7}

The following initial-boundary value problem is consid-
ered:

u + A%u = Af(u),

(z1,2',t) € Qr == A x [0,T), (1)

w=2"20, (o.2t) €99 x 0,T), (2)
ov

u(zy,2’,0) =0, (z1,2') € Q. (3)

It is assumed that f € C?(R), f(0) =0,
fu)>20 Yu2x0, (4)

|f'(w)] < Aolu

where2<m§-f—_%forn>2,2<m<ooforn:2
and A is a positive constant.

Throughout the article, the following notations
will be employed:

-1 vueR, (5)

3 a* =
F= 0y [Vur =) (0)?,

%= %o,

=1

A=Y2,
=1

k1%

V2P = ¥ (8idu)?,

1,3=1

M= Y R0, ulfh = [ e,

i,j=1



16

and g% will represent the exterior normal derivative
of u.

For further considerations, the following technical
lemmas are important.

Lemma 1

Let D C R™ be a bounded region, Then, W2*(D) C
L?(D), for 2 < p < %ifn>4and1_<_p<ooif
n < 4. This means that a constant, C, exists which

depends upon D, n and p such tha:

/ |u|”dm§C{/ |V2u|2dz} ,
D D

for every u € W2*(D) [14].

[N

Lemma 2

Let ¥ be a monotone increasing function with ¥(0) =
0, lim;_.o ¥(7) = 400. Then z(r) > 0 satisfying
z(1) < ¥(2'(1)), T > 0, tends to Hoo when 7 — o0.
If ¥(1) < ¢cp7P for some ¢y and p > 1 for 7 > 74, then

lm, TP;‘PTZ(T) >0 [8].

THEOREM 1

If Statements 4 and 5 hold, then for every positive ¢
each nontrivial solution u of the initial-boundary value
Problem 1 to 3 satisfies:

T
lim,_ 7~ —/ Il 1V2u(.,t)] |3 dt > o.
0 i

It should be noted that Theoreth 1 obtained here
is different from Phragmen-Lindéléf type theorems
in [2,13]. In those articles, Phragmen-Lindel5f type
theorems are obtained under the ccondition that the
relevent solutions tend to zero as||z| — oo and the
energy integral with respect to the whole domain is
finite. The solutions considered here do not obey such
restrictions. In particular, in the ipaper by Vafeades
and Horgan [13], Phragmen-Lindeldf type theorem for
Karman system under the condition of finiteness of the
energy is established.

PROOF OF THEOREM 1

Let u be any nontrivial solution of the initial-boundary
value Problem 1 to 3. Multiplying Equation 1 by » and
integrating with respect to = over

d 2
;Z‘:/qu d$"'</Q

- yields:

N =

T

ulludz = uAf(u)dz.
- (6)
|
1
|
|
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It is not difficult to see that:

n n
ulA?y = E udiu +2 E ud? %y
i=1 ig=1
J>i

= |V?ul? + Z@i[uaf’u - 8udiu
i=1

-2 Z 0;u0;0;u]+2 Z 8, (ud?8;u).
J=1+1 i,:jz.l
3>i
By Stokes formula and boundary Condition 2,
I = / ulA?y dz
Q

-

=/ |V2u|2dac+/ [udu — 0y udiu

T T

-2 9;udd;ulda’ (7)

Jj=2

and:

I, ::/ uAf(u)dz

Qr
= — "(u - )2 uf'(u)Oude'.
- /fo< )30 )d“/a, o

Taking Conditions 4 and 5 into account, from State-
ment 8, the following inequality is obtained:

L< AO/ | |9yulde’. )

r

On the other hand,

udiu — dudfu -2 8;ud d;u
=2

= 01 (udfu) — > 61 (9;u)?
=1

=01 [udfu -y (9u)?].
j=1

Coupling these identities with Statement 7, it is ob-
tained that:

I =/ IV2u[2dz+/ 01 [ud?u - Z(Gju)2]dx’,
& o =1 (10)
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Equation 6 along with Statements 9 and 10 yields:

1d

= Sl DI, + 11192601 1,

< —-/ O [ud?u — Z(aju)z]dx’
or =1

+ Ag / lu| % |G uldz’.
o
After an integration with respect to 7,

[ (G 01, + 117701 1,

5/ [[Vul? — udfu)dz’ +A0/ [u| % |0y uldz.
or 2. (11)

Integrating the above inequality with respect to ¢t in the
interval [0, T') and utilizing initial Condition 3 gives:

[ {Emm, + [ 900 1
< /OT (/a, [[Vu? - u@fu]d:v’)dt
+ Ao /OT(/Q 0l |oyuld ) . (12)

Now, each term on the right hand side of the above
statement will be considered separately. Schwarz
inequality is used to get:

J o= /OT{/U,.“VU|2 - uafu]dz'}dt

< /OT{/(, Vul2ds
([ ae)' (] s o

and:

Ty = Ag /OT{/Q |u|%|alu|dz}dt
<o [ {(] )’ ([, maar) Y

(14)

Recall inequality 2|4] |B] < e(A)?+1(B)?, which
holds for positive A, B and ¢, thus:

T €
yA S/ {/ |Vu|?dz’ + —/ u?da’
0 or 2 or

1 2..12 !
+ 5-5-/ |02u|2dz }dt (15)
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and:

T
J2 S Ao E |u|mdac + l |31u|2dz dt.
2 2
0 Q, € Ja, (16)

Recall Poincaré-Friedrichs inequality:
A/ uldr < / |Vu|?dz, (17)
D D
where ) is the first eigenvalue of the Laplacian operator

in D with homogeneous Dirichlet boundary conditions.
Because of the above inequality,

- €, 1
< (N0 + P +5)

/OT (/U |V2ul2d$’)dt, (18)

and:
T
€
< = m
J2_A0/O {2/T|u| dz
+ ixl(r)/ |V2u|2da:}dt (19)
2e 2 Q, ’

where A2(7) depends on (2.
Lemma 1 and Inequality 19 yield:

B < Ap{500m (/OT 192,01 13, de)

iy T
+ﬁ_2_5(_)/0 lHV?u(.,t)lH?Ldt}_ (20)

Neglecting the first term on the left hand side of
Statement 12 and using Inequalities 18 and 20, it is
deduced that:

[ ([ oo, a)as
< dl(q—) /OT (/m |V2U|2d.’rl)dt
+ da(7) /OT 1|19 2u(., D113, dt

7

+ if‘LC-@{/OT 1192, o) 113, dt}

of3

2 (21)

where,
() = A7) + AP + o (22)
do(7) := M. (23)
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Substituting Statements 22 and 23 into Statement 21

gives an inequality involving,

T
B T) = [ 119,00 13, e,

(24)

the strain energy contained in .. Precisely, the follow-

ing nonlinear integro-differential inequal

/TE(s,T)ds <di(r)E'(r,T)
0

ity is obtained:

+ BT+ LD gy (g
where,
T
BT = 2 [ 11901 1 d
T
:/ (/ |V2u|2d1’>dt. (26)
0 or

The next objective is to solve the ndnlinear integro-

differential Inequality 25. Introducing,
F(r,T) = E(,T) +/ E(s,T)ds,
0
in Inequality 25 results in:
F(r,T) < (1+di(7) + do(7))F' (1, T)

+ —LOZC(T) [F'(r,T)]%.

Hence, Lemma 2 provides:

lim, 7~ "2 F(r,T) >0,
and:
lim_ ., 7~ ‘"_"2——2E(T,T) >0,

(28)

which completes the proof of Theorem |1.

Remark 1

Estimate 28 will also be valid if § is
real cylinder of the form:

Q={(z1,2') ER™: —c0< ;3 <0
with:
O ={(z1,2") €V 1] < 7).
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