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On Sequences of Composition Operators

S.D. Sharma* and U. Bhanu!

In this paper, the closed graph theorem is used to demonstrate that every analytic self-map of
the unit disc induces a composition operator on a vector-valued Hardy space. Conditions for the
convergence of a sequence of composition operators in the weak, strong and uniform operator
topologies, in terms of the convergence of the corresponding sequence of inducing maps, are also

reported.

INTRODUCTION

If ¢ is a analytic self-map of the open unit disc
D, then Littlewood subordination theorem guarantees
that without any additional assumptions about the
behavior of ¢, composition transformation Cy, defined
by Cyf = fo¢ for a holomorphic f in D, turns out
to be a bounded operator on H”(D), and is called
composition operator induced by ¢. Detailed study
of these operators on scalar-valued Hardy spaces are
given in [1-4]. In this paper, an attempt is made to
study composition operators on a vector-valued Hardy
space.

The paper is organised as follows. The next
section is preliminary in nature. In this section, some
known as well as unknown facts about vector-valued
Hardy spaces are presented. Then, an appeal to the
closed graph theorem is made to show that Cy is
bounded on H%(D). In the last section, necessary
and sufficient conditions on the sequence {¢,} of
analytic self-maps of the unit disc D are given so
that the corresponding sequence {Cjy, } of composition
operators converges in the weak and strong operator
topologies.

PRELIMINARIES

Let D be an open unit disc in the complex plane and
(X, || - |lx) be a complex Banach space. For 0 < p <
oo, the vector-valued Hardy space H% (D) consists of
all functions f : D — X such that z*of is holomorphic
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in D for every x* € X*, the dual of X and:
2T
lim1 1/27r/ |1 (re?®)|| S de < oo.
T 0

H% (D), 1 < p< o0, is a Banach space with:

2n )
1171 = tim 12 [ 11f(re) .

If X = C, HY (D) is simply denoted by H?(D) and
1015 By 1111

It is remarkable to mention here that unlike
H?(D), not every function f € H%(D) has a radial
limit a.e. An example is X = C,, the Banach space of
null sequences of complex numbers. Then f : D — C,,
defined as: f(z) = {Z"}32,, is in HE, (X). However,
f*(e?) = lim f(re*) = {e"®} ¢ C, for any . Hence,
in order to make H% (D) a proper Banach space, it
becomes obligatory to choose X in such a manner that
every f € H% (D) would have a radial limit a.e. As a
matter of fact, here the interest lies in the case where
p = 2 and (X, <,>) is a separable Hilbert space. In
this case, every function f € H%(D) has a radial
limit f*(e*) a.e. [5, Theorem A, p 89], which for
the sake of convenience is simply denoted by f(e*®),
and H% (D) becomes a Hilbert space under the inner
product <<,>> given by << f,g >>= 1/27rf027r <
f(e*),g(e®) > df. For more details about vector-
valued analytic functions and Hardy spaces, see [5-7]
and for classical Hardy spaces, see (8].

A lemma is formulated which will be used to find
kernel functions for H% (D).

Lemma 1
Let f € H%(D). Then,

I
1f()lx < _{_i_-——WZ)}l/?



Proof

let f(2) = 302, an2"™ € H(D). Then, 372 llanll%

< o0 and:

I @llx < - llanllxl=l

<X laali} {31

_ il
T - Ry

Let N = {0,1,2,...} and {e. : n

3

}1/2

€ N} be an

orthonormal basis for X. Form,n € N, eppn : D — X

is defined as:

emn(2) = z2™e, for every z € D.

Then, clearly, {emn|m,n € N} is an orthonormal

subset of H% (D). Furthermore, if f €

<<f,emn>>=0

H% (D), then:

27
=> 1/27r/ < f(e), emn(e®) > df =0
0

2m
= 1/27r/ ™ < f(e),e, > d = 0.
0

Since g, defined by g,(z) =< f(2),€x
D, it is concluded that:

> is analytic in

< f(z),en >=0 forevery z€ D and n € N.

This further implies that f = 0. Hence
N} is a basis for H% (D).

For each z € D and j € N, EJ :
defined as follows:

EI(f) =< f(z),e; > forevery f¢€

Then, EJ € (H%(D))* and so by Riesz
theorem, there exists K7 € H% (D) suc

Eif =<< f,KI>> forevery fe€

K7 is designated as a generalized repro
simply a kernel function whenever there
The next task is to find these kernel fu

Theorem 1

For z € D and j € N, the generaliz
kernel K is given by:

Further, [J|K7|||2 = l—lz T

5 {emn:m7n€

H%(D) — C is

HY (D).

representation

h that:

H% (D).
lucing kernel or

is no confusion.
nctions.

ed reproducing
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Proof
By Parseval identity,
Ki(w)= Y <<Kl emn>>ema(w)

m,neEN

Y El(emn) emn(w)

m,neN

Z < Z™en, €5 > emn(w)

m,neEN

e
:E Zw)me; = L
mGN( ) ’ 1-2w

and (|| K21} = . @

Proposition 1

The subspace [K? : (z,7) € D x NJ, the span of all
generalized reproducing kernel functions, is dense in
H% (D).

Proof

Let f € H%(D) be such that:

<< f, K3 >>=0 for every (z,j)€ DX N,
=< f(z),e; >=0 forevery (z,57) € Dx N
= f=0

= [K! :(z,5) € DxN] is dense in H%(D).m

COMPOSITION OPERATORS ON H%(D)

Using the bounded linear functionals £ and the closed
graph theorem, it shall be shown that every analytic
self-mapping ¢ of the unit disc induces a bounded
operator on H%(D).

Theorem 2
Let ¢ : D — D be analytic. Then Cy is bounded.

Proof

By Theorem C of [5], fop € HZ(D) for every
f € H%(D). Hence, Cy is a mapping from H% (D)
into H%(D). To prove the boundedness of Cy, let
{(fn,Csfn)} be a sequence in the graph of Cy which
converges to (f,g). Then:

fo— f and Cyf, — g,
which implies that:
B}y fn = E},,f and EICyf, — Elg,

L., < fu(9(2)) e, >—< F(8(2)),e; > and < fo((2)),
e; >—< g(z),e; > for every z € D and for every
Jj € N. Since {e; : j € N} is a basis for X, it is
concluded that Cy f = g. This shows that the graph of
Cy is closed. Hence, by the closed graph theorem, C,
is bounded. m



Composition Operators

SEQUENCES OF COMPOSITION
OPERATORS

In this section, conditions are provided on a given
sequence of analytic self-maps of the open unit disc,
so that the corresponding sequence of composition
operators converges in the weak, strong and uniform
operator topologies.

The First theorem of this section gives a necessary
and sufficient condition for the weak convergence of a
sequence of composition operators.

Theorem 3

Let {¢,.} be a sequence of analytic self-maps of the unit
disc D and ¢ : D — D be analytic. Then, the sequence
{C4.} converges in the weak operator topology to Cy
on H%(D) if and only if the sequence {¢,} converges
to ¢ uniformly on D.

Prior to proving this theorem, it is noted here
that if Cy is a composition operator on H% (D), then

for (2,5) € D, C3K = K} ). In fact:
<< f, C}KI >>
=<< Cuf, KI >>
=< Cyf(2),e; >
=<< f, K;;(z) >>, for every f € H%(D),

which implies that C; K7 = Ki(z)‘
Proof

It is first assumed that {Cy, } converges to Cy weakly.
Then Cy, f — Cuf weakly for every f € H%(D) and
so lim, | << Cy, f,9g >> — << Cyf,9g >> | = 0 for
every f,g € H%¥(D). In particular, taking f = e;; and
g = K7, it is obtained that:

lim| << ey, C3, K1 >> - << ex;, CiK] >> |
=0 forevery z€ D and j € N.
Using the above remark:
li,{nl <<ey, Ky () >> - <<ey, Ky, >>|=0,
which further implies that:
lim |¢n(2) — ¢(2)] =0 for every 2 € D.

Hence, {¢,} converges to ¢ uniformly on D.

Conversely, suppose ¢, — ¢ uniformly on D. Let
f € H%(D). Then < f(.),z >: D - C is analytic and
so continuous. Therefore, for every € > 0 there exists
4 > 0 such that:

| < f(2),z> - < flw)z>]|<¢

whenever |z — w| < §, for every z € X. 1)

Also, since ¢, — ¢ uniformly on D, there exists a
postitive integer n, such that for n > n,,

|pn(2) — &(2)] < & for every z € D. (2)
From Equations 1 and 2, it is obtained for n > n, that:
| < f(¢n(2))sz > = < f($(2)), 2 > | <e
for every z € D and for every z € X.
In particular, taking z = e;, for n > n,:
| < (Co F)(2)res > = < (Cof)2)ye; > | <&
for every (z,7) € Dx N
or| << Cy4. f,KI>> — << Cpf,KI >>|<e¢
for every (z,7) € D x N.

This, by Proposition 1, implies that {C,,} converges
to Cy weakly.

Next, a necessary and sufficient condition is given
for strong convergence of a sequence of composition
operators.

Theorem 4
The sequence {Cy,} converges to Cy strongly if,

and only if, the corresponding sequence {¢,} of an-
alytic self-maps of the unit disc converges to ¢ in

(H*(D), ||./]2)-

Proof
If {Cy, } converges to Cy strongly, then:

lim|||Cs, f = Cypflll2 =0 forevery fe€ H}(D).

In particular, taking f = e}, it is obtained that:
27 ) )
lim 1/27r/ lpn(e®) — ¢(e'?)|?ds = 0,
n 0

ie., limy ||¢n — ¢]|2 = 0.

This implies that {¢,} converges to ¢ strongly in
(H2(D), I.]2)-

The proof of the sufficient part folllows from a
scalar-valued version of this result simply by replacing
|.] by ||.]|x and using the fact that polynomials with
coefficients in X are dense in H% (D) (see 1, Theorem
42]). =

Corollary 1

If {¢r } converges to ¢* a.e. on the unit circle 3D, then
the sequence {Cy, } converges strongly to Cy.

For proof, see [1]. B

This section is concluded with a necessary con-
dition for the uniform convergence of a sequence of
composition operators.



Theorem 5
If {Cy,} converges to Cy uniformly

n H%(D), then

{#2} converges strongly to ¢’ uniformly in j in H?(D).

Proof
Suppose {Cy.,} converges to Cy unifor

mly on H%(D).

Then, for any € > 0, there exists a positive integer n,

such that:
[ICs, — Cy|| < € for every n > n,.

This implies that for n > n,,
[1Cs. f = Coflll2 < e

for every f € H%(D) with |||f||

2 <L

In particular, taking f = e;, it is obtained for n > n,

that:
1Cs. €k — Coeixlllz <e,

27
ie., {1/27r/0 [le;r (dn(e?))

—eix(d(e”))|15 0} /? < .
This implies that for n > n,,

[|¢L — ¢’||2 < e for any j € N.

Hence, {¢%} converges to ¢/ uniformly

yinj. B
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