On Sequences of Composition Operators

S.D. Sharma* and U. Bhanu¹

In this paper, the closed graph theorem is used to demonstrate that every analytic self-map of the unit disc induces a composition operator on a vector-valued Hardy space. Conditions for the convergence of a sequence of composition operators in the weak, strong and uniform operator topologies, in terms of the convergence of the corresponding sequence of inducing maps, are also reported.

INTRODUCTION

If ϕ is a analytic self-map of the open unit disc D, then Littlewood subordination theorem guarantees that without any additional assumptions about the behavior of ϕ , composition transformation C_{ϕ} , defined by $C_{\phi}f=fo\phi$ for a holomorphic f in D, turns out to be a bounded operator on $H^P(D)$, and is called composition operator induced by ϕ . Detailed study of these operators on scalar-valued Hardy spaces are given in [1-4]. In this paper, an attempt is made to study composition operators on a vector-valued Hardy space.

The paper is organised as follows. The next section is preliminary in nature. In this section, some known as well as unknown facts about vector-valued Hardy spaces are presented. Then, an appeal to the closed graph theorem is made to show that C_{ϕ} is bounded on $H_X^2(D)$. In the last section, necessary and sufficient conditions on the sequence $\{\phi_n\}$ of analytic self-maps of the unit disc D are given so that the corresponding sequence $\{C_{\phi_n}\}$ of composition operators converges in the weak and strong operator topologies.

PRELIMINARIES

Let D be an open unit disc in the complex plane and $(X, || . ||_X)$ be a complex Banach space. For $0 , the vector-valued Hardy space <math>H_X^p(D)$ consists of all functions $f: D \to X$ such that x^*of is holomorphic

in D for every $x^* \in X^*$, the dual of X and:

$$\lim_{r\to 1}1/2\pi\int_0^{2\pi}||f(re^{i\theta})||_X^Pde<\infty.$$

 $H_X^p(D),\ 1 \le p < \infty$, is a Banach space with:

$$|||f|||_p^p = \lim_{r \to 1} 1/2\pi \int_0^{2\pi} ||f(re^{i\theta})||_X^p d\theta.$$

If X = C, $H_X^p(D)$ is simply denoted by $H^p(D)$ and $|||.|||_p$ by $||.||_p$.

It is remarkable to mention here that unlike $H^p(D)$, not every function $f \in H^p_X(D)$ has a radial limit a.e. An example is $X = C_o$, the Banach space of null sequences of complex numbers. Then $f: D \to C_o$, defined as: $f(z) = \{Z^n\}_{n=o}^{\infty}$, is in $H_{C_o}^p(X)$. However, $f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta}) = \{e^{in\theta}\} \notin C_o$ for any θ . Hence, in order to make $H_X^p(D)$ a proper Banach space, it becomes obligatory to choose X in such a manner that every $f \in H_X^p(D)$ would have a radial limit a.e. As a matter of fact, here the interest lies in the case where p=2 and (X,<,>) is a separable Hilbert space. In this case, every function $f \in H_X^2(D)$ has a radial limit $f^*(e^{i\theta})$ a.e. [5, Theorem A, p 89], which for the sake of convenience is simply denoted by $f(e^{i\theta})$, and $H_X^2(D)$ becomes a Hilbert space under the inner product <<,>> given by << f, g $>>= <math>1/2\pi \int_{o}^{2\pi}$ < $f(e^{i\theta}), g(e^{i\theta}) > d\theta$. For more details about vectorvalued analytic functions and Hardy spaces, see [5-7] and for classical Hardy spaces, see [8].

A lemma is formulated which will be used to find kernel functions for $H_X^2(D)$.

Lemma 1

Let $f \in H^2_X(D)$. Then,

$$||f(z)||_X \le \frac{|||f|||_2}{\{1 - |z|^2\}^{1/2}}$$

^{*.} Corresponding Author, Department of Mathematics, University of Jammu, Jammu 180004, India.

^{1.} Department of Mathematics, University of Jammu, Jammu 180004, India.

Proof

let $f(z) = \sum_{n=o}^{\infty} a_n z^n \in H_X^2(D)$. Then, $\sum_{n=o}^{\infty} ||a_n||_X^2 < \infty$ and:

$$||f(z)||_{X} \leq \sum_{n=o}^{\infty} ||a_{n}||_{X} |z|^{n}$$

$$\leq \left\{ \sum_{n=o}^{\infty} ||a_{n}||_{X}^{2} \right\}^{1/2} \left\{ \sum_{n=o}^{\infty} |z|^{2n} \right\}^{1/2}$$

$$= \frac{|||f|||_{2}}{\{1 - |z|^{2}\}^{1/2}}. \blacksquare$$

Let $N=\{0,1,2,...\}$ and $\{e_n:n\in N\}$ be an orthonormal basis for X. For $m,n\in N,e_{mn}:D\to X$ is defined as:

$$e_{mn}(z) = z^m e_n$$
 for every $z \in D$.

Then, clearly, $\{e_{mn}|m,n\in N\}$ is an orthonormal subset of $H_X^2(D)$. Furthermore, if $f\in H_X^2(D)$, then:

$$<< f, e_{mn} >> = 0$$

$$\Rightarrow 1/2\pi \int_0^{2\pi} < f(e^{i\theta}), e_{mn}(e^{i\theta}) > d\theta = 0$$

$$\Rightarrow 1/2\pi \int_0^{2\pi} e^{-im\theta} < f(e^{i\theta}), e_n > d\theta = 0.$$

Since g_n defined by $g_n(z) = \langle f(z), e_n \rangle$ is analytic in D, it is concluded that:

$$\langle f(z), e_n \rangle = 0$$
 for every $z \in D$ and $n \in N$.

This further implies that $f \equiv 0$. Hence, $\{e_{mn} : m, n \in N\}$ is a basis for $H^2_X(D)$.

For each $z \in D$ and $j \in N$, $E_z^j : H_X^2(D) \to C$ is defined as follows:

$$E_z^j(f) = \langle f(z), e_i \rangle$$
 for every $f \in H_Y^2(D)$.

Then, $E_z^j \in (H_X^2(D))^*$ and so by Riesz representation theorem, there exists $K_z^j \in H_X^2(D)$ such that:

$$E_z^j f = \langle f, K_z^j \rangle$$
 for every $f \in H_X^2(D)$.

 K_z^j is designated as a generalized reproducing kernel or simply a kernel function whenever there is no confusion. The next task is to find these kernel functions.

Theorem 1

For $z \in D$ and $j \in N$, the generalized reproducing kernel K_z^j is given by:

$$K_z^j(w) = \frac{e_j}{1 - \bar{z}w}.$$

Further, $|||K_z^j|||_2^2 = \frac{1}{1-|z|^2}$.

Proof

By Parseval identity,

$$K_z^j(w) = \sum_{m,n \in N} \langle \langle K_z^j, e_{mn} \rangle \rangle e_{mn}(w)$$

$$= \sum_{m,n \in N} \overline{E_z^j(e_{mn})} e_{mn}(w)$$

$$= \sum_{m,n \in N} \langle \overline{z^m}e_n, e_j \rangle e_{mn}(w)$$

$$= \sum_{m \in N} (\bar{z}w)^m e_j = \frac{e_j}{1 - \bar{z}w}.$$

and $|||K_z^j|||_2^2 = \frac{1}{1-|z|^2}$.

Proposition 1

The subspace $[K_z^j:(z,j)\in D\times N]$, the span of all generalized reproducing kernel functions, is dense in $H_X^2(D)$.

Proof

Let $f \in H_X^2(D)$ be such that:

$$<< f, K_z^j>>= 0$$
 for every $(z,j) \in D \times N$, $\Rightarrow < f(z), e_j>= 0$ for every $(z,j) \in D \times N$ $\Rightarrow f \equiv 0$ $\Rightarrow [K_z^j: (z,j) \in D \times N]$ is dense in $H_X^2(D)$.

COMPOSITION OPERATORS ON $H_X^2(D)$

Using the bounded linear functionals E_z^j and the closed graph theorem, it shall be shown that every analytic self-mapping ϕ of the unit disc induces a bounded operator on $H_X^2(D)$.

Theorem 2

Let $\phi: D \to D$ be analytic. Then C_{ϕ} is bounded.

Proof

By Theorem C of [5], $fo\phi \in H_X^2(D)$ for every $f \in H_X^2(D)$. Hence, C_{ϕ} is a mapping from $H_X^2(D)$ into $H_X^2(D)$. To prove the boundedness of C_{ϕ} , let $\{(f_n, C_{\phi}f_n)\}$ be a sequence in the graph of C_{ϕ} which converges to (f, g). Then:

$$f_n \to f$$
 and $C_{\phi} f_n \to g$,

which implies that:

$$E^j_{\phi(z)}f_n \to E^j_{\phi(z)}f$$
 and $E^j_zC_\phi f_n \to E^j_z g$,

i.e., $\langle f_n(\phi(z)), e_j \rangle \rightarrow \langle f(\phi(z)), e_j \rangle$ and $\langle f_n(\phi(z)), e_j \rangle \rightarrow \langle g(z), e_j \rangle$ for every $z \in D$ and for every $j \in N$. Since $\{e_j : j \in N\}$ is a basis for X, it is concluded that $C_{\phi}f = g$. This shows that the graph of C_{ϕ} is closed. Hence, by the closed graph theorem, C_{ϕ} is bounded.

SEQUENCES OF COMPOSITION OPERATORS

In this section, conditions are provided on a given sequence of analytic self-maps of the open unit disc, so that the corresponding sequence of composition operators converges in the weak, strong and uniform operator topologies.

The First theorem of this section gives a necessary and sufficient condition for the weak convergence of a sequence of composition operators.

Theorem 3

Let $\{\phi_n\}$ be a sequence of analytic self-maps of the unit disc D and $\phi: D \to D$ be analytic. Then, the sequence $\{C_{\phi_n}\}$ converges in the weak operator topology to C_{ϕ} on $H^2_X(D)$ if and only if the sequence $\{\phi_n\}$ converges to ϕ uniformly on D.

Prior to proving this theorem, it is noted here that if C_{ϕ} is a composition operator on $H_X^2(D)$, then for $(z,j) \in D$, $C_{\phi}^* K_z^j = K_{\phi(z)}^j$. In fact:

$$<< f, C_{\phi}^* K_z^j >>$$
 $=<< C_{\phi} f, K_z^j >>$
 $=< C_{\phi} f(z), e_j >$
 $=<< f, K_{\phi(z)}^j >>$, for every $f \in H_X^2(D)$,

which implies that $C_{\phi}^* K_z^j = K_{\phi(z)}^j$.

Proof

It is first assumed that $\{C_{\phi_n}\}$ converges to C_{ϕ} weakly. Then $C_{\phi_n}f \to C_{\phi}f$ weakly for every $f \in H^2_X(D)$ and so $\lim_n | \langle C_{\phi_n}f, g \rangle > - \langle C_{\phi}f, g \rangle > | = 0$ for every $f, g \in H^2_X(D)$. In particular, taking $f = e_{1j}$ and $g = K^j_z$, it is obtained that:

$$\lim_{n} | << e_{1j}, C_{\phi_n}^* K_z^j >> - << e_{1j}, C_{\phi}^* K_z^j >> |$$

$$= 0 \text{ for every } z \in D \text{ and } j \in N.$$

Using the above remark:

$$\lim_{n} | << e_{1j}, K^{j}_{\phi_{n}(z)} >> - << e_{1j}, K^{j}_{\phi(z)} >> | = 0,$$

which further implies that:

$$\lim_{z \to \infty} |\phi_n(z) - \phi(z)| = 0 \text{ for every } z \in D.$$

Hence, $\{\phi_n\}$ converges to ϕ uniformly on D.

Conversely, suppose $\phi_n \to \phi$ uniformly on D. Let $f \in H^2_X(D)$. Then $\langle f(.), x \rangle : D \to \mathbb{C}$ is analytic and so continuous. Therefore, for every $\varepsilon > 0$ there exists $\delta > 0$ such that:

$$|< f(z), x> - < f(w), x> |< \varepsilon$$
 whenever $|z-w|<\delta$, for every $x\in X$. (1)

Also, since $\phi_n \to \phi$ uniformly on D, there exists a postitive integer n_o such that for $n \ge n_o$,

$$|\phi_n(z) - \phi(z)| < \delta \text{ for every } z \in D.$$
 (2)

From Equations 1 and 2, it is obtained for $n \ge n_o$ that:

$$|\langle f(\phi_n(z)), x \rangle - \langle f(\phi(z)), x \rangle| \langle \varepsilon|$$

for every $z \in D$ and for every $x \in X$.

In particular, taking $x = e_i$, for $n \ge n_o$:

$$|<(C_{\phi_n}f)(z), e_j>-<(C_{\phi}f)(z), e_j>|<\varepsilon$$

for every $(z, j) \in D \times N$

or
$$| << C_{\phi_n} f, K_z^j >> - << C_{\phi} f, K_z^j >> | < \varepsilon$$

for every $(z, j) \in D \times N$.

This, by Proposition 1, implies that $\{C_{\phi_n}\}$ converges to C_{ϕ} weakly.

Next, a necessary and sufficient condition is given for strong convergence of a sequence of composition operators.

Theorem 4

The sequence $\{C_{\phi_n}\}$ converges to C_{ϕ} strongly if, and only if, the corresponding sequence $\{\phi_n\}$ of analytic self-maps of the unit disc converges to ϕ in $(H^2(D), ||.||_2)$.

Proof

If $\{C_{\phi_n}\}$ converges to C_{ϕ} strongly, then:

$$\lim_{n} |||C_{\phi_n} f - C_{\phi} f|||_2 = 0 \ \text{ for every } \ f \in H^2_X(D).$$

In particular, taking $f = e_{1j}$, it is obtained that:

$$\lim_{n} 1/2\pi \int_{0}^{2\pi} |\phi_{n}(e^{i\theta}) - \phi(e^{i\theta})|^{2} d\theta = 0,$$

i.e., $\lim_n ||\phi_n - \phi||_2^2 = 0$.

This implies that $\{\phi_n\}$ converges to ϕ strongly in $(H^2(D), ||.||_2)$.

The proof of the sufficient part folllows from a scalar-valued version of this result simply by replacing |.| by $||.||_X$ and using the fact that polynomials with coefficients in X are dense in $H^2_X(D)$ (see [1, Theorem 4.2]).

Corollary 1

If $\{\phi_n^*\}$ converges to ϕ^* a.e. on the unit circle ∂D , then the sequence $\{C_{\phi_n}\}$ converges strongly to C_{ϕ} .

For proof, see [1]. ■

This section is concluded with a necessary condition for the uniform convergence of a sequence of composition operators.

Theorem 5

If $\{C_{\phi_n}\}$ converges to C_{ϕ} uniformly on $H_X^2(D)$, then $\{\phi_n^j\}$ converges strongly to ϕ^j uniformly in j in $H^2(D)$.

Proof

Suppose $\{C_{\phi_n}\}$ converges to C_{ϕ} uniformly on $H_X^2(D)$. Then, for any $\varepsilon > 0$, there exists a positive integer n_o such that:

$$||C_{\phi_n} - C_{\phi}|| < \varepsilon \text{ for every } n \ge n_o.$$

This implies that for $n \geq n_o$,

$$|||C_{\phi_n}f - C_{\phi}f|||_2 < \varepsilon$$

for every $f \in H_X^2(D)$ with $|||f|||_2 \le 1$.

In particular, taking $f = e_{jK}$, it is obtained for $n \ge n_o$ that:

$$|||C_{\phi_n}e_{j_K}-C_{\phi}e_{jK}|||_2<\varepsilon,$$

i.e.,
$$\{1/2\pi \int_{0}^{2\pi} ||e_{jK}(\phi_{n}(e^{i\theta}))$$

$$-e_{jK}(\phi(e^{i\theta}))||_X^2 d\theta\}^{1/2} < \varepsilon.$$

This implies that for $n \geq n_o$,

$$||\phi_n^j - \phi^j||_2 < \varepsilon$$
 for any $j \in N$.

Hence, $\{\phi_n^j\}$ converges to ϕ^j uniformly in j.

ACKNOWLEDGMENT

The authors wish to thank Professor R.K. Singh for his valuable suggestions and helpful comments.

REFERENCES

- Schwartz, H.J. "Composition operators on H^P", Thesis, University of Toledo, USA (1969).
- Nordgren, E.A., Composition Operators on Hilbert Spaces, Hilbert Space Operators, Lecture Notes in Math, 693, Springer-Verlag, Berlin, Germany, pp 37-63 (1978).
- Shapiro, J.H. and Taylor, P.D. "Compact, nuclear and Hilbert-Schmidt composition operators on H^P", Indiana Univ. Math. J., 23, pp 471-496 (1973).
- Cowen, C. and MacCluer, B.D., Composition Operators on Spaces of Analytic Functions, CRC Press, New York, USA (1995).
- 5. Rosenblum, M. and Rovnyak, J., Hardy Classes and Operator Theory, Oxford University Press (1985).
- 6. Hille, E. and Phillips, R.S., Functional Analysis and Semigroups, Revised Edition, American Math Society, Providence, USA (1957).
- 7. Hensgen, W. "Hardy raüme vektorwertiger funktionen", Thesis, University of Munich, Germany (1986).
- 8. Duren, P.L., Theory of H^P Spaces, Academic Press, New York, USA (1970).