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Com aring Neuro-Fuzzy and
Predictive Control of Structures

A. Joghataie* and J. Ghaboussi!

In this paper, a comparison|is made between the predictive control method and a neuro-fuzzy
control algorithm, which has been proposed recently by the authors, for controlling a benchmark

three-story frame structure|subjected to earthquakes.

Through numerical simulations, it is

demonstrated that the proposed neuro-fuzzy control algorithm can provide comparable and,

in some cases, superior results.

INTRODUCTION

In the last decade, special attention has been paid
to the theory and application of active structural
control [e.g., 1-3]. Different methods |of using neural-
networks and fuzzy logic for structural control have
been proposed recently. Onmne of these methods, pro-
posed by the authors [4,5], has been tested in the
control of a benchmark three-story [frame structure
subjected to earthquake loading, for which the results
have been encouraging. On the dther hand, the
formulated control methods, such as the instantaneous
optimal control, pulse control and predictive control
methods have been found effective in the control of
many structural test problems. In this paper, a
comparison is made between the neuro-fuzzy control
algorithm and the predictive control method in order
to provide a better understanding of their strong and
weak points. First, a neuro-fuzzy controller has been
designed for the control of the three-story frame of
Figure 1 and then a predictive controller has been
designed for the control of the same structure. Results
of their control of the frame subjected to different
earthquakes are compared and conclusions are drawn
in this regard.

NEURO-FUZZY CONTROL O
STRUCTURES

The main idea behind using neural networks and fuzzy
logic, in the proposed algorithm [4,5] has been to take
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advantage of the learning capability of neural networks
as well as the flexibility and modifiability associated
with fuzzy rules.

Neural Networks

Neural networks are versatile computational tools that
have attracted the attention of researchers in different
fields of science and technology since the mid 80’s.
They can be considered as regression or mapping
tools, used for classification purposes. Many types
of neural networks have been proposed by researchers
and used in a variety of application problems. The
most widely used type of neural network is the Multi-
Layer Feed-Forward back-propagation Neural Network
(MLFFNN) which has also been used in this study.
Figure 2 shows a typical MLFFNN which comprises a
number of processing units, arranged in layers. The
first and last layers are the input and output layers,
respectively. Neural networks in general and, specifi-
cally, the MLFFNN are well-known mapping tools to
the engineering community and complete information
regarding their theory and application can be found in
many references such as [6].

Fuzzy Logic

Application of fuzzy logic and fuzzy set theory to
the control of engineering processes is not a new
concept. However, the possibility of its application to
structural control has been recently mentioned by some
researchers in the field [7]. A number of fuzzy “if-then”
statements should be constructed for the control of the
specific structure under study. These “if-then” rules
are qualitative linguistic rules which could be specified
by experts in structural control. The linguistic rules are
then transferred into quantitative functions by using
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some implication and inference rules. Vast literature
is available on the theory and application of fuzzy sets
and fuzzy controllers such as [8-10].

Methodology of the Neuro-Fuzzy Control

The neuro-fuzzy controller is comprised of a neuro-
controller as the main controller and also a fuzzy
controller which is placed in series with the neuro-
controller and acts as a complementary controller for
the adjustment and correction of the control signal
issued by the neuro-controller. The arrangement of the
neuro-controller and complementary fuzzy controller is
illustrated in Figure 3.

Construction of Neuro-Controllers

The following steps have been employed for the con-
struction of an appropriate neuro-controller:

1. Training of an emulator neural network which is
capable of predicting the response of the frame from
the immediate history of response and control force.

2. Using the emulator to alleviate the undesired defor-
mations of the structure according to an appropriate
control criterion.

3. Forming training cases based on the response, as the
cause, on one hand and the dictated control force, as
the effect, on the other and construction of a neuro-
controller for learning this case-effect relationship.

4. Using the neuro-controller and the emulator neural
network together to provide better control results to
be used in the training of a new neuro-controller.

5. Training a new neuro-controller from the results of
the fourth step.

Steps four and five may be omitted or repeated
several times, depending on the desired accuracy.
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Figure 3. Control by the neuro-fuzzy controller.

Table 1. Parameters g

f the shear building model of the structure presented in Figure 1.

9.82 0 0
Mass Matrix M(N — s2/cm) 0 982 0
0 0 9.82
40654  —28758 0
Stiff Matrix K(N/cm) —28758 57516  —28758
0 —28758 28758
321.0281 0 0
Eigenvalue Matrix (rad?/s?) 0 3582.7859 0
0 0 9022.1860
0.4543  0.7532 0.4756
Eigenvectors Matrix (cm) 0.5924  0.1433  —0.7928
0.6654 —0.6419 0.3811

Modal Freq

uencies (Hz)

[2.85 9.53 15.12]

Construction of the Fuzzy Contr

The neuro-controllers are capable
smooth control. However, there are u

ollers

of performing a
nusual situations

where sharp changes in the control forces are required
for mitigation of the response of the structure induced

by an unexpected external excitation.
for example, occur at the onset of a st
A fuzzy controller is a good candidat
neuro-controller in these cases. The

Such situations,
rong earthquake.
e for helping the
fuzzy controller

acts on the control signal proposed by the neuro-

controller, improves it and sends it to the actuators.
In this study, the fuzzy controller developed by the
authors [5] has been used. Briefly a table has been
prepared to be used for determination of the correction
to the control signal issued by the neuro-controller.
The input to the table is the state vector of the frame
where the relative displacement and velocity of the
third floor of the frame have been used as the com-
ponents of a two-dimensional input vector to the fuzzy
complementary controller. For each of the components,
seven membership functions representing the Large
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Figure 4. Control by neuro-fuzzy controller. First floor

response is shown for 20 seconds. The structure has been

subjected to 25% El Centro earthquake and control forces.

Negative, Medium Negative, Small Negative, Small,
Small Positive, Medium Positive and Large Positive
values have been defined, resulting in 49 fuzzy rules.
For each rule, a control force has been considered.
Upon receiving an input vector, the membership of the
input to each of the rules can be determined. Using
these membership functions as weights and the control

forces defined for the rules, a weighted average of the
control forces can now be found and considered as the
final control force.

Results of Neuro-Fuzzy Controlling

The frame shown in Figure 1 has been subjected to the
25% El Centro earthquake, controlled by the neuro-
fuzzy controller and designed according to the steps
set forth in the previous sections (shown in Figures 4
to 6). A delay of 0.02 second has been introduced in
the controlled structure. In this study, only the relative
acceleration of the first floor has been used in the
construction of both the emulator and neuro-controller.
After integrating acceleration, relative velocity and
displacement have been calculated to be used by the
fuzzy controller. In Figure 4, the response of the first
floor, both uncontrolled and neuro-fuzzy controlled,
is shown. In Figure 5, the Fourier spectra of the
displacement and absolute acceleration of the three
floors, both uncontrolled and neuro-fuzzy controlled,
are demonstrated. Figure 6 demonstrates the history of
control force as well as the work done on the structure
by the control mechanism, where negative work means
that energy has been absorbed from the structure by
the control mechanism.

PREDICTIVE OPTIMAL CONTROL
METHOD

Predictive optimal control method has been proposed
by Rodellar and his co-workers [11,12], for use in the
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Figure 5. Control by neuro-fuzzy controller. Fourier spectrum of the relative displacements of the three floors are shown.
The structure has been subjected to 25% El Centro earthquake and control forces.
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digital control of frame structural sys
ically and experimentally. A signifi
this method over the other formulate
is its ability to control structures i
inherent time delays and nonlineari
an n-DOF controlled structure, with
times the sampling time interval A7]

tems both numer-
ant advantage of
d control methods
n the presence of
ties. Considering
a time delay of d
and a prediction

horizon of A time steps, using the measured response of
the structure at any sampling time step k, the response

of the structure can be predicted for
steps according to the following pred

y(k+j) = Ay(k +j — 1) + Byu(k
j=1,2,.., A+d,

where y(I) represents the predicted st
step [, A and B, stand for the discre
control matrices, respectively, and u
force at time step [.

The control rule is found aft
performance index J which is defined
k as:

J =172y (k+A+d)Qy(k+A+d) 4

where Q and R represent some wj
which are positive semi-definite and

respectively. Then, the linear control
dJ/ou(k) = 0 as:

u(k) = Dx(k) + Z H,u(k — 1),

where x(k) and u(k) represent the
control signal, respectively, D and

he next A+d time
iction equation:

+j-1-d)

(1)

ate vector at time
ete time state and
1(1) is the control

er introducing a
for any time step

-1/2u” (k)Ru(k),
(2)
eighting matrices

positive definite,
rule is found from

(3)

current state and
H, i =1,2,.4d

are constant matrices which contain information about
both the controlled structure and control objective and
are calculated based on A, B,, Q and R matrices.

Control of Three Story Frame

The state vector for the three story frame structure of

this study, which has been simulated
of freedom shear frame, is x(k) = [q
q(k) and q(k) represent the relative

by a three degree
k), q(k)]T, where
displacement and

velocity at time step k, respectively, and the control

signal is a scalar quantity, u(k) = u(
to the horizontal component of the

k), which is equal
force applied by

the tendons on the first floor of the frame as shown

in Figure 1. In this study, the f
weighting matrices have been used:

Q=diag.[1,1, 1,0 0,0, R=]

where an appropriate r value is found

vllowing diagonal

I, (4)

by trial and error.

Also, the corresponding A and B, matrices have been
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Figure 6. Control by neuro-fuzzy controller. Control
force applied by each of the actuators and total work done
by the actuators on the structure are shown for 20
seconds. The structure has been subjected to the 25% El
Centro earthquake and control forces.

found based on the characteristics of the frame, which
can be obtained from [13,4] as well as [14]. Tables 1 and
2 contain some information about structural properties
of the frame.

Table 3 presents the summary of the results of
this part of the study where the maximum relative
displacement, velocity and acceleration of the first floor
of the structure and, also, the control force and the
work done by the actuators in 20 seconds are reported
as functions of the r value. Also, results of the neuro-
fuzzy controlling of the frame, obtained previously by
the authors [4,5], are reported. Increasing r means
increasing the control cost. Hence, as r increases,
the control force decreases and the response of the
controlled structure increases. Figure 7 is a graphical
representation of the results reported in Table 3.

For the case of 7 = 1 x 107% the actuators
have become saturated, violating the optimality of the
control method. To avoid saturation, the capacity of
the actuators has been increased slightly and hence re-
sponse of the structure has been reduced considerably,
however, the control forces have been large and the
controller has introduced energy to the structure.

For the case of 1 = 3 x 107, the best results
have been obtained. It can be seen that the control
forces are still large but the actuators are not saturated.
Figures 8 to 10 illustrate the time history of the
response of the first floor, Fourier transform of the
response of the three floors, control forces and the
work done by the actuators on the structure. These
results seem similar to those obtained by the use
of the neuro-fuzzy controller. However, except for
the accelerations, the maximum value of the relative
displacements, velocities and control forces are larger
and the actuators have absorbed much less energy
from the structure in comparison to the neuro-fuzzy
case.

Results obtained for larger values of r are not
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Figure 7. Effect of cost factor r on the performance of the predictive optimal controller.

Table 2. Parameters of the shear building model of the structure presented in Figure 1.

0 I
Matrix A
-M~-'K 0
[17.91734
59.85641
Eigenvalue Matrix of A 94.9852i
—-17.9173¢
—59.85641
L —94.9852¢
[—0.01268: —0.00629: —0.00250¢: 0.01268i  0.00629: 0.002501
—0.01653¢ —0.00120: 0.00417¢ 0.01653: 0.00120: —0.00417:
Right Eigenvectors of A —0.01857:  0.00536¢ —0.00201¢ 0.01857: —0.00536:  0.00201:
0.22717 0.37661 0.23782 0.22717 0.37661 0.23782
0.29620 0.07165 —0.39640  0.29620 0.07165 —0.39640
| 0.33266 —0.32098 0.19055 0.33266  —0.32098 0.19055
[ 8.140561 45.085321 45.17789: ~8.14056¢  —45.085327 —45.17789:
10.614061 8.57704¢ —75.30460¢ —10.61406: —8.57704: 75.30460:
Left Eigenvectors of A 11.92060¢ —38.42570:  36.19892:  —11.92060:  38.42570: —36.19892:
0.45434 0.75322 0.47563 0.45434 0.75322 0.47563
0.59239 0.14329 —0.79280 0.59239 0.14329 —0.79280
| 0.66531 —0.64196 0.38110 0.66531 —0.64196 0.38110
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Table 3. Effect of different cost weights
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on the predictive optimal control results and comparison to the results of the
neuro-fuzzy controlled and uncontrolled structure.

v |x] max|| |%X|max | |X|rel max | |%|abs max | |Force|max Work
(cm) (cm/s) (cm/s) (cm/s?) (N) (N.cm)
1x10~° 0.17 4.15 162 196 3990 +1841
3 %1079 0.36 6.18 134 145 2135 -1574
5x107° 0.44 6.24 146 179 1409 -1653
7 x107° 0.40 6.84 153 161 908 -1516
10 x 1079 0.45 7.06 165 166 735 -1250
Neuro-Fuzzy 0.31 5.99 192 193 1083 -5583
Uncontrolled 0.95 11.98 228 260 - -
E 1.5 ¢ i fes neuro-fuzzy controller has only been the relative
= 1Irs oor .
é g - gncontrolled acceleration of the first floor.
< g
aq % g ' 2. The structure has been simulated as a linear system
v = E with only one source of time delay in the control
I B e B loop. The only source of non-linearity has been
3 0.0 10.0 20.0 X :
e the actuator dynamics which has not changed the
20.0 linearity of the system considerably. Also, only one
‘;j’ 2 First floor identified time delay has been considered in the con-
§ T oo - STTTae trol loop. However, these are not the real situations
@ . RaTAasrate s e .
o F Sk in the control of real structures. Structures are,
3 E, g generally, many degrees of freedom systems which
= 200 o TS 0 cannot be simulated by such reduced models pre-
cisely. Also, there might be further sources of delay
g 05 and non-linearity in the system. Due to these facts,
K First floor neuro-fuzzy control systems are expected to deal
O . . . .
I AR with such problems better than predictive optimal
A T controllers, considering their learning capability and
@ , g g capability
2 adaptivity.
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Figure 8. Control by predictive optimal

control

algorithm. First floor response is shown for 20 seconds.
The structure has been subjected to the 25% El Centro

earthquake and control forces. r = 3 x 10

comparable to those of neuro-fuzzy
larger responses have been observed
the control force is reduced when
As a result, the acceleration has
also.

For better comparison between th

-9

control, where
As expected,
r is increased.
been reduced

e predictive and

the neuro-fuzzy control methods, several important

points should be noted:

1. While the whole response of the structure has

been fed back and used in the ca
above predictive control forces, the

lculation of the
feedback to the

CONCLUDING REMARKS

In this paper, the performance of a neuro-fuzzy con-
troller and a predictive optimal controller, developed
for the control of a three-story frame structure, were
compared. It was demonstrated that the results of con-
trolling are very similar. Although both systems work
based on the prediction of the response of the frame,
their means of prediction is different. The predictive
controller is formulated, but the neuro-fuzzy controller
uses an emulator directly or indirectly, which learns
to predict the response of the structure. Hence, the
neuro-fuzzy controller seems more powerful in dealing
with situations where an appropriate formulation for
the prediction of the response is not available or hard
to develop (such as in the cases of high non-linearity)
due to the constituting material of the structure or
existence of an unidentified time delay in the control
loop.
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