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Numerical Method for Determination
of Pavement Deflection from

Mov

ing Load Measurements

J. Martinez* and M.R. Keymanesh!

A numerical method for processing and correction of pavement deflection measurements recorded

by moving load deflectomet

ers is presented. The method takes into account some peculiarities

inherent to this kind of devite, such as multiple load system, displacement of the reference plane

and initial deflection at th
are drawn from validation
measurements.
devices demonstrates an im
corrections.

INTRODUCTION

The deflection bowl of structures is
methods of pavement design or reha
calibration of theoretical models as
evaluation of the mechanical paran
tures, such as layers moduli and

ferent equipment for measuring pav
has been devised by Bonnot [1]. 1

used in rational
bilitation for the
well as for the
neters of struc-
thickness.  Dif-
ement deflection
Devices differ in

loading system or measurement technological prin-

ciple.  Lacroix deflectograph (2] a
[3] are high output equipment for

nd Curviameter
deflection test-

ing under a moving load, the former being used in

France as well as many other countrie]
world.

s throughout the

The study of deflection bowls under the above-

mentioned moving load devices pres
liarities which require accurate analy
tation. Firstly, device loading cond

ents some pecu-
ses and interpre-
tions are rather

complicated because of the multiple load system of

a four-wheel vehicle. FEach wheel
which results in a cumulative effect

applies a load
on the measure-

ments. Secondly, when using Lacroix deflectograph and

Benkelman beam for rigid pavements
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e beginning of measurements.
tests, using known theoretical solutions and absolute deflection
Application of the method to different pavement structures and measuring
provement of measurement results through processing the required

Results of the method evaluation

the measurement reference plane can occur. Finally,
most devices assume a negligible deflection value at
the farthest abscissa of the recorded curve instead of
the true initial deflection.

These effects have been considered partially or
totally by different authors [4-6]. In a previous
work [7], a general numerical method for measure-
ments processing, which takes into account the mul-
tiple loads system and the possible displacement
of the measurement reference plane, has been pro-
posed.

As a continuation of that work, the effect of the
initial deflection will be introduced and different results
from validation tests of the measurements processing
method will be presented.

PRESENTATION OF THE DEFLECTION
PROCESSING METHOD

Lacroix deflectograph principle is shown in Figure 1.
Loads P;(j = 1 to 4) of the vehicle wheels are applied
at points M;. Points A;(+ = 1 to2) correspond
to the sensors and Ax(k = 3 to 3) to the footings
of the measurement beam; moreover, the latter ones
define the measurement reference plane. During the
measure, the vehicle moves towards direction V, while
the measurement beam is kept at a fixed position.
Abscissa z is the variable longitudinal distance between
the sensors and the rear axle.
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Figure 1. Lacroix deflectograph principle. Position at the
beginning of the measurements.

The principle of the processing method is il-
lustrated in the flowchart of Figure 2. Assuming
horizontal homogeneity of the pavement structure, the
deflection bowl under a unique reference load of Fy is
axi-symmetrical. Its expression can thus be chosen as
a function Wy(r, p) of the radial abscissa r, dependent
on a set p of unknown parameters- which must be
determined.

From the transfer function of the measuring de-
vice, the relative deflection W/ (z) (i.e., image of the de-
flection Wy(r) as seen by sensor i of the deflectograph)
can be estimated as a function of Wy(r), according to

Expression of
Wo(r, p)

Measuring
system

Values of
measured deflection

T
1| Geometry, load intensity:
: W™ (z)

1
;
i
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.
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W™ (2w, P) of the difference
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' }
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WCOT(:E)
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Values of
parameters p

Figure 2. Flowchart of the procedure for calculation of
parameters p;.

the following expression:

Wi (z,p) = Z LiWo (ri;(x))

+> B Z [LiWo(rs(x))] — Wy

k=3
1 =1,2, (1)

with:
L, =P;/P load coefficient (j = 1 to 4),
B displacement of sensor ¢ due

to a unit displacement of footing &,
x longitudinal distance between

sensor A; and load P;(i = 1,2),
ri;(2) distance between 4; and P;,

Wy =W/ (2max) initial deflection.

Relation 1 is valid with the hypothesis of a linear
elastic behavior of the structure and due to symmetry,
the summations do not depend on subscript ¢ which
can be omitted.

From the measured deflection W™ (z,) at a given
set of N abscissas z,(a = 1 to N), the minimization
of the difference F,

N
E=Y waW™(za) = W(za,p)]” (2)

a=1

using a nonlinear least squares fitting method, results
in computing the unknown parameters p;, of Wy(a).
The relevancy of the optimization is quantified with a
coefficient of correlation p defined by:

with:
ol 2
V=> wa[W(za) -W"]",
a=1
W™(z,) measured deflection at abscissas z.,
w" average measured deflection,
Wa arbitrary relative weight at point z4;

by default: w, = 1{aw =1 to N).

The algorithm used for the fitting process is
the Gauss-Newton method implemented in Matlab
software. By minimizing the above difference, E, as
an objective function, this approach converges rapidly
to the optimal parameters (p).
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Figure 4. Example of Benkelman beam geometry (Loire
Atlantique type, Autret 1972).

Finally, the corrected deflection
approximation of the absolute deflecti
load due to the deflectograph) is equ

W () = ZL]'WO (ri;(2)); i
=1

The above procedure can als
measurements processed with Benke

Table 2. Values

weer(z) (ie., an
on under multiple
al to:

1,2.

(4)

0 be applied to
man beam. Fig-

nd loading characteristics of different types of Lacroix deflectograph.

Table 1. Values of B, coefficients for Lacroix
deflectograph.

Footings
B k=3 k=14 k=5
Sensors | i =1 —(1+%> —% g
i=2 -2 —(1+ 2%) s

ures 3 and 4 and Tables 1 to 4 provide the specific
parameters, Bj; and r;;, corresponding to different
devices.

There is no theoretical restriction concerning the
mathematical expression of function Wy(r, p), but the
number m of unknown parameters p must be less than
the number N of measuring points. Practically, for
numerical considerations, it is recommended to use a
limited number of p parameters. As an illustration,
Martinez and Jouve have chosen the following three-
parameter expression for Wy(r,p) [8] derived from [9]:

d

, (5)

1
[1 + @ D

57"

of ri;(z) and 74, (z) coefficients for Lacroix deflectograph.

rij (@), iy () j=1 j=2 i=3 i=4
i=1 |z| Va? 1 c? |L — =| VIE— 22+
i=2 Va? 4 c? |] (L—a)2+c? IL — x|
k=3 |z + bl Vb2 te? |L —x — b VI -z b2+
k=4 (x+b)2 + c2 |z + b| (L —2 —b)2 + 2 IL—z b
k=5 \/(J:+a+b)2+-4—2 \/(x+a+b)2+§ \/(L—z—a—b)2+§ \/(L—:c—a—b)2+%
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Table 3. Values of B;j coeflicients for Benkelman beam.

By Footings
k=3 k=14 k=35
=1
1 —{1+2 L2
or (1 = 3)* (+“) @

* A,

As is a unique sensor in the case of Benkelman beam.

Relation 1

y
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Calculation of

relative deflection
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Comparison
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(df A nhy

Optimization

Construction of
fictitious measured curve

W (za,p) = W ()

Figure 5. Validation of the processing method.

with:
n=d
p2=A
p3=mn

maximum deflection,
Abscissa of the point of inflection of the

deflect

ion curve,

exponent.

Other more sophisticated analytical expressions
of the deflection bowl could be chosen which directly

depend on layers moduli, such as in {10,11].

VALIDATION OF THE PROCESSING
METHOD

The proposed correction method is subjected to a
double validation: a strictly numerical validation from
known solutions and a more general validation from
absolute deflection measurements.

Numerical Validation from Known (d, A, n)
Parameters Solution

The processing method is first verified through known
solutions. Starting from known parameters (d°, A%, n%),
the next three stages are followed (Figure 5).
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Stage 1: Choice of Reference Parameters

Sets of reference parameters p® = (d° A% n%) are
chosen within realistic ranges, which give absolute
deflections, Wy(r, p?), satisfying Expression 5.

Stage 2: Construction of the Fictitious
Measured Curve W™

The relative deflection W™ (x,p") is calculated from
Wo(r, p°), according to Expression 1. Then, a fictitious
measured curve W™(z) is considered:

W™ (z) = W (z,p°). (6)
Stage 3: Calculation of the Computed
Parameters

According to the above numerical procedure, different
initial values of parameters (d*, \*,n') are considered
and final updated parameters (d/,\/,nf) are com-
puted using Equation 2, which are compared with the
original ones used in the first stage as reference values.
Furthermore, in order to test the numerical sta-
bility of the iterative solution (i.e., sensibility to initial
parameters), this stage is repeated three times with
different initial values and the results are compared.
The results (Table 5 and Figure 6) show that the
updated values do not depend on the initial values
and that they are, in each case, equal to the reference
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Figure 6. Numerical validation of the method from
known solutions (see Table 5). Updated values (df, A/, n/)
versus reference values (d°, A%, n®).

Table 4. Values of r;;(z) and ri;(z) coeflicients for Benkelman beam.
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merical validation of the method from known solutions.
Devices Structures | Parameters Reference Values Initi'al Yalges Updated Values
(d°, A%, n?) (di, A%, nt) (df ,Af, nf)
Case 1l | Case 2 | Case 3 | Case 1 | Case 2 | Case 3
d(m10-95 28 10 21 29 28 28 28
Rigid A(m10~02) 35 40 20 15 35 35 35
(R) n 0.8 2 0.8 1.5 0.8 0.8 0.8
p - - - - 1.00 1.00 1.00
d(m10-95) 40 55 62 23 40 40 40
Lacroix Semirigid A(m10-02)) 33 41 15 48 33 33 33
(S) n 1.2 0.7 2.5 1.1 1.2 1.2 1.2
o - - - - 1.00 1.00 1.00
d(m10-93) 144 52 71 40 144 144 144
Flexible A(m10-92)) 25 25 62 1 25 25 25
(F) n 1.5 2.5 1.2 3 1.5 1.5 1.5
) - - - - 1.00 1.00 1.00
d(m10~95) 24 17 12 35 24 24 24
Rigid A(m10-02) 39 15 31 22 39 39 39
(R) n 0.9 1.5 1.9 2.1 0.9 0.9 0.9
P - - - - 1.00 1.00 1.00
Benkelman d(m10-95)) 38 40 21 55 38 38 38
Beam Semirigid A(m10-92) 22 31 70 11 22 22 22
(S) n L5 3 1.9 0.9 1.5 1.5 1.5
p - - - - 1.00 1.00 1.00
d(m10-9°5)) 121 99 143 118 121 121 121
Flexible A(m10~02) 17 33 48 52 17 17 17
(F) n 1.6 2.8 1.1 0.8 1.6 1.6 1.6
p - - - - 1.00 1.00 1.00
values. This leads to a positive condlusion regarding N number of the recorded values,
the stability and relevancy of the procedure from a W/t (zq p):  fitted values of the absolute
numerical point of view. deflection,
. 4 P
Validation from Absolute Deflectiion Wiflt(xavp) = Z FJ‘WO [rij(xa),p] 1=1,2.
Measurements =170 (8)

The presented procedure is also valid
it to the absolute deflections measured
ment transducer anchored at a 6-me

procedure is conducted as follows:

a) The parameters p (d, A\, n)

Wq(r,p) are determined from the

ated by applying
with a displace-
ter depth. This

of the function
measured values

Ws(z,) by minimization of the difference:

The relative deflection W7(x) is computed from
Wo(r, p) using Expression 1. This deflection is then
compared with the measured deflection W™ (zx).

Figure 7 and Table 6 demonstrate the results
of this validation from the measurements processed
on two structures (one rigid, another flexible), both
with an anchored transducer and a 02 Lacroix deflecto-
graph, provided by the Laboratoire Central des Ponts
et Chaussées (LCPC). Significant differences are first
observed between Lacroix and absolute measurements,
specially on the stiffer structure, which needs a correc-
tion procedure.

From the high values of the coefficients of cor-
relation (p 0.95), it can be deduced that the
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Figure 7. Validation of the processing method from absolute measurements (W***) and comparison with 02 deflectograph

measured deflection (W™).

Table 6. Comparison of computed and measured

deflections on two pavements; Rigid Structure (RS) and
Flexible Structure (F'S).

Parameters . Validation ] Application
Min[(W2b2 — W7i)?] | Min[(W™ — W™)?]
RS FS RS FS
d(m1079%) | 33 132 31 136
A(m1079%) | 31 21 33 19
7 1.1 1.1 1.1 1
L 0.95 0.95 0.93 0.95
Wi(m1070%) | 6 12 " 12
df*(m10795) | 34 134 - i
d**(m10-9%) | 35 134 35 ™
dcm(mw‘os) R ) 34 138
d"(m1079%) | 20 108 18 118
d™(m10~9%) | 20 116 20 116
£ - - 0.93 1.22

choice of Expression 5 for function Wy is appropriate
here for both rigid and flexible structures. Moreover,
the agreement between the curves W"(z) and W™ (x)
i1s excellent, leading to a conclusion regarding the
relevancy of the hypothesis (homogeneity, linearity)
underlying transfer Function 1.

APPLICATION EXAMPLES OF THE
CORRECTION METHOD

According to the flowchart of Figure 2, the correction
method is applied to measurements recorded with a
02 Lacroix deflectograph on the two mentioned struc-
tures. The corrected deflections are computed and
compared with the absolute deflections (Figure 8 and
Table 6). The results provide satisfactory values of
the correlation coefficients (p = 0.93 and 0.95) which
means a good agreement between the Lacroix measured
deflection W™ and the corresponding computed one
wr.

For both structures, the correction improves the
measurements as the corrected curve W<e°™ is closer
to the absolute deflection W% than the Lacroix
measurements W™, The effect of the correction can
be quantified by the parameter &:

deor — gm
5 - dabs — qm : (9)

Values of £ between 0 and 2 signify an improve-
ment of the measurements by the correction and values
out of this range mean a negative effect.

The computed values of parameter £, reported in
Table 6 appear to be close to 1, which indicates optimal
efficiency of the correction.

CONCLUSIONS

The proposed method of processing the measurements
under moving load devices allows consideration of the
multiple loads system and possible displacement of the
measurement reference plane, as well as the effect of an
initial deflection.

The method computes the parameters of the
absolute deflection curve, whose analytical expression
is given, under a fixed reference plane and unique
load. This general and quite simple method can
be used for on-board processing of the measurements
for any deflection measurement device under moving
loads.

The examples considered here have validated the
method and shown that the correction improves the
measurement results significantly.

Application of the method to other structures
would further prove the generality and efficiency of the
processing and correction procedures.
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