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Review Article

Neural Network Applications

in Geotechnical Engineering

A.T.C. Goh!

Geotechnical engineers often encounter complicated multivariate problems that involve a number
of interacting factors. Commonly, the relationship between these factors is not precisely known.
In addition, the data associated with these parameters are usually incomplete or erroneous (noisy).
The extraction of knowledge from the data in order to develop a relationship between these factors
is a formidable task requiring sophisticated modeling techniques as well as human intuition
and experience. This paper demonstrates the use of neural networks to alleviate this problem.
Neural networks have emerged as a powerful computational technique for modeling nonlinear
multivariate relationships. This paper provides a brief overview of the basic architecture and
concepts of neural networks, foilowed by a review of current applications of neural networks in
geotechnical engineering and a discussion of some potential applications.

INTRODUCTION

Neural networks have emerged as a powerful compu-
tational technique for modeling nonlinear multivariate
relationships. The neural network is a product of
artificial intelligence research. Since a neural network
is ecssentially a “computational mechanism able to
acquire, represent and compute a mapping from one
multivariate space of information to another, given a
set of data representing that mapping” [1], it can be
readily applied to the field of geotechnical engineering.
Geotechnical engineers often have to solve complex
problems that involve a number of interacting factors.
Commonly, the relationship between these factors are
not precisely known. In addition, the data associated
with these parameters are usually incomplete or erro-
neous (noisy). The extraction of knowledge from the
data to develop the relationship between these factors
is a formidable task requiring sophisticated modeling
techniques as well as human intuition and experience.
This paper demonstrates the use of neural networks to
alleviate this problem. The growing interest in neural
networks among researchers is due to its excellent
performance in pattern recognition and the modeling
of nonlinear relationships involving a multitude of
variables, in place of conventional techniques.

This paper provides a brief overview of the basic
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architecture and concepts of neural networks, followed
by a review of current applications of neural networks
in geotechnical engineering and a discussion of some
potential applications.

CHARACTERISTICS OF NEURAL
NETWORKS

A thorough treatment of the neural network method-
ology is beyond the scope of this paper. The basic
architecture of neural networks has been covered widely
in [2-5]. A neural network consists of a number of
interconnected processing elements, commonly referred
to as neurons. Each neuron receives an input signal
from neurons to which it is connected. Each of these
connections has numerical weights associated with it.
The neurons are logically arranged into two or more
layers. The neurons interact with each other via these
weighted connections. These scalar weights determine
the nature and strength of the influence between the
interconnected neurons. Each neuron is connected to
all the neurons in the next layer. There is an input
layer where data are presented to the neural network,
one or more intermediate layers also known as hidden
layers and an output layer that holds the response of
the network to the input. FEach hidden and output
neuron processes its inputs by multiplying each input
by its weight, summing the product and then passing
the sum through a nonlinear transfer function such as a
sigmoid function to produce a result. Neural networks
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Comparison with Traditional Methods

Statistical methods are commonly used to model rela-
tionships involving a number of variahles. This is often
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complex and circuitous, particularly for nonlinear rela-
tionships. Also, to formulate the statistical model, the
important parameters must be known. By comparison,
the modeling process in neural networks is more direct,
as there is no need to specify an a-priori mathematical
relationship between the input and output variables.
The neural network is capable of capturing nonlinear
interactions between input and output variables in a
system. In addition, it can generalize correct responses
that only broadly resemble the data in the training set.
When the neural networks are trained on actual field
data, they are trained to deal with inherent noisy or
imprecise data. As more field data becomes available,
the neural network can be readily retrained and refined
with patterns that include these additional data. The
main criticism of the neural network methodology is
its inability, at present, to trace and explain the step-
by-step logic it uses to arrive at the outputs from the
inputs provided. This is expected to be a temporary
drawback that will be overcome with further research.

POTENTIAL APPLICATIONS

In this section, an attempt is made to identify the po-
tential role back-propagation neural networks can play
in assisting geotechnical engineers. The neural network
approach would be particularly useful for problems
lacking a precise analytical solution because of an
inadequate understanding of the phenomena involved
and the factors affecting them. Problem domains in
which the behavior of the system is governed by non-
linear multivariate relationships and where reliable case
records are available, offer the greatest promise. Some
of the major applications in geotechnical engineering
are envisaged in the following sections.

Engineering Property Estimation

In the field of geotechnical engineering, many re-
searchers have employed neural networks to estimate
correlations between various soil parameters. For
example, the neural network approach can be used
for developing engineering correlations between various
soil parameters. As an example, consider the empirical
relationship between the Cone Penetration Test (CPT)
measurements and the engineering properties of soils.
For sand, these correlations are commonly derived
from large scale laboratory calibration chamber tests.
The sand sample of known density is prepared in
the chamber and then consolidated to the desired
stresses. The cone is then pushed into the sample
and the cone tip resistance q. and the sleeve friction
fs are measured. The engineering properties of the
sample are determined from laboratory testing. The
cone measurements are then correlated directly to the
engineering properties.
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In this paper, the correlation between the tangent
constrained modulus M, during compression and g, for
normally consolidated sand is considered. The training
and testing patterns for the neural network model were
based on the comprehensive experimental results of
Baldi et al. [15]. The correlation determined by Baldi
et al. [15] from statistical analysis is shown below:

M,/q. = 1420(0" /98.1)70116¢(~1123Dr), (1)

The mean effective stress ol,, M, and q. are
in units of kPa and the sand relative density Dg is
in decimals. This statistical correlation is used for
comparison with the neural network predictions.

The back-propagation neural network program
adopted in this study essentially follows the formula-
tions of Eberhart and Dobbins {7]. The neural network
model consisted of 3 input neurons representing Dpg,
o!, and q. as well as a single output neuron representing
M,. The values for these parameters ranged from 16%
to 96% for Dg, 26 to 438 kPa for o/, 2 to 47 MPa for
g and 16 to 150 MPa for M,. A total of 73 training
patterns and 29 testing patterns were employed. Some
sample training and testing patterns are provided in
Table 1.

The average sum squared error plotted as a
function of the training cycles is shown in Figure 1
for the neural network model with 4 hidden neurons.

Table 1. Sample training and testing data.

Dr (%) | ot (kPa) | gc (MPa) | M, (MPa)
Training
92.4 366.4 46.5 147.6
92.9 221.2 39.1 119.6
92.9 80.5 23.9 80.3
74.6 221.3 26.1 106.1
74.6 369.1 34.4 131.4
74.9 516.3 40.7 144.3
61.8 370.2 20.1 111.4
63.4 515.3 25 120.5
91.8 46.7 18.4 71.1
75.8 46.4 10.9 66.3
Testing
73.1 80.6 15.6 74.3
92.9 219.8 36.2 118.1
57.7 223.1 13.4 87.5
61.8 81.6 9.1 62.6
63.4 45.4 5.6 52.1
55.8 370.1 15.5 112.2
76.7 224.8 22.1 108.4
56.4 522.1 19.9 128.4
77.2 518.8 32.1 137.7
51.2 85 7.3 60.8

Experiments indicate that there is no significant im-
provement in convergence as the number of hidden
neurons increases beyond 4. The neural network
predictions for the training and testing sets are shown
in Figure 2. The scatter of the predicted versus the
measured M, values was assessed using regression anal-
ysis. High coefficients of correlations for the training
and testing data were obtained as shown in Table 2.
The results demonstrate that the neural network was
successful in modeling the nonlinear relationship be-
tween M, and the other parameters. A comparison
of the correlation coefficients in Table 2 indicates that
the neural network model is more reliable than the
statistical model. This is also evident from the plots in
Figure 2.

Since the neural network is capable of gener-
alization, parametric studies can be carried out to
evaluate the effects of various input parameters on the
output. This was conducted at the end of the testing
phase, whereby some additional hypothetical data was
fed into the trained neural network model. This is
demonstrated in Figure 3 which shows the results of
typical correlations between Dg, o, q. and M, using
the trained neural network.

Other successful applications of neural networks
include the estimation of the hydraulic conductivity of
clay liners [16] based on soil data from 67 landfill sites
in North America and the evaluation of the frictional
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Figure 1. Neural network convergence characteristics
during training.

Table 2. Summary of regression analysis results.

Coefficient of Correlation

Method Training Data | Testing Data

Neural Network 0.98 0.94

Equation 1 0.91 0.87
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Figure 2. Comparison of the predicted and measured M,

values.

capacity of driven piles in clay based on actual load

test records [17].

Performance Prediction
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Figure 3. Results of parametric study.

of the soil deposit, the distance from the source of the
earthquake and the seismic attenuation properties.

In one common method of evaluating liquefaction
potential, the penetration resistance of the Standard
Penetration Test (SPT) is used as an index of soil
liquefaction resistance [18]. The SPT is an in-situ
testing procedure commonly carried out for sandy soil
types. The method of Seed et al. [18] was developed
by analyzing field records and establishing empirical
correlations between the SPT and seismic properties
and the occurrence or nonoccurrence of liquefaction at
the site. A typical empirical boundary separating lig-
uefied and nonliquefied sites is shown in Figure 4. The
method is essentially applicable only for earthquakes
of magnitude M = 7.5. Further calibration of the
equivalent dynamic shear stress ratio 74, /0, is required
for earthquakes of different magnitudes. In addition,
the boundary curve separating the liquefaction and
nonliquefaction zones needs to be calibrated for dif-
ferent fines content F' of the soil.
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Figure 4. Typical empirical design chart.
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Table 3. Soil and seismic data used in testing.

Field NNet.
Earthquake ooM | ol (kPa) | SPT (kPa) N a/g | Tav/ol | F(%) | Dso (mm) Behavior
Liquefaction?

Miyagikenoki (1978) 7.4 118.7 66.7 10.0 | 0.20 0.21 0.0 0.60 Yes Yes
7.4 61.8 38.3 19.0 | 0.32 0.31 4.0 0.28 No No

7.4 61.8 34.3 5.0 0.32 0.35 5.0 0.70 Yes Yes

7.4 61.8 41.2 7.0 0.32 0.29 4.0 0.28 Yes Yes

7.4 80.4 47.1 11.0 | 0.24 0.25 0.0 0.40 Yes Yes

7.4 97.1 66.7 20.0 | 0.24 0.21 0.0 0.60 No No

7.4 80.4 54.9 4.0 0.24 0.21 10.0 0.40 Yes Yes

7.4 61.8 41.2 13.0 | 0.24 0.22 7.0 1.60 Yes Yes

7.4 80.4 41.2 8.0 0.24 0.28 12.0 1.20 Yes Yes

7.4 136.4 77.5 17.0 | 0.24 0.24 17.0 0.35 No No

7.4 103.0 83.4 9.0 0.24 0.17 5.0 0.34 Yes Yes

7.4 108.9 70.6 8.0 0.24 0.21 4.0 0.36 Yes Yes

7.4 59.8 56.9 11.0 | 0.28 0.18 5.0 0.53 Yes Yes

7.4 109.9 80.4 23.0 | 0.28 0.22 0.0 0.41 No No

7.4 111.8 77.5 10.0 | 0.24 0.20 10.0 0.30 No Yes

7.4 74.6 59.8 6.0 0.24 0.18 10.0 0.25 Yes Yes

7.4 130.5 86.3 21.0 | 0.24 0.21 5.0 0.35 No No

7.4 93.2 68.7 9.0 0.24 0.19 20.0 0.15 Yes No

7.4 83.4 63.8 10.0 | 0.24 0.19 26.0 0.12 No No

7.4 111.8 77.5 12.0 | 0.24 0.20 3.0 0.35 Yes Yes

7.4 106.9 71.6 150 | 0.24 0.21 11.0 0.30 No No

7.4 124.6 91.2 17.0 | 0.24 0.19 12.0 0.30 No No

7.4 74.6 49.1 4.0 0.20 0.18 10.0 0.15 Yes Yes

7.4 111.8 66.7 15.0 | 0.20 0.20 10.0 0.18 No No
Chibakenchubu(1980) 6.1 105.9 56.9 5.0 0.10 0.09 13.0 0.18 No No
6.1 247.2 105.9 4.0 0.10 0.09 27.0 0.17 No No

The case records from Tokimatsu and Yoshimi
[19] were evaluated using the neural network. A total
of 85 case records was considered. This represented 42
sites that liquefied and 43 sites that did not liquefy.
The training phase comprised of 59 case records and
the testing phase consisted of 26 case records. For
brevity, only the data used in the testing phase are
shown in Table 3. F is the % fines content and Dyq is
the mean grain size of the soil. The following expression
by Tokimatsu and Yoshimi [19] was used to determine
the equivalent dynamic shear stress (7,,/0)) at depth
2

(Taw/ol) = 0.1{a/g)(M — 1)(g,/0,)(1 — 0.0152),( |
2

in which o, is the total vertical stress, o/ is the effective
vertical stress, M is the earthquake magnitude and
a/g is the normalized peak horizontal acceleration at
ground surface. The standardized SPT (Np)go values
were used for all the cases [18]. N; is the SPT N value
normalized for effective overburden pressure. (Ny)go is
N standardized for the driving energy in the drill rods

of 60% of the theoretical free-fall energy of the SPT
hammer.

The back-propagation neural network adopted
in this study consisted of three layers of neurons.
The number of input variables were varied to assess
the quality of the neural network predictions. The
output consisted of a single neuron, representing the
liquefaction potential. The desired output was given a
binary value of 1 for a liquefied site and a value of 0
for a nonliquefied site. Training was carried out until
the average sum squared errors over all the training
patterns were minimized. Further details are described
in [20]. The number of input variables in the neural
network models were varied to determine the most
reliable model. The optimal solution was deduced
as the model giving the least number of errors. The
number of neurons in the hidden layer was found to
have minimal effects on the prediction performance of
the neural networks.

For brevity, only the most successful model M8
is described. The model consisted of 8 input variables
and 3 hidden neurons. The input variables were: o,, 07,
M, (N1)so, a/g, Taw/0oh, F and Dso. The results of the



predictions for the testing phase, using|this model, have
been tabulated in Table 3, along with the actual field
performance. Altogether, there were 2 errors in the
training data and 2 errors in the testing data. Overall,
95% of the predictions were correct. In comparison, the
Seed et al. procedure gave 14 errors or a 84% success
rate. The results indicate that the neural network has
been successful in learning the relationship between the
input and output data. The results from the testing
phase suggests that although the neural network model
was not explicitly trained for these data, it was capable
of generalization and provided reasonable predictions.

The neural network modeling approach is simpler
to apply than the more conventional method. Only
minimal processing of the data is required, essentially
to obtain values of (Ni)ge and 7,,[0), for a given
peak horizontal acceleration and earthquake magnitude
M. In comparison, as the method of Seed et al. is
applicable only for M of 7.5, further calibration of
Tow/0), is required for earthquakes of different mag-
nitudes. In addition, the boundary turve separating
the liquefaction and nonliquefaction| zones needs to
be calibrated for different fines content of the soil.
A similar approach based on cone penetration data
(CPT) has also been reported by Gol [21].

Neural networks can also be used to synthesize
data obtained from extensive parametric studies using
numerical tools such as the finite element method. An
example is the prediction of the maximum lateral wall
displacement for braced excavations in clays. Goh et
al. [22] have demonstrated the feasibility of training
a back-propagation neural network for evaluating wall
displacements.

In open cut excavations for buildings and tunnels
in soft clays, braced sheet piles or diaphragm walls
are generally required as lateral supports to maintain
stability. A major consideration in selecting the
appropriate braced retaining wall system is to limit
the soil and wall movements. Surrounding buildings
and services can be damaged if these movements are
not controlled.

The magnitude of the wall movements associated
with braced excavation systems is often determined us-
ing the finite element method, particularly for problems
that involve complex soil conditions and construction
procedures. Achieving reasonably good estimates of
the wall movements requires a gogd knowledge of
the finite element method, which many geotechnical
engineers are not familiar with, as well as familiarity
with the computer program that is used and its
limitations.

consuming. Hence, several empirica
25] have been developed that provid

1 solutions [23-
engineers with
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simpler methods of estimating the maximum wall
deflections. These methods are particularly useful for
uniform soil conditions and for providing first estimates
for preliminary design of more complex problems. The
methods are essentially for clay soils and are based on
finite element studies, supplemented by measured case
records. In many of these methods, the estimation
of the wall deflection incorporates a factor related to
the factor of safety against basal heave. This enables
yielding of the soil and the influence of the underlying
strong layers of soil to be considered. The methods
also take into consideration other critical factors such
as the soil strength and stiffness, the wall geometry and
stiffness and the excavation geometry. These methods
provide the designer with a reasonable first estimate of
the wall maximum displacement §, assuming average
to good workmanship.

The back-propagation neural network model con-
sists of 7 input variables (B, T/B, EI, H, ¢y, E,/c.
and ) and a single output variable. The excavation
geometry parameters are illustrated in Figure 5. E1I is
the wall stiffness, v is the soil unit weight, c, is the soil
undrained shear strength and E,, is the soil undrained
elastic modulus. The output variable is the maximum
lateral wall deflection 6.

The data were drawn from parametric studies
using the finite element method (FEM). Details of the
parameters and their range of values are shown in
Table 4. The variations in the parameters are typical
of those which would occur for braced excavations in
soft and medium clay. The finite element modeling is
described in [24]. The soil stress-strain behavior is rep-
resented by a hyperbolic constitutive model. The clay
has been assumed to be saturated and incompressible
with a Poisson’s ratio of 0.49. The total horizontal

Width of excavation B
>

Depth of excavation H

ot

Depth to bedrock T

_

Figure 5. Wall and excavation geometry for braced
excavation.
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Table 4. Summary of excavation parameters.

Property Symbol Units Range of
Values

Excavation width B m 11-33

Soil thickness/width ratio T/B — 0.18-4.45

Wall stiffness Er MNm?/m | 46.5-7000

Excavation height H m 1-11

Soil undrained shear strength Cu kPa 18-70

Soil modulus /shear strength ratio E./Cy — 200-300

Soil unit weight 5 kN/m?3 15-20

Max. wall deflection 6 m 0.003-0.540

Table 5. Neural network predictions and field measurements.

Case |B (m)|T/B (MN}if?/m) H (m) | cu(kPa) | Eu/cu | v (kN/m?) Me(a::l‘;dé Priiﬁ:“;dé

Lavender 23.5 0.49 1670 6.5 40 200 18 32 31

23.5 0.37 1670 9.4 50 200 18 36 28
Telecom 27.0 0.78 60 4 25.6 200 15 56—-84 65
Vaterland 11.6 1.47 62 7 30 200 17 76 76
[26) 11.6 | 1.21 62 9.1 30 200 17 114-140 107
San Francisco | 40.5 0.59 46.5 4.6 58 250 17.6 20-60 59
127) 40.5 | 0.45 46.5 10.4 66 250 17.6 72-150 122

and vertical stresses are assumed to be equal prior to
excavation. Excavations to depths of between 1 to 11 m
were considered. The strut levels were at depths of 1 m,
3.5m, 6 m and 8.5 m. In most published case histories
as well as the authors’ experiences in Singapore, the
vertical strut spacing is usually between 2 m and 3 m.
As the finite element studies have indicated that the
lateral wall deflections are not very sensitive to strut
spacing varied within this range, the strut spacing was
omitted as an input variable in the neural network
model. The strut stiffness was also not considered
in the neural network model. For a “normal” braced
excavation system, the influence of the strut stiffness
on the wall deflection is not as significant as the wall
stiffness and strut spacing [23].

For flexible sheetpiles, walls floating in the clay
and penetrating into the hard stratum were considered.
For diaphragm walls, only walls penetrating into the
hard stratum were considered. The retaining walls were
also assumed to have sufficient moment capacity so that
no yielding or cracking occurred during construction.
The data were arbitrarily separated into a training
set and a testing set. A total of 196 patterns were
used for training and 57 patterns for testing. The
convergence performance of the neural network was
found to be optimal with 3 neurons in the hidden layer.
Further details of the neural network model are found
in {22].

Figure 6 shows plots of the FEM maximum
deflection values versus the values predicted by the
neural network (NN), for the training and testing data.
The scatter of the predicted NN values relative to
FEM deflections were assessed using regression anal-
ysis. High coefficients of correlation for the training
and testing data of 0.984 and 0.967, respectively, were
obtained. The results indicate that the neural network
was successful in learning the relationship between the
input and output variables.

Some additional testing data from actual case
records were also used to validate the performance of
the trained neural network model. The results are
summarized in Table 5. The agreement of the NN
predicted and measured wall deflections is encouraging.

Using the neural network approach in place of
more conventional empirical techniques is more ad-
vantageous, since the neural network model provides
instantaneous results, once it is properly trained. It is
also more direct as there is no need to compute the fac-
tor of safety against basal heave. The neural network
model will directly relate the various factors affecting
basal heave, such as the soil shear strength, depth of
excavation and depth to underlying strong layers, to
the wall displacement. The neural network model may
be improved as additional data are acquired, as it can
be readily retrained with patterns which include these
new data. Also, it may be used as a quick check on



0.6
0.5 |- Training
O
E
o
2
o
L
[}
Lo
el
%
]
E
Z
Z.
0 0.1 0.2 0.3 0.4 0.5 0.6
FEM max deflection (m)
(a)
0.5
Testing
0.4 |-
E
g
S
L
o]
o
hel
®
]
E
Z.
Z
0 : - ‘
0 0.1 0.2 0.3 0.4 0.5
FEM max deflection (m)
(b)

Figure 6. Neural network and FEM predictions.

the solution developed by the time-consuming finite
element analysis.

Other applications proposed include the analysis
of pile driving records to predict pile load capacity [28],
the prediction of pile capacity [13] and the prediction
of settlements during tunneling [29].

Constitutive Modeling

Studies conducted by Ghaboussi et pl. [30,31] since
1991 have demonstrated the feasibility of using neural
networks to model the stress-strain |behavior of soils
and other materials. In the neural network approach,
the representation of material behavigr is not based on
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a-priori assumptions about the material behavior, but
is based on the experimental data on which it has been
trained. This similar approach has also been reported
by other researchers [32,33]. It is envisaged that further
refinement would involve the incorporation of these
constitutive models into finite element codes.

Pattern Recognition

Another area with scope for development is in applica-
tions involving signal pattern recognition. Some suc-
cess in other civil engineering disciplines have already
been reported. An example is the interpretation of
ultrasonic data for concrete to detect the presence of
flaws [34]. In geotechnical engineering, it is envisaged
that the identification of soil types from insitu cone
penetration test and dilatometer test data and the
interpretation of stress-wave measurements from pile
integrity tests, may gain in speed of computation and
reliability using a neural network approach. Some
preliminary applications to predict pile capacity are
discussed in [35,36]. In the work carried out by Teh
et al. [36], the neural network was successfully used
to predict the static pile capacity using training data
based on stress-wave measurements.

SUMMARY

The capability of neural networks to learn multivari-
ate nonlinear relationships by example holds great
promises for improving the synthesization of infor-
mation for the development of empirical design aids
for geotechnical engineers. As with any empirical
or statistical regression technique, the neural network
predictions are safe to apply only in the context for
which they were formulated.
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