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Thermoelastic Buckling of Orthotropic Plates
Based on Higher-Order Displacement Field

A. Mossavarali! and M.R. Eslami*

In this paper, nonlinear higher-order strain-displacement relations for thin orthotropic plates are
considered and substituted into the potential energy function for thermoelastic loadings. Euler
equations are, then, applied to the functional of energy and the general thermoelastic equilibrium

equations of thin orthotropic plate are obtained.

The stability equations are, consequently,

derived through the second variation of the potential energy function. The thermal loadings
include the uniform temperature rise, axial temperature difference and the gradient temperature
through the thickness. The thermoelastic buckling of a thin plate under these thermal loadings

are investigated.

INTRODUCTION

Chen et al. [1] have studied thermal buckling of
laminated composite rectangular plates based on a
first-order displacement field, subjected to uniform
temperature change. Displacement equations of equi-
librium are used and Galerkin method is employed to
determine the critical buckling temperature. Thermal
buckling behavior of laminated plates subjected to a
non-uniform temperature field, based on first-order
displacement, is investigated using the finite-element
method [2].

Tauchert has considered thermal buckling be-
haviors of rectangular antisymmetric angle-ply lami-
nates and based on a first-order displacement field,
has obtained the buckling thermal loads of a plate
subjected to uniform temperature rise [3-5]. He
derived exact solutions for the buckling temperature
of simply supported thin [3] and thick [4,5] perfect
plates. Chang and Leu [6] have also studied thermal
buckling analysis of antisymmetric angle-ply laminates
based on a higher-order displacement field. A higher-
order deformation theory, which accounts for trans-
verse shear and transverse normal strains, is derived
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for the thermal buckling analysis of antisymmetric
angle-ply simply supported laminates subjected to
uniform temperature rise. In their paper, linear strain-
displacement relations were assumed to derive the
equilibrium equations. To introduce the higher-order
theory, they considered higher-order dispiacements of
up to third order for v and v and second order for
w.

In this article, the equilibrium and stability
equations are obtained and employed to compute
critical thermoelastic buckling loads of thin rectan-
gular orthotropic plates. Equilibrium equations are
obtained using nonlinear strain-displacement relations
and stability equations are found through the force-
summation method, based on the linearized strain-
displacement relations. To introduce the higher-
order theory, displacement components u and v arc
approximated by third order polynomials and lat-
eral deflection w is approximated by just one term.
Thus, while the transverse shear strains are nonzero,
the normal lateral strain and stress are assumed to
be zero. The eigenvalue solutions of the stabil-
ity equations based on the pre-assumed displacement
fields are obtained to present the thermal buckling
loads. In addition to the thermal buckling load of
the uniform temperature rise given by Chang and
Leu [6], the gradient through the thickness ther-
mal buckling load and the one edge direction buck-
ling temperature difference are also derived and pre-
sented.
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ANALYSIS

For the purpose of analyzing, a thin plate of thickness

h is considered. The general strain-d
tions are [7]:
2

€rr = U + 5“1@7

1 2
=Vy + iwyy,

€y = Uy + 0z + Wy,

€yy

€z = U+ Wy + w;zw,m

€yz = Uz + Wy + WyW,,

isplacement rela-

(1)

where €, and €, are the normal strains and ey, €.
and €y, are the shear strains, respectively. The indices

z, y and z refer to the coordinate

system. Also wu,

v and w are displacements in z, y and z directions,
respectively and (,) indicates partial derivative.
Now, the following higher-order displacements are

assumed [8]:
u(z,y,2) = uo(z,y) + 2¢0(z,y) +
+ 22y (2, y),
v(z,y,2) = vo(z,y) + 2o(x,y) +
+ 2% (2, y),

w(:c,y, Z) = ’LU()(.’IZ, y)7

2¢o(2.9)

(. y)

(2)

where ug,vg and wy denote the displacements of a

point (z,y) on the midplane and ¢o
rotations of normals to midplane ab

and gy are the
out the y and =

axes, respectively. The functions qgo,qﬁg,w’o and 1,

are determined using the conditions

that transverse

shear stresses, 0., and oy, vanish on the plate top and
bottom surfaces. These are equivalent to €, = €,, =0

at z = +2, which yields [8]:

$o = o =0,
bo = 3z (¢0 + wo z),
ws 3h2 ("/’0 + wO,y)
Using Conditions 3, Equation 2 is red
4z 3
U =up + 2¢o — 3h2(¢0 + wo,z),
23
v = vy + 2%y — 3h2(v1+w0y)
w = Wg-

(3)

uced to [8]:
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The strains associated with the displacements in Equa-
tion 2 are (8]

€xx f(a):z ko ka2c
e | = |y | +2 kgy +28 Ry |
fxy Ggy k‘gy k‘z
0 1
€xz ezz 2 kzz
= 5
(5)= () += (). )
where
kgz ¢0 T
kO = 1y
vy Y ’
k2, $o,y + Yo,z
kiz 3_)1%—(¢0 z Wo, rz)
k2, | = m(%,y + wo,yy) ,
ka2:y Th‘lf 0,y + wO,m + 2’[00 zy)
(kiz _ (-;é(cﬁo + wm))
ky. =5 (o + wo,y)
2, Uge + w3,
e, | = v,y + FWH ,
€, w0,y + Vo,e + Wo,cWo,y
€2 b0 + wo
zz — sT . (6)
€. o + wo,y

The constitutive equations may be expressed in terms
of stress and strain in the plate coordinates as [8]:

fo s Qu le Qle 622}
Oyy | = Qu sz Q26 < fgy
Tzy Q16 Q26 Qoo oy
kQ k2, Cpr
+2 | K, | +2° kf,y —T | ayy ),
K2, k2, Oy

<Gzz) — C?44 Q:45 <€gz>
Oyz Qas Uss €,

kL Qzz
+22 (%) -T ) , 7
(kzllz Oyz ( )
in which 7 is the absolute temperature and o
are linear thermal expansion coefficients. ();; are

the plane-stress-reduced elastic constants in the ma-
terial axes of the layer [8]. The stress resultants
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Nij, Myj, Pij, Qi5, and R;; are [8]:

A[z:z Maca: Pa:x
( Nyy 3 Myy y Pyy )
Nay My Pry

(&) ()= L)oo

2

Substituting Equation 7 into Equation 8, the stress

resultants are obtained as [8]:

sz All A12 Alﬁ G(a):z
Nyy | = | A1z Asz Asg | [ €,
Nﬂvy Alﬁ A26 A66 fgy

Bi1 B2 Bis
+ | Biz B2 B

BIG B26 366

Ei, Ex Eg
Eis Ex Ees

M. Bin Bz Bis el
Myy = Blg B22 Bgs 60
Mz, Bis Bze Bss €

(Du D2 Dis k2

Fie Fa Fee

Fn Fp P\ (k.
+ | Fr2 Fz2 Foe | | K2,

Ei6 Fas Esge

Fio Fa Fye k0
Fig Fy Fgs k°

En By Egs k2,
+

Diy Dgy Das ko
Dig Do Des ko

Einw Eip Ege €2,

0
Ey Ey Ess e,
(Fu Fiy Fig k2.

Hyy Hyx Ha | | ki,

Hyy Hip Hig k2,
His Hy Hes k2
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Ags\ (€2,

Ass ) \ €y,

Dys\ (ks I
Dss ) \ky, QL)

Fis\ (ks RZ,
Dss> (k;) - <R§z> 9

where Ay, Biy,... are the plate stiffnesses defined by

8]:

(Axi,Brt, Dity Exty Fra, Hrt)

h

z
= le(l,z,ZQ,z3,z4,z6)dz

—h
2

k,1=1,2,6,

h
5,

(Akt, Dyt Fra) = Qui(1,2%,2Y)dz  k,1=4,5.
h

5 (10)

The total potential energy function is [9]:

v=3 [ [ [to} et - Tiapanaya. (1)

Upon substitution of Equations 5 and 7 into Equation
11, the total potential energy function of an orthotropic
plate is obtained as:

h

QYT+ (k)T 4 2R T

v=3 /L

— T} )ij=e Q) ({3}

+ z{k?j} + zs{kfj} — T{wij})ij=c ydzdydz

w5 () /:i<{e?j}T+z2{k3,-}T

- T{aij}T)izz,y;j:z [Q]T({e?]}

+ 22{k}} = T{ati;})i=z,y:j=-dodydz. (12)

Substituting the left-hand side of Equations 6 through
11 into 12 and using Euler equations [7], the equilib-
rium equations for general thin orthotropic rectangular



152 A. Mossavarali and M.R. Eslami

Now, stability equations might be obtained by substi-
tuting Equations 14 and 15 into 13, in which nonlinear
terms with subscript (1) are ignored due to their small
values compared with the linear terms. The remaining
terms form the stability equations of a thin orthotropic
rectangular plate under general load are as follows [6]:

plate are obtained as [8]:
sz,z + Nzy,y = 0,

Neye + Nyy,y =0,

4
sz,z + Qyz,y - F(RIZ,I + Ryz,y)

4
3h?
+ (U)O,zNa:x),z + (wo,yNzy),z

,yy)

+ (wO,yNyy),y + (wO,xny),y =0,

4
*Macx,x + Mr,y,y - sz + ‘—Rzz

Nza:l,a: + Na:yl,y =0,

Nzyl,m + Nyyl,y =0,

4
szl,z + Qyzl,y - E(szl,z + Ryzl,y)

4
3—];2‘(Pzzl,zr + 2ny1,xy + Pyyl,yy)

+ (wl,:chzO),a: + (wl,ijryo),z

+

h2
4 + (w1,y Nyyo) y
- 3_]12‘(Pa:z,z + P:l:y,y) =0,
. + (w16 Neyo) y =0,
Miyoe+ My, —Qy. + R, 4
v Yy, y h2 v Mezr,e + Mey1,y — Quz1 + ﬁRWI
4
— =——(Ppy s+ P, =0. 13 4
3h2( Y, yy,y) ( ) — W(P”” + szl,y) =0,
Stability equations of thin orthotropic rectangular 4
plates are derived using the force summation method. Moy, + Myy1,y — Qyz1 + EgRyzl
Now, it is assumed that the state of equilibrium of 4
a general orthotropic rectangular plate under load is _ W(sz],:c + Pyy1y) =0. (16)

defined in terms of the displacement

components uy,

Uy, Wo, ¢p and ¥y. The displacement components of
a neighboring state of stable equilibrium differs by uq,

vi, w1, @1, ¥; with respect to the equ

ilibrium position.

Thus, the total displacements of a meighboring state

are: Nzzo A Az A 621,0
B Nyyo | = [ A1z Az Ao €00
ug = o + up, Nzyo Ars Az Aes) \enyo
Yo = To F v, Bi1 Bi» Big K2z
- + | Biz2 Bas By | | KD
wo = Wy + wy, yyo
0 0 ! Bis Bays Bes k20
bo = dp + 1,
Ein Ein Es k2.0 Nazo
Yo = o + U1 (14) +{ B2 Exn Exe| | k2, NIol,
Eis Ex FEes) \k, NI,
Similarly, the stress resultant components of a neigh- 0
boring state may be related to the state of equilibrium Mz Bu Bz Bis €20
as: Myyo | = [ Biz Bz Bas | | €0
I\]’I 0 Bl6 BQ" B()‘G 60
Nij = Nijo + AN, ! ’ i
Dy D1z Dis\ [kl
Mi; = M0 + AM;;, + (Du D2y D kyyo
0
P, = Py + AP, Die  Dizs  Dss kzyo
2 MT
Qi = Qijo + AQ.;, Fu Fia Fie\ (k20 0
N N ’ +| Fi2 Fa2 Fos | | K2 ML,
Ri] = RijO + ARU. (15) Fig Fys Fgs kgyO M;Tyo

Denoting the prebuckling modes by Njq, M,jo.
Pij0, Qij0 and Ry and the buckling modes by Nia,

]Wijla Pijh Qijl and Riﬂ, it follows that [7}
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Ey
Ey
Ei¢

Fy
Fis
Fig
(Hu

Hyy
Hi

Mxxl
Myyl
My

kaisz) _ (on
kyzO QZO

Eys Ess
E;; Eg
Ez Ess
Fiy Fig
Fyy Fy
Fys  Fgg
Hi; His
Hyy, Hy
Hys Hes
A45> (6220>
Ass ) \ €00
D45) <k11310>
Dss ) \ky.o
29(8)
Dss ) \ €90
Fys
Fys
A1a Ass
Ags Agg
Azs  Ass
Bi; Bis
By B
Bjys  Bgs
Ey, Egs
Eyy  Ey
Eqs Egs
Bis Bis
By Bag
By DBege
Dy Dis
Dyy  Dog
Dyg  Des
Fiy, Fi
Fyy Fy
Fys Fgg
Ey, E
Esy  Egg
Eys FEgs
Fi, Fis
Foy Fog
Fys  Fes
Hy» His
Hi; Hae
Hys Hee

(]
€rzl

0
Egyl
Exyl

kO

zzl
yyl
kO

Tyl

k2

rxl

Tyl
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Qe _ [Asa Ass\ (€2,
Qua1) — \Ass Ass ) \ €D,
+ D4y Das\ (ki
Dss Dss) \ky.. )’
Ry _ D4y Dys 6211
Ryzl - D45 D55 5221
Fu Fis\ (k3
+<F45 F55> <k;z1 : (a7)

The linear strain-displacement relations for the devia-
tion components reduce to:

0

€rz1 = ULz
0 2 —4
kwa:l = ¢1y1? kzzl = W(qsl,z + wl,xa:)
fgyl = Vi,z
0 2 —4
kyyr =12 kyy1 = 3713(7/)1,9: + w1 ,yy)

0 —
€yl — Uly + VU1,e

—4

klp1 =1y + V1,0 kgyl = W(‘bhy’*—wl,z + 2wy zy).

STABILITY EQUATIONS IN TERMS OF
DISPLACEMENTS

For symmetric (about the midplane) cross-ply plates,
the following plate stiffness coeflicients are identically
zero [8]:

A16 = Azs = D16 = -D26
= F1¢ = Fys = Hig = Hs =0
Ags = Dys = Fys = 0. (18)

Stability equations in terms of the displacement com-
ponents are obtained by substitution of Equation 17
into 16 with the aid of Equations 18 and 19:

Ay gz + A1201 2y + Ase(U1,yy + V1ey) =0,

A66(ul,wy + vl,zx) + A12u1,zy + A22v1,yy - 0,



—4
A (P10 + W1 50) + D44(ﬁ
+ Ass(¥1,y + w1 ,yy) + Dss(

-4
+(ﬁ){D44(¢1,z+wl,rx)+F4

+ Dss(¥1,y + w1,yy) + Fss(

4

h_ HF1101,002 + Fia¥1 22y

+ Hll( ¢1,zzz + W1 zzzz

3h2? )(

+ H12( )(wl,zry + W1, zzyy

3h2?

wl zzy) + 2H66( )(¢1 ayy T

3h2
wl,rzy + zwl,zzyy)

+ F1201 2yy + Fo2t1 yyy +

H12( )(¢1 ayy T Wizayy),

3h?
—4

H
+ 22(3h2
+ (Na:a:()wl,:t + NzyOwl,y),I + (
+ NzyOwl,a:),y = 07

—4
3h2?

)

D11¢1 20 + D12V1 2y + FlL1(=

2

h
+ 1 — W2 zxe) + F12(3h2

2
(V1,09 + W1 zyy+ lezyy)

+ D66(¢1,yy + wl,zy) + F66(3_—h

+2w1,zyy)_A44(¢l +w1,z)'—D4

4
+ Eg{D44(¢>1 + wi,z)

-4 —
FP () run )} oy B

H
* “(3hz

(Bh2

(3h2

i
2

13
)(¢1 rzx T W1 ,TTT + ‘4

—4 h
)(¢1 yy + U1 a:y+2w1 cyy =

')(¢1,a: + wl,zz)

-4
E‘)(wl,y + wl,yy)

—4

1(ﬁ)(¢1,x+wo,u)

—4
ﬁ‘)(wl,y + wiyy)}

+ 2F66(¢)1,zyy +

h2

J(W1,yyy + W1 yyyy Zwlyyyy)}

Nyyowr,y

)(‘ﬁl,mz + W1, zzz

)(¢l,yy + wlyzy

()1 Fwn0)

101,22 +F1291 2y

2
w2,zzx) + H12

)(% Iy+w1 zyy)+F66(¢1 yy+w1,zy)+H66

2

9 w2,zyy)} = Oa
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—4
)(¢l,a:y + wl,z‘:c

D66(¢1 Ty + 1/11 xx) + F66(3h2

2

h
+ 2w1,zmy + 7w2,rzy) + D12¢1,xy + D22'w1,yy

2

4 w?,rry)

)(¢1 ry T Wi zzy +

775 ) (V1,yy + Wi yyy) — Ass (1 + w1 y)

- 4
W ) + h—z{Dss(wl Fup,)

+F55( )(d’l“‘wl y)} {F66 ¢1 1’y+w1 za:)

3h2
+H66(3h2 )(¢1 Ty +?/11 rz+2w1 zzy)+F12¢l Ty
+ F22¢1 R + H12(3h2 )(d)l,zy + wl,xxy)
+ H22(3h2 J( W1,y + wi,yyy)} = 0. (19)

These equations are related to the thermal forces
through the prebuckling terms, such as N, through
Equation 17.

In the next section, three cases of thermal buck-
ling are discussed and the critical temperatures are
calculated. The edges are assumed to be simply
supported and also displacements in x and y directions
are prevented, therefore, the boundary conditions are
[8]:

wy(z,0) = wi{z,b) = w1 (0,y) = wi(a,y) =0,

Pyy1(z,0) = Pyy1 (2, b) = Pra1(0,y) = Peai(a, y) =0,
Myy1(2,0) = Myy1 (#,0) = Mez1(0,y) = Mezr(a,y) =0
u1(z,0) = uy(z,b) = v1(0,9) = vi{a,y) = 0,
¢1(z,0) = ¢1(z,b) = ¥1(0,y) = Y1 (a,y) =0,

(20)

where a and b are the plate dimensions. The displace-
ment components for a rectangular orthotropic plate
satisfying the simply supported edge conditions are
considered as [8]:

W] = Wimn SN @mz sin 3,9,
UL = Ulmn COS Ay T SN By,
U] = Vimn S0 Oy X COS Br Y,

D1 = Prmn COS 2 sin Bry,

U1 = Y1mn SIN Q2 €OS B, (21)

where o, = and 3, = %%, Substitution of these
assumed solutions into the five stability Equation 20
and setting the determinant of the matrix of the coef-
ficients equal to zero leads to the critical temperature.

mm
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CRITICAL UNIFORM TEMPERATURE
RISE

Consider a rectangular orthotropic plate of dimensions
a,b and thickness h. The initial uniform temperature
of the plate is assumed to be T;. The temperature is
uniformly raised to a final value of Ty such that the
plate buckles. To find the critical AT = Ty — T, the
prebuckling stresses are [7]:

A
2
Nijo = —NZO =- Qi ;ATdz = —AiGi; AT,
—h
B (22)
or:

szO = _NZIO = "'(Allaa:r + A12ayy)AT»

Nyyo = _Ng;/o = —(A120qz + Anpayy)AT,
Nzyo = _N:,EI;JO = -—A66aa:yAT =0. (23)

Substituting Equations 22 and 24 into Equation 20
yields a system of five homogeneous equations for
Wimn, Y1mn, Vimn, ¢1mn and wlmn» i-e~a

Uimn
Ulmn
[Kl’j] Wimn = 07 (24)
d)lmn
wlmn

in which K;; is a symmetric matrix with the following
components [6]:

K11 = a2 A + B2 Ase,
K12 = amBn(A12 + Ass),

K13 =07
K14 :O,
K15 :07

Koy = B2 Ass + o2, Age,

K23 :Oa
K24 _Oa
K25 “07

8
K33 = a2, Ay + B2 Ass — ﬁ(aanM + B2 Dss)

4 2 2 4 2
+ (;ﬁ)z(amFM + 8. F55) + (gﬁ)
[02 Hii + 202 B2(His + 2Heg) + 2 Hao)
- {(Alla:ca: + A120lyy)a$n

+ (A12a:tvz + AQQny)ﬁi}AT,
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8 4
K34 = o Agq — -h—Z—OémD44 ~ 35

4
[Oz?nFll + amﬁZ(Fm + 2F66)] + (ﬁ)2amF44

4
+ (W)Q[Q%Hu + @ 3%(Hig + 2Heg))
8 4
K35 = 3, As5 — ﬁﬂnDSS ~ 3

4
(B3 Fys + a2, Bn(Fia + 2Fss)] + (‘h—g)?ﬂnFss

4
3h2
— {(D11022 + Dizayy)a,

+ (552182 Hag + 02 Bu(Hy2 + 2Hes))

+ (D12azz + D22ayy)ﬁi}AT

8
Ky = Ay + a?nDll + IBZDGG — 5Dy

)
4 .5 2 2

+ (ﬁ) Fyy — W(amFll + 85, F66)
4 2 2 2

+ (W) (o, Hiy + B Hes)

8
K45 = anfBr(D12 + Deg) — Wamﬁn(FIZ + Foe)

4
+ (W)2amﬁn(H12 + Hgg)

8
Kss = Ass + a2, Dege + 32 Dgq — ﬁz—D“

+ (5)*Fs5 — (a2, Fsg + B2 Fay)

o S

h? 3h2
4 2 2 2

+ (W) (o, Hee + B Haz). (25)

The critical value of AT is found by setting | K;; |=0
and is:

AT =

+ (A12azz + A22ayy)/37%

’

6
(Anazz + Apzagy)a?, (26)
in which § and v are:

b6 =

Ki2(K12K33 — K13K93) — K13(K12Ka3 — K92 K13)
Ky Ksz — K2, ’
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Y= a?nA44 + 521455

8
- h—g(aanzm + 82 Dss)

+(

—45) (Ol Fyy +,@ F55)+(

3h2

[a? Hyy + 202 5%(Hyo + 2Hge) + s Hoz). (27)

Equation 26 is used to determine the

critical tempera-

ture of symmetric orthotropic thin plates.

CRITICAL GRADIENT THROUGH THE

THICKNESS TEMPERATURE

Assume linear temperature variation
thickness as:

(z+3)

T(z)= AT
(=) g

across the plate

(28)

where z is measured from the middle plane of the plate.
For simply supported edges, the prebuckling forces in

the symmetric orthotropic plate are [

Nezo = —N2Lo = —(An1azs + Ar2q]
NyyO - —NZTyO = '_(A12azz + Axa

Nayo = —NZo=0.

zy0

Using a similar method, the critical

ference across the thickness is obtaing
determinant of the coefficient equal

yields:

AT =

7

)AT
vy 2 )

AT
yy)'—Q_v
(29)

temperature dif-
>d by setting the
to zero, which

2

6—~
(

(Allazz + 1412ayy)giIL + A12axz =+

Equation 30 is used to determine the
ture of symmetric orthotropic thin pl

CRITICAL TEMPERATURE W
VARIATION IN THE X-DIRE(

Consider a rectangular symmetric
of dimensions a and b under temp¢
across the z-direction and with simply
where the motion of the edges in z
are prevented. Assume a linear temp
along the z-direction:

T(z) = ATZ,
a

-
A22ayy)%’“ (30)

critical tempera-

ates.

/ITH LINEAR
CTION

rthotropic plate

rature difference

supported edges,
and y directions

erature variation

(31)
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where AT = T(a) —
[7):

T(0). The prebuckling forces are

Nzzo = Na:zO = (Auam + Alzayy)ATg,
T
NyyO - Ng;o — —(A]2aza: + A22ayy)ATgv

NzyO = _—Naz—"yo - O,

Ryyo = —RZ, (32)

zy0 —

To calculate the critical temperature AT, the displace-
ment equations of stability (Equation 19) are used and
the Galerkin method with the help of Equation 22 is
employed to determine the critical buckling temper-
ature. The left-hand side of the five Equations 22
are designated by R1, R2, R3, R4 and R5, respectively.
Considering Equation 22, the Galerkin method leads
to the following equations:

a b
/ / R1cosa,,zsin Brydedy = 0,
o Jo
a b
/ / R2sin o,z cos Brydzdy = 0,
0o Jo
a b
/ / R3sin oz sin Bpydzdy = 0,
o Jo
a b
/ / R4 cos apx sin Brydzdy = 0,
0o Jo

a pb
/ / R5sin v x cos Brydzdy = 0. (33)
0o Jo

Equations 33 result into five homogeneous equations for
the constant coefficients %imn, Vimn, Wimn, P1mn and
Yimn. Using a similar method, the critical temperature
difference in the z-direction is:

AT =

5 0
+ (A12a:z:z + A22ayy) 2 (34)

(Allaza: + A12ayy)

Equation 34 is used to obtain the thermal buckling load
of symmetric orthotropic thin plates.

RESULTS AND CONCLUSION

In this paper, results regarding the thermal buckling
temperature of a plate under three cases of loadings are
provided in a closed form by Equations 26, 30 and 34.
The buckling modes m and n appear in the definition
of the parameters o, and 3,. The buckling load is the
minimum AT for all values of m and n. For composite
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Figure 1. Buckling thermal load versus a/h.
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Figure 2. Buckling thermal load versus Q11/Q22.

materials, the lowest buckling load occurs at higher
buckling modes [10].

Figure 1 shows the critical buckling temperature,
T.r, for the uniform temperature rise of an orthotropic
plate (material specification is T300/N5208), with
ply angles [0/90/90/0] versus a/h ratio. The curve
illustrates that with increasing a/h ratio, the critical
buckling temperature decreases. This result is qual-
itatively identical with the result provided by Chang
and Leu [6], where an orthotropic plate with [+45/-45]
ply angle arrangment has been studied. The case has
been checked for other types of thermal loading and
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it is found that with increasing a/h ratio, the critical
buckling temperature decreases.

Figure 2 demonstrates critical buckling tempera-
ture for the uniform temperature rise of an orthotropic
plate (material specification is T300/N5208), with ply

angles [0/90/90/0] and a/h = 10, versus %li ratio. As

is observed from this figure, by increasing gA ratio,
the critical buckling temperature increases, which is
qualitatively identical with the result given by Chang
and Leu [6]. Other types of thermal loading have also
been investigated and it is found that with increasing
a/h ratio, the critical buckling temperature increases.
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