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INTRODUCTION

Density current is formed when a fluid heavier than

ambient fluid flows down an inclined bed.

These

flows, which are common phenomenalin nature, can be
produced by salinity or temperature differences and are

referred to as inclined plumes or unde
in the atmosphere include downhill m
by flowing over snow or cold ground,
cold front under warmer air, thund

snow avalanches and mud slides [1].
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In the ocean,

density currents are driven by salinity and temperature
inhomogeneities, or as turbidity currents whose density

drives are from suspended particles

of silt and clay.

Within the field of hydraulic engineering, examples
include reservoir under and inner flows, solid driven

currents in sedimentation basin and

treatment plants,

buoyant effiuent discharges, advancement of salt water

under fresh water in estuaries and
is opened at a mouth of a river.

when a lock gate
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of density currents, released on sloping beds and under still bodies
lly investigated. The turbulent flow equations of mass, momentum
ultaneously in the fixed Cartesian directions, on a non-staggered grid
The velocity-pressure coupling is handled by SIMPLEC method.
is used to account for the influence of Reynolds stresses in the
tions. Density currents with uniform velocity and concentration enter
ate into a lighter ambient fluid and move forward down the slope.
ed velocity, concentration profiles and height of density current with
strates a good agreement. The overall Richardson number reaches a
distance from the channel inlet. In this paper, the effects of variation
rates in the form of Richardson or densimetric Frude and Reynolds
or different slopes. Concentration and velocity profiles are obtained
pattern which provides a physical understanding of the governing

of sediment from continental rim to the abyssal plain in
oceans [2]. They are the subject of a great number of
studies by investigators. Driven by density differences
between the sediment laden inflow and the clear water
in the reservoir, the density current plunges between
the clear water and moves toward the dam as a
submerged current. Only a few direct observations of
density currents in the field have been made [3]. Field
measurements are rendered difficult by the need to
work under water, the substantial equipment require-
ments and the tendency of swift currents to destroy
measuring apparatus [4].

Density currents have been observed not only
in reservoirs of the Yellow River and Sanmenxia, in
which the yearly mean sediment concentration is tens
of kilograms per cubic meter, but also in reservoirs
of rivers with low sediment conditions. The sediment
concentration in these typical rivers is about 1-2 kg/m3
[5]. Bottom outlets may be used to vent density
currents, in some cases more than half of the inflowing
sediment load.

The density current consists of a head with a
complex three-dimensional flow structure at the leading
edge, followed by a thinner flow. This leading edge
is commonly referred to as a “front part” and the
upstream is termed the “body part”. The propa-
gation of a front at a bottom is influenced by real-
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fluid effects so that its analysis requires a realistic
approach. The no-slip condition causes the frontal
stagnation point to rise above the bottom and the
front speed, relative to the ambient velocity, decreases
as this velocity increases [6]. In a density current
flowing horizontally, the head remains quasi-steady
and is about twice as deep as the following flow [7],
but in current flowing down a slope, the size of the
head continuously increases. A “universal profile” of
a density current head does not exist and is strongly
modified by opposing and following ambient flow and
other physical effects. As the flow velocity and, hence,
the Reynolds number of the flow increase, the shape
of the density current changes and intense motion and
mixing occur. The dynamics of a density current was
analyzed first by Von Karmen (1940) and later by
BenJamin [8]. Turner [9] has analyzed one-dimensional
density current for the laminar and turbulent flows.
Numerical investigation of turbulent density current
for different modes and particle-laden flows has been
undertaken by Akiyama and Stefan [9-12]. These
authors assumed jet velocity distribution in turbulent
model and solved the equations of turbidity current.
For integral solution of equations, Akiyama assumed
the thickness of the deposit to be 5% of the current
depth and then performed the integration from the bed
up to the interface. Through knowing the boundary
condition at the bed and assuming values for several
variables at the interface, he managed to compute the
depth. buoyancy flux, Richardson number and the non-
dimensional average velocity in the flow direction. The
results of his numerical integration have been compared
with the emperical results and it has been shown that
the overall Richardson number, after a short distance
from the channel inlet, reaches a constant value. This
result agrees well with the assumption made by Turner
[9] who solved the equations for a stabilized case.
Differential solutions for the equations of den-
sity current have been performed for special cases.
Bonnecaze et al. [13] have solved the particle driven
density current equations as shallow water equations
for two cases of unsteady, one-dimensional, uniform
velocity and concentration on a flat plate. This solution
has been conducted for single-layer flow (a case where
the height of density current is very small compared
to the height of clear water) and two-layer flow. In
the solution of the equations, assumptions such as no
entrainment and the negligibility of viscosity have been
considered. Bonnecaze solved the equations using the
two step Lax-Wendroff scheme [13]. The resulting
solution is consistent with emperical results in terms of
shape and appearence of particle density current front.
Parker et al. [14] have combined the equations of mass
and momentum conservations with the inflow equation
of the bed matter and solved them numerically. Stacey
and Bowen [15] solved the equations of turbidity
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current for unsteady, turbulent and one-dimensional
cases by neglecting the inertial terms and, thereby,
obtaining the effect of particle fall velocity in the
distribution of flow velocity, concentration and depth
of current. Ostraka and Anderson [16] have compared
the various methods of solution for turbulent density
currents. They verified these methods under identical
conditions. Although they were able to demonstrate
the weak and strong points of the numerical methods
used in the solution of unsteady density currents, it
has little applicablility for solving equations of particle
driven density currents.

In the present work, a complete two-dimensional
numerical model is developed to simulate the motion of
a density current. The results are compared with the
reported laboratory experimental data.

GOVERNING EQUATIONS

In this paper, the analysis of the steady state equations
for predicting the behavior of the body of density
current is considered. Figure 1 shows the definition
sketch of the density current under investigation.

The turbulent equations are given for two di-
mensions, based on boundary-layer and Boussinesq
approximations, as follows:

o Continuity equation:

oU,
i, 1)
8.731’ ( :
e Momentum equation
aU; aP , 0 U,
U, =—(1/p) ;T <

Considering Boussinesq approximation, the ef-
fects of density difference are neglected in the treatment
of the inertial terms but included in the buoyancy force
term. The last term in Equation 2 results from the
basic k£ — ¢ model relationship between turbulent stress
and mean velocity gradient. The turbulent viscosity
being evaluated from v, = C,k?/e. k and ¢ are treated
as transported scalers with appropriate source and sink
terms as:

e Turbulence kinematic energy per unit mass,

ok 0 vy, Ok
e, = m (0 5

Figure 1. Definition sketch.



132

e Dissipation rate of turbulence energy
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where the production term Py,
gradients, has the following form,
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The standard value of constants in the above

equations were assumed as [17]:
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Because of the & — ¢ model weakn
wall region, in this analysis, constan
according to low Reynolds number
predict the near-wall turbulence in the
The modifications of constants are as
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It is necessary to predict the cong
in the flow in order to estimate the

ess in the near
ts are modified
models [18], to
density current.
follows:

(6)
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(8)

entration of salt
amount of the

material. The governing equation for the concentration

is presented by:
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(9)

The mean concentration C is defined at the center
point of control volume and Equation 9 is solved

simultaneously with the fluid flow equations.

The

turbulent diffusivity €, can be expressed in terms of

turbulent Schmidt number Sc as:

vVt
£ =

= 5o

(10)

While the Schmidt number, similar to the turbulent

Prandtl number, is expected to be

affected by the

buoyancy which is assumed to be unity here [17].
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BOUNDARY CONDITIONS

Boundary conditions at the inlet are known and similar
to the experimental models where salt-solution flow
with uniform velocity and concentration enters the
channel under the still bodies of water via a sluice
gate onto a surface inclined at angle 8 . Inlet k and
¢ boundaries are used here,

kin = (I x Uin)?, (11a)

cin = " K3 /(0 x D),

mn

(11b)

where I is the relative turbulent intensity with a
measured value in this investigation of about 0.1, C,, =
0.09 , the factor & = 0.1 and b is the gate opening
height.

A fully developed condition is prescribed at the
outlet of the channel. Because of the higher depth
of the surrounding water compared with the depth of
the density current, the upper boundary is considered
symmetrical. Thus, there is no flux of any kind normal
to the upper boundary, either convective or diffusive.
The normal velocity component, as well as the normal
gradient of the remaining dependent veriables, are zero.
On the bed, due to the application of low Reynolds
turbulence model, no slip conditions, i.e. u = v =
k = ¢ = 0.0, are used in connection with the wall
boundaries and the concentration gradient is set to
Zero.

SOLUTION PROCEDURE

The governing equations are solved by a finite-volume
method using boundary fitted coordinates. The mo-
mentum, diffusion, turbulent kinetic enegy and dissipa-
tion equations are solved for the velocity components
and concentration u, v, C, k, and ¢ in the fixed
Cartesian directions on a non-staggered grid. All
the variables are, thus, stored at the center of the
control volume. The velocity components at the control
volume faces are computed using Rhie-Chow interpo-
lation method [19] and the pressure-velocity coupling
is handled by SIMPLEC method [20]. The convective
terms are treated through the hybrid scheme. TDMA-
based algorithms are applied for solving the algebraic
equations. Further details are provided by Davidson
and Farhanieh [21]. The solution procedure is iterative
and the computations are terminated when the sum
of absolute residuals, normalized by the inflow fluxes,
were below 1075 for all the variables. To achieve
convergence of the solution, under-relaxation factor
of 0.5 was chosen for all the variables. Depending
on velocity and slope, around 3000-5000 iterations
are required to achieve convergence in the velocity
fields. However, for concentration, turbulent energy
and dissipation fields, convergence is much quicker.
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The mesh points are chosen as uniform in the flow
direction but, in the normal direction, the grid points
are distributed in a non-uniform manner with a higher
concentration of grids close to the bed surface. Each
control volume contains one node at its center but
the boundary adjacent volumes contain two nodes.
The effects of different mesh size on flow progression
and velocity profiles were obtained, no changes in the
results can be observed by increasing the mesh size
beyond 172 x 42. Thus, the mesh size 152 x 42 is chosen
for performing the computation.

RESULTS AND DISCUSSION

The experimental data presented in Table 1 show the
flow conditions which have been used as input data in
the computer program.

Figure 2 illustrates a comparison between mea-
sured and computed streamwise velocity at two dif-
ferent locations. The maximum velocities are under-
predicted, whereas the overall shapes of the profiles
are in good agreement with the measured values.
However, the numerical viscosity affects the magnitude
and location of maximum velocity.

The depth h(z) together with the average velocity
and concentration @(z) and &(z) of a density current
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are expressed as [15];
w@h(o) = [ ute. )i, (12)
BaPh) = [ ute e (13)
(o) = [ etz (14)
Ri(z) = ——_g'(“’)g((z)):fos(e), (15)
9'(x) = ge(x)(ps — puw)/Puw> (16)

where Ri(z) is the bulk Richardson number at each «
station. A comparison of the measured depth of density
current with the predictions is presented in Figure 3.
As can be seen from this figure, the predicted depths
are in good agreement with Akiyama experiments [12].
It can also be seen from Figure 3 that at higher bed
slopes, the driving force increases and the depth of the
current decreases.

The calculated averaged-layer properties (Equa-
tions 12-16) of run no. 2 are presented in Figure 4.
Due to the entrainment of upper lighter fluid and
density current at the interface, the current depth

Table 1. Inlet conditions.

Run no. | Ref | Uin (cm/s) | hi (cm) | Slope (%) | Cin (%) | Rio | Reo
1 [4] 11.0 3.0 8.0 2.5 0.29 | 3340
2 [12] 6.84 5.0 10.0 1.0 0.57 | 3438
3 [12] 6.30 4.0 14.0 1.2 0.73 2538
4 [22] 11.0 2.0 1.0 1.2 0.11 2215
5 [22] 11.0 2.0 2.5 0.63 0.11 2215
6 (22] 11.0 2.0 2.5 1.2 0.11 | 2208
7 [22] 8.0 2.0 2.5 1.2 0.22 1611
15 15
t z = 200 (cm) [ z = 300 (cm)
= 12F ~ 12f
g i E
T :
© o Present model ’: R —— Present model
< ¢ o a Exp. (4] < i o Exp. [4]
[ A Q L
2 6 z el
E I £ [
® s %
A 3 3 3F
= [ o = [ a]
| L =]
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Figure 2. Comparison of the calculated velocity profiles with Garcia experiments [4].
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Figure 4. Calculated averaged-layer properties of run
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Figure 5. The effect of entrance velocity on the depth of
density current and comparison with experimental data
[22], Tun nos. 6 and 7.

as can be seen from Figure 6a, the depth of the current
decreases. The flow regime may be changed as the
inlet concentration has an intense effect on Richardson
number. Increasing the inlet concentration, in the
range of run nos. 5 and 6, decreases the depth of the
current.

Figure 7 depicts the contour lines of concentra-
tion, streamwise velocity and velocity vectors of run
no. 1. Diffusion of momentum in a normal direction is
more than concentration diffusion and density current
can move upper fluid up to a higher height above the
bed, as can be observed from Figure 7a. Velocity
contour lines have been shown in Figure 7b. Due
to the high slope of the bed, the inlet velocity (11.0
cm/s), along the motion of density current on the bed,
becomes up to 12.5 cm/s. The maximum velocity
contour line lies nearly in the middle part of the current
depth. In each z station and above the velocity profiles,
a few negative velocity vectors can be seen, which are
caused by the entrainment. The conservative density
current and entrainment region can be observed from
Figure 7.

Figure 8 shows the streamwise velocity and con-
centration profiles of run no. 2 at different locations.
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Figure 7. Contour lines of concentration and streamwise velocity and their velocity vectors of run no. 1.

A uniform velocity is introduced at the inlet, which is
5.0 cm high. The uniformity of the velocity profile is
preserved even at x = 0.2 m. However, the velocity
profile becomes fully developed at z = 6.0 m and the
diffusion depth at this point reaches a height of 12.0
cm. Figure 8b presents the entrainment distance versus
the conservative density current. At z = 0.2 m, the
entrainment distance is 2.0 cm whereas at z = 6.0

m, this distance increases to 5.0 cm. The depth of

o~

density current and its variation can also be observed
in Figure 8b.

CONCLUSION

The equations of turbulent density current are solved
by SIMPLEC method. A modified k — ¢ model was
used to account for the influence of Reynolds stresses
in the turbulent momentum equations. Using the
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0.2 0.4 0.6

Concentration {%)

P pressure

by rate of production of turbulent kinetic
energy

Re Reynolds number, Re = uh/v

Ri Richardson number, Ri = g'h cos8/u’

Rt k?/ev

S bed slope

Sc turbulent Schmidt number

U, velocity components

U velocity in = direction

v velocity in y direction

a, & average value of velocity and
concentration

T streamwise coordinate

Y transversal coordinate

o factor of inlet dissipation

3 rate of dissipation of turbulent kinetic
energy

A molecular diffusion factor
kinematic viscosity

vy turbulent viscosity

p density of density current

Pw water density

Ds salt density

6 angle of the bed

Ok, 0c turbulent constants of £ — ¢ model
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