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Wave Interaction and Acoustic
Analysis in Liquid Rocket Engines

R. Ebrahimi!, K. Mazaheri* and A. Ghafourian!

Wave interaction plays an essential part in analyzing the instability modes in rocket engines.
While for low amplitude waves, the classic acoustic analysis is widely used, for high amplitude
waves, physics of interaction and its effects on instability is still a major field of research.
Combination of traveling and standing waves makes this task even harder. In this paper, different
types of nonlinear waves are considered and, theoretically or numerically, their interactions are
analyzed. Conditions under which wave deformation is negligible are presented. A method of
mode identification is introduced based on linear advection of waves with preassumed shapes.
To verify this method, results from previous studies in which modes were identified are used.
This is especially important in mode identification after instability observation in experimental
results of a rocket engine. Results indicate that nonlinear effects often have negligible influence
on wave deformations in practical liquid rocket engines and the introduced method is capable of

nonlinear wave analysis in this special situation.

INTRODUCTION

To obtain an effective procedure for design of liquid
propellant rocket engines, control of combustion pro-
cess is necessary. Combustion instability has remained
one of the most critical problems in development of
liquid propellant rocket engines. This phenomenon
consists of a forced oscillation of combustion gases,
driven by the combustion process, interacting with
the resonance effects of the chamber geometry [1-4].
Oscillatory operation of a rocket engine is undesirable
for many reasons.

Combustion instabilities may be regarded as the
unsteady motion of a dynamic system capable of
sustaining oscillations over a broad range of frequencies
[5]. If the amplitude is small, the instability is closely
related to classical acoustic behavior occurring in the
absence of combustion and mean flow. Therefore, the
geometry of the chamber has a dominant influence.
Corresponding to classical results, traveling and stand-
ing waves are found [2,5,6], which are driven by the
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combustion process energy release and are influenced
by the mean flow as well as the conditions at the
injector face and exhaust.

Under suitable circumstances, the flow of energy
to the waves may dominate the losses in such a
way that nonlinear behavior becomes significant. In
extreme cases, shock waves may form. The prop-
agation speed of disturbances is a weak function of
the amplitude, thus, the frequencies do not differ
greatly from classical values computed for the same
geometry.

There are three recognized types of combustion
instability; low frequency instability (10-200 Hz), inter-
mediate frequency instability (200-1000 Hz) and high
frequency instability (greater than 1000 Hz), which
includes excitation of acoustic vibrational modes of
the combustion chamber and is, by far, the most
destructive kind of instability and hardest to control
[6,7].

In an actual engine with high frequency insta-
bility, several modes could be present simultaneously.
These modes may correspond to the longitudinal,
radial or tangential modes of the chamber and could
be of traveling or standing nature. Pressure signal
measurements from the chamber have been used to
determine the modes [3,8,9]. Fast Fourier transform
of pressure signals, which is commonly used for this



102

purpose, is not sufficient when standing steep waves
are present; since it may overestimate¢ the frequency
of these waves by a factor of two as| will be shown
later. It also does not provide an insight into the
physics of the instability modes. Using high speed
photography and film recording, lumi
two dimensional transparent-wall combustion chamber
has been used to determine the instability modes
3.10,11].
Here, first the interaction of several different
finite amplitude waves are studied and using ana-
lytical and numerical tools, conditions are searched
for under which nonlinearity of wave| deformation is
negligible. Then, it is shown that these conditions
are often met in real liquid rocket engines. A simple
linear method applicable for analysis of experimen-
tal measurements done for detection of combustion
instability mode is presented. In this method, by
reconstruction of measured pressure waves and their
phase variation along the chamber,| the instability
modes can be identified. For this purpose, by pre-
sumption of the instability modes, the appropriate
waves are produced numerically at each end of a
combustion tube with appropriate amplitude and fre-
quency. With these boundary conditions, the clas-
sical acoustic equations are solved. |Experimentally
produced amplitude and phase time histories are
examined and compared with their presumed theo-
retical equivalents to identify the instability modes
present.
In the following sections, numerical analysis of
wave interaction, interaction of nonlinear waves, valid-
ity of the superposition assumption for nonlinear steep
waves and application of the present
identification are described.

NUMERICAL ANALYSIS OF WAVE
INTERACTION

To attain classical wave equation, mass, momentum
and energy equations are linearized |for an inviscid,
adiabatic, nonreactive and quiescent media. The
following equation is obtained:
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in which a is the speed of sound. This equation is
written as a system of first-order equations:
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where + and — signs pertain to right- and left-traveling
waves. For discretization of these equations, the first-
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order upwind scheme is used:
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right traveling waves. (3)

For left traveling waves, a similar equation can be
written. In the particular case of ¢ = QAA—; = 1, the
numerical solution is the same as the exact solution of
the wave equation.

Specific modes are generated in a combustion
tube with both ends open. A left traveling wave with
particular amplitude is generated continuously at the
right end. The left end of the tube is assumed to act as
an open end with respect to this left traveling wave. At
the same time, a right traveling wave is continuously
generated at the left end for which the right end is
assumed to be open. Depending on the mode which is
to be generated, different amplitudes and phases can
be assigned to each of these imposed waves.

With these boundary conditions and using the
above mentioned scheme, Equation 2 is solved. Pres-
sure and phase history are computed along the tube for
that particular mode. Application of this method for
interaction of nonlinear waves is questionable, which is
the subject of the following section.

INTERACTION OF NONLINEAR WAVES

In the combustion chamber of rockets, the chemical
reaction of propellants gives high energy density to the
compressible gases within the chamber. Combustion
processes can couple with unsteady motion of gases.
The flow of a small portion of the total combustion
energy to the acoustic waves may dominate the losses
such that nonlinear behavior becomes significant and
shock waves may form. Under these conditions, validity
of the results from classical wave equation has to be
determined. It must be shown that while the formation
of steep waves is nonlinear, their propagation and
interaction are linear. To show this, interaction of
two shock waves, two expansion waves and two steep
fronted waves are analyzed in the following sections.

Interaction of Two Shock Waves

Consider two shock waves which are traveling toward
each other through a quiescent media (u, = 0), as
shown in Figure 1. The propagation velocities of left
and right traveling shock waves are Cs; and Ciss,
respectively. The thermophysical properties of region
(0) and pressure ratios of shock waves are known.
The shock velocity Csi, the mass motion velocity us
and the density and temperature ratios across the left
traveling shock wave are calculated from the following
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Figure 1. Interaction of two shock waves on an z — ¢
diagram.

equations [12]:
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By replacing 22 in the above equations, the same
values are calculated for the right traveling shock
wave.

After collision, four regions exist in the z — ¢
diagram. Regions 1 and 4 represent front and back
of the right traveling wave, while Regions 2 and 3
represent the same values for the left traveling wave,
respectively. The shock velocities of these waves are
Cgs3 and Csq. The pressure ratios of the traveling
shock waves are different, therefore, there exists a
contact surface between Regions 3 and 4. Across the
contact surface, the entropy changes discontinuously,
but pressure and velocity are continuous.

In order to calculate the properties of Region 4,
continuity, momentum and energy equations are writ-
ten between Regions 1 and 4. For simplicity, all
velocities are measured with respect to the shock wave.
Therefore, it is obtained that:

p1(Css + ur) = ps(Csq — ua), (8)

103
p1+ p1(Css +11)? = pa + pa(Csa — us), (9)
1
hi + = (Cs4 + u1)2 =h2+ = (Cs4 — U4)2. (10)

After some manipulation, the shock and induced mass
velocity of the right traveling wave are found as:

1
054:(1.1 E—(1£—1>+1—U1, (11)
2y \p;
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In the same manner, the values of Cgs3 and ugz are
calculated.
Recalling that u3 = us and ps = p4, one can find:
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Since the properties of regions 1 and 2 are known, the
value of p3 can be calculated from the above equation
by iterative means. Therefore, the values of Cs4 and

us = u4 are calculated from Equations 11 and 12. By
replacing Lo with I;Ll and Lz in Equations 6 and 7, the
temperature and density of Regions 3 and 4 can be
obtained, respectively.

Now, the influence of the nonlinearities on the
shape deformation for two incident shock waves can be
studied. For this purpose, a new parameter a defined
as g”‘—;”ﬂl - gﬂa—;ﬂl is introduced and the variation of a

with respect to the strength of the shock waves (B‘—p_—o&

and 92—;&) is calculated using the above equations.
The contours of parameter « are presented in Figure 2.
The behavior of this parameter when the strengths of
left and right traveling shock waves are equal has been
shown in Figure 3. As can be seen, when P‘—;B"— is
less than 24.57%, the shape deformation of shock wave
due to collision with another shock wave is less than
5%. Therefore, for condition of 2=E= being less than
24.57%, the linear theory can be used for analysis of
shock wave interaction.

Interaction of Two Expansion Waves

The interaction of two simple expansion waves traveling
in opposite directions is illustrated in Figure 4. The
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Figure 2. Variation of parameter @ dug to interaction of
two shock waves with different strengths.
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Figure 3. Variation of parameter o due to interaction of
two shock waves with the same strength).

thermophysical properties of the quiescent Region 0
and pressure ratios of traveling expansion waves are
known. J, Riemann invariant, ile., 7 2, s
constant considering the left traveling|simple expansion
wave. Since the expansion wave is |isentropic, p; =

po(m/po)l/'y, therefore, a; = % le_i)po and, it is
found that:
u — (@0 —a1). (14)

Also, using the right traveling simple| expansion wave,
it is observed that J_ Riemann invariant is constant
and ws is similarly calculated.
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Figure 4. Interaction of two expansion waves on an r — ¢
diagram.

For transmitted simple expansion waves,

2a, 2a3
uy — =uz —
R S
right traveling expansion wave, (15)
2a 2a
U + =2 = uz + 3
-1 vy—-1
left traveling expansion wave. (16)

Adding Equations 15 and 16, one obtains u3 and
az. Since the flow is isentropic, the pressure ratio
across the right traveling transmitted expansion wave
is obtained as:

Bg <’)’RT2> ’Y+1)
D3 a3 .

(17)

By replacing T, with 7} in Equation 17, the pressure
ratio of the left traveling transmitted expansion wave
is found.

Now, the effects of nonlinearities on the shape
deformation of an expansion wave after its collision
with another expansion wave can be considered. Here,
to observe this, a new parameter 3 defined as L&ﬂ —

gpzp_—ml is introduced and the variation of this param—
eter with respect to the strength of expansion waves

(%ﬂ and P—p—;’—’—) is calculated, the results of which

are presented in Figure 5. The behavior of parameter 3
when the strengths of the two incident expansion waves
are equal has been shown in Figure 6. As shown in
this figure, when the strength of expansion wave Lﬂ—
is less than 23.69%, the effect of nonlinearities on the
shape deformation of the incident expansion waves is
less than 5%. Thus, the linear theory can be used for
analysis of the expansion wave interaction when b
is less than 23.69%.
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Figure 5. Variation of parameter 8 due to interaction of
two expansion waves with different strengths.
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Figure 6. Variation of parameter 3 due to interaction of
two expansion waves with the same strength.

Interaction of Two Steep Waves

Waves formed after a finite time from traveling of a
harmonic wave with finite amplitude are considered as
a steep wave, consisting of a shock wave followed by a
gradually weakening expansion wave. The propagation
and interaction of nonlinear steep waves are compli-
cated and, therefore, studied only through numerical
solution of nonlinear Euler equations. The variation of
amplitude and area of a wave during interaction and
collision with another wave are two parameters which
are used to determine the influence of nonlinearity on
the wave deformation. These parameters are computed
for a wave during its propagation and are compared
with parameters which are found for the same wave
without any collision. If the difference of these pa-
rameters in the two cases is negligible, it is possible
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to assume that the superposition of nonlinear waves is
valid for this particular application.

Numerical Solution of the Nonlinear Waves

The propagation and collision of nonlinear waves in
a one dimensional tube are studied by solving Euler
equations. The governing equations are:

ou, oF
ot or

where two vectors U and F are:

=0, (18)

p pu
U=| puv |, F=| pu*+p | - (19)
oE puH

For discretization on a numerical grid, Equation 4 is
integrated over the i-th cell, to find:

a;" = —ﬁ > (F-s). (20)

K3 .
stdes

According to van Leer flux vector splitting [13], the flux
vectors become:

F* =i%pa(M:|:1)2, (21)
+_ pt p
By =5 (u— E(U:F%)) ) (22)
h/a?
+ _ ot _ 2 .
FF = F} <H 1+2h/a2(u3{:a) ) (23)

MUSCL (Monotone Upstream-centred Schemes for
Conservation Laws) method is used to increase the
spatial order of accuracy [14]. In this method, primitive
variables are defined as follows:

U = (p, u, p). (24)
The numerical flux vector on 7 + % side is written as:

n —_rn+ (r7L - (TTR
Fy=F+(0L,)+F (0F,). (25)
General forms of the primitive variable vectors fJﬁ 1
2

and UL

‘L+% ’
functions, are:

when including the Minmod flux limiter

7L
U’L+ 7

=U; + % (1= r)¢™ + (1+ k)T

1
2

(26)

h

i+l

= ﬁi+1 - % ((1 - K)¢+ + (1 + K)¢_)
(27)

i+l
For 6 = 1 and k = %, the third order upwind is

achieved. More information on this method and the
functions ¢~ and ¢ can be found in [15].
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Shape Deformation of Interacted Steep Waves

The coupling and mutual effects of high amplitude

right and left traveling waves are
solving nonlinear Euler equations.
hypothesis of nonlinear waves is
interaction of waves does not chan
amplitude of them after they have
other.

studied through
The superposition
confirmed, if the
ge the shape and
passed over each

Consider a one-dimensional pipe with both ends
open and an initial pressure distribution of:

Po + p—sin [2E(z — zg)],

.IRSZ‘_<_$R+%

p={Potpysin[F(z—z.)], dr<z<artg.

Do elsewhere

This initial pressure distribution inc

(28)

udes two half sine

waves at points xg and z. The coeflicients p, and p_

represent the amplitude of the right

and left traveling

waves, respectively, and p, is the reference pressure.

It is assumed that py = p- =

study the collision of these two waves,

*

p*. In order to
initial conditions

of the other properties are calculated from Riemann
invariants such that the waves positioned at zr and

xy, travel to left and right, respecti

conditions of the other properties are

GRS
G

where + and —
left traveling waves, respectively. N
condition is assumed on both sides
small values of p*

vely. Thus, initial
[12]:

(29)

(30)

indicate the properties of the right and

eumann boundary
of the pipe. For

, the shape of these waves does not
change during traveling and collision.

By increasing

the value of p*, the wave front speed increases such that

the waves quickly transform into sh
waves. For this condition, when

bck and expansion
the left traveling

wave has passed the other wave and is positioned at
a particular location, its amplitude and area under the
curve are computed. Also, in the absence of the right
traveling wave, the same values are calculated using the
same method for the left traveling wave when it is at

the same position.
The ratios of amplitude change

the curve change £2 for the left

the particular position for two di
mentioned above are determined. §
traveled by the wave in both cases
is expected that the dissipation and
numerical method is almost canceled
ratios. The computation is done f¢

of ;L:. Figure 7 shows the behav

%1,’- and area under

traveling wave at
flerent conditions
ince the distances
are the same, it
dispersion of the
1 in the mentioned
or different values
or of %{3 and 6A*3
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Figure 7. Shape deformation of a nonlinear wave due to
interaction with another nonlinear wave with respect to
strength of the wave.

0 0.25 0.75 1

with respect to E°  As can be seen, even when the
amplitude of the soharp wave is 2.2 times the reference
pressure, the ratio of amplitude change is only 1.6%
and that of area is 0.85%. Therefore, the superposition
hypothesis of nonlinear waves hold with good accuracy
for conditions of 2- < 2. In experimental observations
of liquld rocket eng(ine instabilities conducted so far, the
ratio £~ is less than 1.75 [16]. Thus, it is concluded that
classmal acoustic theory can be used in the analysis of
wave coupling in the liquid rocket engines.

APPLICATION AND RESULTS

To study different longitudinal modes in a pipe by the
method of superposition of waves, at each end of the
pipe, a periodic wave with particular amplitude and
frequency is generated numerically. From the right end,
left traveling wave and from the left end, right traveling
wave are imposed.

Linear Waves

To generate the second longitudinal mode, harmonic
waves with a same amplitude and wavelength equal to
the length of the pipe are imposed on both sides of the
pipe. The shape of the right and left traveling waves
are:

p(t, % = 0) = fu(t) = pycos( 220,

(right traveling wave), (31)
z 2nt

p(tvz = 1) - fR(t) - p_COS(T),
(left traveling wave), (32)

where py, p— and 7 are the amplitude of right and left
traveling waves and period of oscillation, respectively.
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For p_ = 0, only a right traveling wave exists in the
pipe. The maximum and minimum pressures observed
at different points in the pipe are constant and equal
to £py. Phase difference of pressure variation with
respect to time at different points in the pipe changes
linearly with . Since the wavelength is the same as the
pipe length, the phase difference of pressure variation
at the two ends is 360 degrees. If p_ = p,, the second
standing mode exists in the pipe. For this case, two
complete antinodes are observed in the envelope of
amplitude variations. The time variation of pressure at
all points between nodes and antinodes are in the same
phase and are 180 degrees out of phase with respect
to the next node and antinode. In general, for the
longitudinal standing modes, the number of nodes is
equal to the order of the mode. For 0 < p_ < py, the
envelope of amplitude and phase variations are between
the above two extreme cases.

Nonlinear Waves

The waves observed in liquid propellant rocket engines
are mostly steep waves. The compression parts of har-
monic waves due to nonlinear effects grow in amplitude
as they propagate and become steep waves. To study
this type of wave, two steep right and left traveling
waves, with amplitudes such as p = p_ = p* and
wavelength equal to the pipe length, are generated
at both ends of the pipe as shown in Figure 8a.
These waves are the sharpened form of the second
longitudinal mode. Since at the moment of the wave
entrance from the right end, the wave propagating from
the left also exists, the amplitude becomes 2p*, which
is true for the left end wave as well.

From the solution of classical acoustic equation
with the above given boundary conditions, it is ob-
served that unlike the standing second longitudinal
mode where two nodes existed at locations £ = 0.25
and 0.75, there is no node at these points for the
steep waves. The time variation of pressure at these
points indicates the presence of waves with a frequency
twice that of the frequency of the entering waves and
amplitude of p*. It can be seen that the time variation
of pressure at the mid point of the pipe is the same as
that of the entering waves. At intervals 0 < 7 < 0.25,
0.25 < £ <0.75 and 0.75 < 7 < 1, the time varlatlon
of pressure has two peaks. One peak corresponds
to the right traveling wave and the other to the left
traveling wave as shown in Figures 8b and 8c. As
points 7 = 0.25 and 0.75 are approached, the distance
of these peaks increases and finally their shapes become
the same. The phase variation with respect to 7 is also
studied. Unlike the phase variation of second standing
harmonic wave which has a stepwise shape, for the
steepened case, a diamond shape is observed. Phase
curve varies linearly with respect to 7, which is similar
to the phase curve for consecutive impingement and
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Figure 8. Time variation of pressure and phase diagrams
for the second steep longitudinal wave in a pipe.

reflection of longitudinal waves to the walls of a closed
cavity.

Next, a case is considered in which several modes
exist in the combustion chamber at the same time
[3]. Such a condition can be observed during long
operations of engines or during transition from one
mode to another mode. Figure 9a illustrates the

X

time variation of pressure at point ¥ = 0.9. The
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oscillations which are repeated continuously in this
curve have eight peaks. Part (b) of Figure 9 shows the
phase variation of pressure waves measured at different

points of the engine. The dotted and
represent the first traveling and third
respectively. Since waves measured in
steep, the phase variation curve has a
In order to generate the first mode nu
with wavelength of twice the pipe len

continuous lines
standing modes,
the chamber are
diamond shape.
merically, waves
gth are imposed

at the two ends of the pipe, having one period phase

difference with respect to each other

For the third

mode, the wavelength of the imposed waves is  of the

3

pipe length and their phase difference is half of their

period.
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Figure 10. Computed pressure variation at ¢ = 0.9 for

co-existing first and third steep longitudinal instabilities.

The solution to acoustic equation with the above
boundary conditions provides the time variation of
pressure at point ¥ = 0.9, as shown in Figure 10.
The phase curve compares very well with the results
of previous work [3]. For the pressure variation at
point 7 = 0.9, eight consecutive peaks are observed
which are repeated continuously. The amplitude of
the oscillations do not match very well. However, the
results of the numerical solution of acoustic equations
can be used for the identification of acoustic modes in
a chamber. This method becomes complicated when
interaction of higher order modes exists and other
complimentary methods should be used.

CONCLUSION

Single measurement of pressure using a high response
pressure transducer is sufficient to indicate the ex-
istence of combustion instability in rocket engines.
Regardless of the diagnostic tools, exact determination
of instability modes and identification along with classi-
fication, as traveling, standing, spinning and precessing
forms, require reconstruction of the waves through
numerical means. This work presents a relatively
simple tool for recognition and identification of various
harmonic and steep waves existing in the combustion
chamber. According to the computation and com-
parisons presented, the principle of superposition can
be employed for all types of nonlinear waves observed
in combustion chambers. Thus, at least in simple
situations, if nonlinear waves are observed in pressure
measurements, this method can be used to identify the
nonlinear modes.
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NOMENCLATURE

a velocity of sound, m/s

H enthalpy, kJ/kg

t time, s

C wave velocity

7 cell index

U vector of conservative variables
c Courant number

J Riemann invarient

U vector of primitive variables
E total internal energy, kJ/kg
L tube length, m

U velocity, m/s

F components of flux vector
M Mach number, u/a

N T LR RS o

volume, m3

flux vector

pressure, Pa

axial position, m
numerical flux vector
cell face area, m?
total enthalpy, kJ/kg

temperature, K

Greek Letters

e AT =2 >w A L

shock wave deformation parameter
parameter in Equations 12 and 13
expansion wave deformation parameter

wavelength, m
specific heat ratio
density, kg/m?
difference

wave period, s

parameter in Equations 12 and 13

flux limiter vector

Subscript and Superscript

L

+
o

left side

right traveling wave
reference values

left traveling wave
right side

*

S
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amplitude of pressure oscillation
shock
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