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Heat and Mass Transfer in Natural

Convection about a Vertical Flat
Plate at High Prandtl Numbers

A. Baradaran Rahimi* and S. Gholamdokht!

There are many articles in the literature focusing on heat and mass transfer in natural convection
considering a vertical flat plate, however, only low Prandtl numbers are usually discussed and
not much information existg for the same problem at large Prandtl numbers. In this work, the
problem of simultaneous heat and mass transfer in natural convection over an isothermal vertical
wall is solved at large Prandtl numbers using perturbation techniques. Starting from Navier-
Stokes equations and using similarity transformations, the governing equations are obtained in
the form of differential equations. The inverse of Prandtl number is then introduced as the
perturbation parameter. The flow is found to have a dual-layer structure. Use of inner and outer
expansions leads to uniform values of the relevant quantities. The effects of variation of Prandtl

number, Schmidt number,
heat transfer are then investigated.

INTRODUCTION

Circulation of air in atmosphere,
oceans, circulation of high Prandtl number fluids used
as a heat sink in electrical transformers and, also, flow
over a hot wall are all examples of flows dominated by
buoyant forces. The simultaneous heat transfer and
evaporation of crude oil in different stages of refining
process are physical examples of heat|and mass trans-
fer. Although current knowledge of simultaneous heat-
and-mass transfer problem in natural convection over
an isothermal vertical flat plate is extensive, not much
information is available when high Prandtl numbers are
considered. For example, in 1976, Shenk & Altmann [1]
numerically solved problems related to heat and mass
transfer in natural convection and illustrated that, in
general, heat and mass transfer are functions of the
percentage effect of heat transfer buoyancy to the total
buoyancy forces. They also showed |that at Schmidt
numbers close to Prandtl numbers, |this dependence
becomes weaker. However, their study was limited to
low Prandtl numbers, up to Pr = 0.71. In other works
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nd the ratio of the thermal buoyancy to the total body forces on

(e.g., [2,3]) Prandt]l numbers as high as Pr = 7.0 have
been used.

Materials with high Prandtl number are fre-
quently encountered in industry, such as fluids used
as heat sink in electrical transformers (Pr = 47100
at 273 K), the hydrocarbon polymers or silicons used
in some chemical processes and substances such as
glycerine (Pr = 84700 at 273 K) [4]. Although the
above-mentioned numerical research can, in principle,
be extended to high Prandtl number fluids, the results
are not meaningful because at large Prandtl numbers,
the governing differential equations become singular.

In the analysis presented here, Navier-Stokes
equations are employed in cartesian coordinates com-
bined with the well-known stream function substitu-
tions of Von Mises and the similarity transformation
of Polhausen. The governing equations are, then,
obtained in the form of differential equations. Through
introducing the inverse of Prandtl number as the
perturbation parameter, perturbation techniques are
considered for solving this problem. The quantities
that change rapidly are analyzed in the thin region
near the wall, the so-called inner region, and then are
matched with the result in the outer region, avoiding
any singularity [5].

In this analysis, it will be shown that: a) in the
inner region, buoyancy forces are negligible, b) in the
outer region (away from the wall), the inertia forces are
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balanced by friction forces and the buoyancy forces do
not exist. Having obtained the governing equations in
each region, a shooting method will be used to solve
them and at the same time, a matching process will be
implemented. The effects of variation of Prandtl and
Schmidt numbers and, also, the ratio of the thermal
buoyancy to the total body force on heat transfer will
be investigated.

FORMULATION OF PROBLEM

The equations to be solved are two-dimensional equa-
tions for continuity, momentum and conservation of
energy and mass. Neglecting variable property effects
other than buoyancy and adapting the well-known
boundary layer approximations for steady state con-
ditions, it is obtained that:
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with the following boundary conditions :

>0, y=0, u=v=0, t=t), Q=1Q,
>0, y=00, u=0, t=0, Q=0,
z=0, y>0, u=0, t=0, Q=0. (2)

Here, z and y are vertical and horizontal axes,
respectively, as shown in Figure 1. By introducing the
stream function substitutions of Von Mises and then
the similarity transformation of Polhausen, one gets

(6]:
=2 +3ff +660+ (1~ 6w =0,
0" +3Pr f0' =0,
W" +3Scfw’ =0, (3)

with boundary conditions:

n=20 = f=fI:07 6=1a

=0,

In these formulae, f, # and w represent the re-
duced stream function, temperature and concentration,
respectively. The independent variable is n = cyz~1/4

w=1,

n—o00 = 0=0, w=0.()
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Figure 1. System of coordinates.

(cis a constant which depends on the buoyancy forces).
The Prandtl and Schmidt numbers have their usual
definition of Pr = v/a and Sc¢ = v/D. The parameter
0 represents, essentially, the ratio of the thermal
buoyancy to the total body forces and, therefore, (1—6)
is the ratio of concentration buoyancy to the total
effect. For aiding (upward) buoyancy forces, 0 < § < 1.
The mathematical definitions of these quantities are:
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PERTURBATION EQUATIONS

Since Prandtl number is high, its inverse, ie., 3-,
can be used as the perturbation parameter ¢. The
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governing equations then become:

" =2(fY2 +3ff" +66+ (1 —)w =0,

ed" +3f6' =0,
ew" +3Le fw' =0, (5)
where Le = Sc/Pr. In the last two equations, ¢

appears in front of the highest-order terms, thus the
problem can be categorized as a “singular perturbation
case”. Therefore, as ¢ — 0, the field must be divided
into outer and inner regions, respectively. Obviously,
rapid changes take place in the inner region, i.e., near
the wall, and results should be matched with the ones
obtained for the outer region in order to get uniformly
valid solutions throughout the field of study. Next, the
governing equations in each of these two regions are
determined.

Inner Region

Due to the fact that this is a very thin region near the
wall, it is stretched in order-to make the quantities of
order of one. The stretching variables jare:

e= 1 Fo="" e =00, wie=um.

Y
(6)
Through substituting these variables into Equa-
tion 5, collecting terms that are the coefficients of like
powers of ¢ in each equation and taking the limits (5],

A = 1/4 and v = 3/4 are obtained.| The governing
equations in this region then become:

F" 4+ e(—=2F 24+ 3FF") +6® + (1 8§)W =0,
®" 4+ 3FP =0,
W" +3Le FW'=0, (7)
with the boundary conditions as:
=0, F=F =0, =1, W =|L (8)

The following perturbation expansions are as-
sumed for the quantities inside the inper region:

F(é,E) - FO(&) + 5F1(£) + 0(62)7
2(¢,e) = Do(€) + £21(€) + O(e?),
W (&, €) = Wo(€) + eWi(€) + O(e?) (9)

Substituting these expansions into the governing equa-
tions and collecting the powers of € and setting their
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coefficients equal to zero:

0.

€

FU 4 680 + (1 — 6)Wo =0,

3l + 3R, =0,

W +3Le Fy W, =0, (10)
el

FI" 4+ 8%, + (1 — )W, = 2F,? = 3Ry Fy,

3" + 3F®) = ~3F1 9y,
W! + 3LeF,W; = —3LeFywy, (11)

and the corresponding boundary conditions are:

Equations 10 to 12 govern the thin region next to
the wall, which can be considered a correction factor
for the solutions of others.

Outer Region

The changes in this region are gradual, therefore, there
is no need for any transformation and Equations 5
govern this region, which is away from the wall. These
equations along with the corresponding boundary con-
ditions, are:

- 2f 2L 3ff" 460+ (1 - 8w =0,

0 +3£6' =0,
ew” + 3Le fuw' =0, (13)
n—oo, =0, w=0, f =0 (14)

The following perturbation expansions are as-
sumed for the quantities away from the wall:

f(n,e) = fo(n) +efi(n) + O(?),
(n,€) = 6o(n) + b1 (n) + O(?),
w(n, &) = wo(n) + ewi(n) + O(e?). (15)

Substituting these expansions into the above gov-
erning equations and collecting the coefficient of like
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powers of € and setting them equal to zero,

-0 .
[N

o —2fo+3fofy =0

3Le fowl) = 0, (16)

o~

U Affi 3 ffl +3A1f =0
3508, = 31,6, — 6
3Lefow; = —3Lefiw) — wy. (17)

The boundary conditions are:

n— 00, f(S:Ow 90207 W0:07

n— 00, w1 = 0 (18)

These equations are to be solved and matched
with the solution of the inner region governing equa-
tions. In this process, the unknown integration con-
stants are evaluated.

PERTURBATION SOLUTION

In this section, the solutions of the perturbation equa-
tions of Systems 10 and 11, along with the boundary
conditions of Equation 12, and the equations of Sys-
tems 16 and 17, along with boundary conditions of
Equation 18, are presented.

From the second and third equations of Systems
16 and 17, it is seen that 8g(n) = 0, 81(n) = 0, we(n) =
0 and wy(n) = 0; therefore, in the outer region:

8(n,e) =0,
w(n,e) =0. (19)

The other two equations of Systems 16 and 17 were
solved numerically, along with the equations in Systems
10 and 11, due to their complications. The results were
then matched together in order to achieve a uniformly
valid solution throughout the region (inner and outer
regions). This was done using a general shooting
method.

PRESENTATION OF THE RESULTS

System equations 10 and 11 have six equations and
six unknowns, which can be solved numerically. These
equations constitute the inner solutions which are
related to the points very close to the wall. These
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Figure 2. Variation of f versus n for Pr = 20000,
Sc =10 and 6 =0.5.

values are used as boundary conditions for the outer
region. Then, the first equations in Systems 16 and 17
are solved using a shooting method. In this manner,
the matching process takes place and a uniformly valid
solution throughout the region of interest is obtained.
In this way, for large values of Prandtl numbers, correct
values of quantities are obtained. This procedure
can be outlined as follows. Some starting values for
unknown quantities are guessed in a middle layer,
between the inner and outer regions. These values serve
as boundary conditions for inner governing equations
and as initial conditions for outer governing equations.
A predictor-corrector method [7] is used to shoot the
solution of the outer equations to their values at n = oc.
This is repeated until the best result is obtained. In
order to conduct the matching process numerically,
in the middle layer, the final inner solutions are set
equal to the initial conditions of the outer region
equations. The thickness of the inner region is found
to be (O{1/Pr)) for each case.

Figures 2 to 4 illustrate the matched (uniformly
valid) values of the variations of quantities f, 6 and
w for different values of Prandtl number. The reduced
shear stress, temperature gradient and concentration
gradient (f",0', w') are presented in Figures 5 to 7 for
different values of Prandtl number. Figures 8 and 9
show the decreasing value of local Nusselt number and
increasing value of local Sherwood number against the
increasing value of Schmidt number for different values
of Prandt] number. Figures 10 and 11 depict the de-
creasing value of local Nusselt number and decreasing
value of local Sherwood number against the increasing
value of § for different values of Prandt! number and
Sc = 10. In Figures 12 and 13, the increasing value
of local Nusselt number and decreasing value of local
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0.4 L ] Pr 125 250 500 1000 1500 2000
[ ] —6’(0) | 2.85 342 431 551 623 7.01
L J —w’(0) 1.03 1.018 1.005 0.99 0.982 0.979
0.2 ]
] convection heat transfer in a fluid of high Prandtl
o0l .\ . L number and constant properties.
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) CONCLUSIONS
Sherwood number against Prandtl number for Sc = 10
and 6 = 0.5 are shown. Figure |14 demonstrates In this paper, the influence of mass transfer upon
the variation of local Nusselt number versus Prandtl natural convection heat transfer in fluids with high
number for Sc¢ = 10 and § = 1 (pure heat transfer) Prandtl number has been determined. The dual-
along with the result of Ede [8], who has studied natural layer structure of the flow permits evaluation of
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uniformly valid solution of temperature and con-
centration throughout the field. Then, the effects

of variation of Prandtl number,

Schmidt number

and the ratio of the thermal buoyancy to the to-
tal body forces on heat transfer has been investi-

gated.

In Figures 3a, 3b and 3c, it
an increase in Prandtl number ca
variation in the vicinity of the wall
rapid.
usually have temperature-dependent

is observed that
nses temperature
to become more

Since fluids with large Prandtl numbers

viscosities [9-11],

these results for high Prandtl number might be lim-

Table 2. Values of §'(0) and w'(0) vers
Pr =1000 and 6 = 0.5.

us Sc for

Sc 2 4 6 7 8 10
—6'(0) | 2.26 2205 2.12 2.08 2074 205
—w’(0) | 0.685 0.785 0.875 0.93 0.965 1.05
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10

ited to small temperature differences for high accu-
racy.

In Figure 14, the result for local Nusselt num-
ber in the case of pure heat transfer (§ 1) is
compared with the result presented in [8] which is
Nu = 0.503 Razl,/ * converted into the form of similarity
transformations. The satisfactory agreement is an
evidence of the accuracy of the method presented
here.

NOMENCLATURE

Sc Schmidt number
constant
Sherwood number
mass diffusivity
temperature

reduced stream function

R

velocity component
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constant
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body force 7
perturbation parameter
independent variable in the outer

region

constant 8.

dimensionless temperature
kinematic viscosity
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density
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stream function
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zero-order quantities
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