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A New Protocol for Asymmetric Communication
Channels: Reaching the Lower Bounds

S. Ghazizadeh!, M. Ghodsi* and A. Saberi!

In this paper, the problem of sending n-bit of data from a client to a server using an asymmetric
communication channel is discussed where the line bandwidth from server to client is much
higher than that of client to server. The goal is to provide a protocol for this problem so that
the average number of actual bits sent by client to server becomes as low as possible. Assuming
that data is drawn from an arbitrary distribution D, the average number of bits sent by client
to server cannot be less than H(D), where H(D) is the binary entropy of D. This problem was
first considered by Adler and Maggs [1]. They assumed that the distribution of D is known only
by the server and introduced a protocol in which the number of bits sent from client to server
is 1.70H(D) + 1. In this paper, this work has been extended and a protocol is proposed which
reduces the constant factor 1.71 to 1+ € (¢ > 0) in a way that the computation performed by

the server is still reasonable.

INTRODUCTION

In recent years, many commercial networks have been
introduced with asymmetric bandwidth capabilities
where the speed of one direction, from server to client,
is much more than that of client to server. Telephone
companies have started using these capabilities for
their subscriber lines. Asymmetrical Digital Subscriber
Lines (ADSLs) utilize current phone lines to deliver
up to eight megabytes per second. This technology
has also been used in satellite communications and
wireless networks and can, for example, provide a
download speed of 1.5 mbps and an upload speed of
64 kbps.

There are many issues involved in asymmetric
communication, but the main concern, here, is whether
it is possible to utilize the high speed link to improve
the performance of the low speed link and, thus,
efficiently transfer a string of information from a client
to a server on the low speed link.

The asymmetric communication can also be used
in situations where the client processing power and/or
the amount of memory is very limited compared to
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those of the server, although the channel may be
symmetric. For example, the client can be a mobile
node which uses a wireless channel for communication
with the base. The mobile node may need to limit the
transmission in order to conserve power, while in the
base this is not the case. Such problems can also be
solved with the protocol introduced here.

In this paper a protocol is presented that allows
the client to send z, an n-bit string, to the server on
an asymmetric channel, through forwarding a nearly
optimal number of actual bits across the low-speed
channel. The protocol is an extension of the one
presented in [1] for which the average number of bits
sent by the client is 1.71H(D) + 1, where H(D) is the
binary entropy of D, the distribution of z. The first
protocol we propose solves this problem in 1.47H (D) +
4 on the average. Then, the protocol is improved and
the factor is reduced from 1.47 to 1 + ¢ for an arbitrary
small value of €. This is very close to the theoretically
optimal H(D)+1 bits required to be sent by the client.

Although this paper is more concerned with the
theoretical aspects of the performance of such proto-
cols, there is no need to further emphasize the practical
benefits of such eflicient protocols.

The organization of this paper is as follows. First,
some classical results and the lower bound on such
communications are presented. Then, the model used
in the protocol is discussed. Next, the details of the
protocol considered for extension are provided. This is
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followed by the new protocol. At the end, two open
problems are presented for further work.

CLASSICAL ALGORITHMS AND

RELATED WORK

To reduce the expected number of
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n ascending order
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THE MODEL

The same model as in [1] has been used here which
is an asynchronous model based on Yao's two-party
communication complexity model [8]. In this model,
client and server exchange some bits as stated in a
specific protocol which enables the client to send its
n-bit string to the server. The protocol determines the
steps to be followed exactly by the two parties, that
is, which one of the parties should send some bits, as
well as the values of the bits sent. The bits sent by
the server are based on the information in D, which
is available to the server, and on the information thus
far received from the client. The client does not have
any information on D and the bits it sends are only
dependent on the string and the bits thus far received
from the server. At the end of the protocol, the server
knows the n-bit string of the client.

The model considers the local computation per-
formed by the server. It is assumed that the local
computation in the client side is very little and is not
considerable. Instead, the computations performed by
the server is very important and can be extensive. This
computation is mainly determined by the complexity
of accessing the distribution D which is modeled by
queries to a black box. It is assumed that D is
represented as a black box and the server queries the
box for a k-bit string », where 0 < k¥ < n. The box
returns the cumulative probability of n-bit strings that
start with r. The complexity of the server computation
is, thus, the number of black box queries plus other
local computation.

In the protocol presented here, a stronger model
is used for the black box query. A black box query in
this model involves two n-bit numbers a and b, the box
returns the cumulative probability of strings between a
and b. It can easily be shown that a query of this kind
can be performed in the original model with, at most,
O(n) additional cost.

The actual computation performed by the server
depends on the representation of D in it and, thus,
the black box model does not accurately estimate its
complexity, nevertheless, this model is very simple and
provides a good estimate. The important point is that
the accuracy of complexity of computation does not
affect other properties of the protocol.

In general, a protocol is characterized in terms
of three parameters, [0, ¢, A], where o is the expected
number of bits sent by the server, ¢ is the expected
number of bits sent by the client and A is the number
of black box queries done by the server. For example,
the classic protocol is a [2™,1,0]-protocol. Adler and
Maggs have defined a fourth parameter which is the
number of rounds in the protocol, expressed as the
maximal sequence of consecutive bits sent by the server
(without any bits sent in between by the client),
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followed by a maximal sequence of consecutive bits
sent by the client. Minimizing the number of rounds is
important. However, since in the referenced protocol
and the protocol presented here, the client always sends
one bit to the server, the number of rounds equals
the number of bits sent by the client. Therefore, this
parameter is ignored in this paper.

ADLER AND MAGGS PROTOCOLS

Addler and Maggs have presented three protocols in
their paper. The first protocol is a [3n,1.71H(D) +
1,3n]-protocol and is considered a computation-
efficient protocol. Here, this protocol is extended
to its lower bound limit in terms of the compu-
tation performed by the client at the expense of
more computation by the server. Because of the
need to refer to the details, this protocol with its
proof are presented here. Their second protocol is
a [O(n), O(H(D) + 1),2™]-protocol with O(1) rounds
designed to provide the efficient number of rounds.
The third is a [O(n), O(H (D) + 1),0(2%)]-protocol
with O(min(2, H(D)+ 1)) number of rounds which is a
trade-off between the first two protocols (c is the trade-
off parameter).

Now, the first protocol is presented in detail. In
this protocol, the server, in each run, sends the client
a query consisting of a candidate prefix for the client
string, « and the client responds whether the prefix
is indeed correct or not. The server keeps track of
the prefix r of x thus far- correctly determined and as
the protocol proceeds, the server expands r to z. If
the client response to the query is positive, the server
expands r and if it is negative, the server eliminates
that string from the candidate set. Further queries
to the client depend on its responses to the previous
queries. To do this effectively, the original probabilities
are adjusted based on the information received from the
client so far. The authors define adjusted probability
of a black box query, say @, as follows. Let X be
the set of rejected prefixes thus far and Px be their
cumulative probability. Also let Pg be the result of
the black box query. The adjusted probability of the
string @) is defined as EQ_P%

The mentioned protocol is as follows:

o Let r be the empty string,
e Repeat until r = z,

— Conditioning on all information learned from the
client thus far, the server finds a prefix of the
unknown bits as follows:

x Let s be an empty string. The server repeats
the following until it has a prefix rs that either
occurs with probability between % and %, inclu-
sive, or extends to the end of the string.
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- Query the black box for rs0.

- If the exclusion adjusted probability of the
value returned by the black box is > %, then
0 is appended to the end of s.

- If the exclusion adjusted probability of the
value returned by the black box is < 1, then
1 is appended to the end of s.

- If the exclusion adjusted probability of the
value returned by the black box is between
5 and £, then 0 is appended to the end of s.

— The server sends s to the client.

— If rs is a prefix of z, the client responds with a
“y”, after which the server sets r = rs.

- If 7 is not a prefix of z, the client responds with a
“n”, after which the server updates the exclusion
adJusted probabilities accordingly.

In this protocol, the behavior of the server and
the client is deterministic and the only source of
randomness is the value of z. Also, the prefix that
is sent either extends to the end of string Z, Or occurs
with the probability between % and 2 3 s1nce when a
prefix that occurs with probability p > £ is extended
by one bit, the prefix with the more hkely of the
two settings for that bit occurs with probability of at
least £.

A new version of the analysis of this protocol
which gives hint to the protocol presented here is now

provided.

Theorem 1

For any distribution D, the above protocol is a
[3n,1.71H(D) + 1, 3n]-protocol.

Proof

Considering the way prefix s, to be sent, is selected, it
is obvious that the probability of receiving a positive
response from client is at least % Thus, for every
bit, the server needs to query the client three times,
on average, to get a positive response. Therefore, on
average, the server needs to send 3n bits to the client.
Using the same proof, the average number of black box
queries is also 3n. The probability space from where
x is selected in each phase is reduced at least by a
factor of % by each query so, for every x, the number
of queries to the client is 1 + logz D(zx) and, thus, the
average number of bits sent by the client to the server .
18:

H(D)

log, 3

¥

> D(:)(1 +logz D(z:)) =1+

which is approximately 1.71H(D) + 1.
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THE PROPOSED PROTOCOL

The main idea in the above protoco
probability space into two portions

is to divide the

f%ié size. In

other words, the server in each phase reduces the
probability space by at least % through querying the

client.
Limiting probability space in
to find z in distribution D in, at

each step allows
most, log% D(z)

queries. Therefore, the average number of queries is

1.71H(D) + 1.
1.71 comes from the approximatiol
the probability space.
with a better approximation, then,
decreased; this is the main idea beh
protocol.

If the space

As can be seen, the constant factor

nl

& in dividing
can be divided
1.71 constant is

nd the proposed

As the protocol proceeds, a distribution I is dealt

with that holds all possible values
is D at the beginning. I = {s;..ej]

of . Clearly, I
is denoted where

sy and e; are the smallest and largest points of I in

their binary representations, respect
I =]0..2"]. All points of I are sorted
binary representations on a circle in 3
e; are adjacent. This is denoted ag
circle. Let I(z,y) be the cumulati
numbers in I between z and y, i.e.,

Y I(z) z<y
z<z<y

I(z,y) = Z I(z) z>y
sy<z<y
z<z<ey

The protocol involves the followin
queries:

1. The server sends two numbers,
distribution circle, to the client (
prefix) and asks whether the desin
between those two on the circle.

2. The server sends a number to the
responds positively if the number i
otherwise.

It is shown that for any distribu
is at least one point with the pro
than § or two points can be found ir
circle such that the cumulative proba
between them are in the range { + &.
a better reduction of the distribution|

Theorem 2

For any distribution I, there exist ei
and y such that $ — ¢ < I(z,y) < 3+
I(z) > 1.

vely. Originally,
according to their
way that sy and
the distribution
ve probability of

g two kinds of

a and b, on the
instead of just a
ed number z lies

client. The client
s z, or negatively

tion, either there
bability not less
1 the distribution
bility of numbers
This will lead to
space.

her two points z

%, or x such that
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Proof

Let zg < z1... < xx be the numbers in 1. Suppose
I(z;) < Y forall 0 < i < k. Let j be the smallest
number such that I(zo,z;) > 2+%. Obviously, 1 -1 <
I(anmj—l) < % +‘%~

The Protocol

e Set I to [0..2" — 1],

e Repeat the following steps until I has only one
member:

— Set probability space to I,
— Set a to the first element of I and let b be the
largest number such that I(a,b) < 3.
— Let I' =[a..b]. If I(a,b) < § — §, then:
x Consider ¢, the number next to b on the distri-
bution circle of I, and let I’ = [a..c].
* I I(a,c) > } + §, then:
- Server sends ¢ to the client.
- If the client responds negatively, delete ¢ from
I, else z is found and halt.
— Otherwise, the server sends the start and the end

points of I’ to the client. If the client responds
positively, set I to I’ else I =1 - I'.

The following procedure is used to find b in the above
protocol:

o Let b be the first element of I.

oSetJ::%.

¢ Delete right-hand bits of b until the adjusted prob-
ability of black box using the new probability space
(I) in answer to b is more than z. In each step, if
the deleted bit is 1, add the adjusted probability of
b0 to z.

o Repeat the following until length of b becomes n:

— If probability of b0 in I is more than z, b = b0.
Otherwise, subtract the adjusted probability of b0
from z and let b = bl.

Note that for I only the first, last and exceptional
points are saved. It can be seen that the number
of exceptional points (deleted ones) will not exceed
O(H(D)). Therefore, the complexity of the last
procedure will not be more than O(n).

Theorem 3

The above protocol is a [O(nH(D)),1.47TH(D) +
4, 0(nH (D))]-protocol.
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Proof

The main loop of the algorithm will be repeated at most
H(D) times. In the above procedure, O(n) queries are
used, each time it is called to find b. Therefore, the
complexity in the server is O(nH(D)). For the same
reason, the number of bits sent from server to client
will be O(nH(D)).

Now, for proof of the complexity of the client,
assume that the expected number of bits sent by the
client is f(D). Induction on data items in D is used.
The protocol tries to find an item with probability
of a (greater than 1). In the case that this item is
found, one query is sent to the client. With probability
of a, the client sends a positive response and the
protocol halts, otherwise this item is deleted from the
distribution and the protocol is continued with a new
distribution D’. Therefore, for this case,

f(D)=ax1+(1-a)(f(D)+1).

This leads to f(D) < % + 3f(D’) + 3.
induction (assuming f(D') < 1.4TH(D') + 4

Using

~—

D) <1+ %(1.471{(0’) +4),

It is known that H(D') = $(H(D) — %), because
an item with a probability greater than ; has been
eliminated and the probabilities are adjusted. Thus,

%(1.47 x %(H(D) - -;-) +4),
14TH(D) + 4.

f(D) < 1+
f(D) <

For a case in which such an item is not found, the server
divides the space with an accuracy equal to —%— + % and
continues on with one of the portions after one query
to the client and the client response. Therefore, the
probability space is reduced by at least %, with the
client sending just one bit. Using the same approach
as presented for the proof of the first protocol, it can

be easily shown that:

F(D) < —
log

§H(D) +4=147H(D) + 4.
5
Notice that since the results are the same for both of
these cases, the induction is correct in the general case.

REACHING THE LOWER BOUND

The protocol can be improved by dividing the space
into two portions of 1 F 21 or finding an item with
probability of 1, for any fixed k. The overall protocol
remains the same and the proved theorem holds for
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the general case as well. The analysis of this protocol
is also similar. For the first case of the algorithm,

1 k-1
fD) < ¢+ —=—{D)+1),
k-1
< 1+ ——(BH(D) +k),
k—1 k log k
< 1452 2 _ o8k
s 1+ (5Xk_1(H(D) ' )+ k),
< BH(D)+k,
where 3 = ﬁj—k" For the second case, the same
k+1

complexity is obtained as well. Thus, this protocol has
the complexity of [O(nH(D)), BH(D) +k, O(nH(D))].
Increasing k (for large n), 8 will quickly reach 1, which
yields to reaching the lower bound. This is achieved at
the expense of additional O(H (D)) cost for the server.
The number of bits sent by the server, however, can be
reduced if the common prefixes of strings a and b sent
to the client in some phases are not forwarded.

OPEN PROBLEMS

According to Orlitsky [7], in every protocol, the average
number of bits transmitted between server and client
cannot be less than n. In other words, the number
of bits sent from server to client can only reach O(n)
from O(nH (D)). The following open problems are very
attractive:

1. Is there any protocol in which exactly H(D)+1 bits
are sent from client to server and the number of bits
sent from server to client remains less that O(n)?

2. I the cost of sending one bit from server to client is «
and that from client to server is 3, provide a protocol
that minimizes the total cost of communication.

CONCLUSIONS

In this paper, a new protocol is presented for sending
n-bit of data from a client with limited resources to
a server using an asymmetric communication channel.
It is assumed that the line bandwidth from server to
client is much more than that of client to server. The
goal is to use the high-speed link to reduce the number
of bits needed to be sent on the low-speed link to
its lower bound limit. The protocol presented here is
an extension of the protocol by Adler and Maggs [1].
They have presented a protocol in which the number of
bits sent from client to server is 1.71H(D) + 1, where
the string to be sent by the client is assumed to be
drawn from an arbitrary distribution D and H(D) is
the binary entropy of D. The protocol assumes that D
is only known by the server. This work is extended and
a new protocol is proposed which reduces the constant
factor of 1.71 to 1.47 at the expense of a reasonable
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amount of extra work by the server.

The protocol

is further extended and 1.47 is reduced to 1 + ¢ for

any small value of ¢ > 0, which is
lower bound of H(D)+1. Two open

very close to the
problems are also

presented. Further work on this subject is underway.

REFERENCES

1. Adler, M. and Maggs, B.M. “Protacols for asymmet-
ric communication channels”, Proceedings of FOCS’98

(1998).

2. Shannon, C.E. “A mathematical thepry of communica-

tion”, Bell System Technical Journ
and 623-656 (1948).

al, 27, pp 379-423

3. Huffman, D.A. “A method for the construction of min-
imum redundancy codes”, Proceedings of IRE, 40(10),

pp 1099-1101 (1952).

. Orlitsky, A.

S. Ghazizadeh, M. Ghodsi and A. Saberi

. Orlitsky, A., Naor, M. and Shor, P. “Three results on in-

teractive communication”, IEEE Trans. on Information
Theory, 39(5), pp 1608-1615 (1993).

“Worst-case interactive communication I:
Two messages are almost optimal”, IEEE Trans. on
Information Theory, 36(5), pp 1111-1126 (1990).

. Orlitsky, A. “Worst-case interactive communication II:

Two messages are not optimal”, IEEE Trans. on Infor-
mation Theory, 37(4), pp 995-1005 (1991).

. Orlistky, A. “Average-case interactive communication”,

IEEE Trans. on Information Theory, 38(4), pp 1534-
1547 (1992).

. Yao, A.C. “Some complexity questions related to dis-

tributive computing”, 11th ACM Symposium on Theory
of Computing, pp 209-213 (1979).





