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Free-Form 3-D Surface
Description in Multiple Scales

F. Mokhtarian*, N. Khalili' and P. Yuen!

In this paper, a new technique for multi-scale smoothing of a free-form 3-D surface is presented.
This technique is a non-trivial generalization of the Curvature Scale Space (CSS) representation
for 2-D contours. The CSS shape descriptor has been selected to be a part of the MPEG-7
package of standards. Complete triangulated models of 3-D objects are constructed (through
fusion of range images) and, then, described at multiple scales. This is achieved by convolving
local parameterizations of the surface with 2-D Gaussian filters iteratively. The method, presented
here, for local parameterization makes use of semigeodesic or geodesic polar coordinates as a
natural and efficient way of sampling the local surface shape. It is demonstrated that smoothing
techniques using semigeodesic coordinates and geodesic polar coordinates produce similar results.
The smoothing eliminates surface noise and details gradually. During the smoothing process,
some surfaces can become very thin locally. Application of decimation followed by refinement
removes very small or thin triangles and segments the modified surfaces into parts which are
. then smoothed separately. The technique presented here for 3-D multi-scale surface smoothing
is independent of the underlying triangulation. It is also argued that the proposed technique
is preferable to volumetric smoothing or level set methods, since it is applicable to incomplete
surface data which occurs during occlusion. Also, surfaces that are not simply connected or have
holes do not pose any problem. Furthermore, due to employing 2-D convolutions rather than
3-D, this method is more efficient than other techniques.

INTRODUCTION

In this paper, a new technique is introduced for multi-
scale shape description of free-form 3-D surfaces repre-
sented by polygonal or triangular meshes. Multi-scale
descriptions have become very common in computer vi-
sion since they offer additional robustness with respect
to noise and object detail along with more efficient
processing. The multi-scale technique proposed here
can be considered as a generalization of earlier multi-
scale representation theories proposed for 2-D contours
(1,2] and space curves [3]. However, the theoretical
issues are significantly more challenging when working
on free-form 3-D surfaces. Complete 3-D models of test
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objects have been used here, which can be constructed
through automatic fusion of range images of the object
obtained from different viewpoints [4].

When the technique of multi-scale smoothing of
a 3-D object is used, its surface can be represented re-
gardless of noise and shape distortions. The technique
of multi-scale representation and recognition of 3-D
surfaces is developed for viewpoint invariant identifica-
tion and matching of 3-D objects. Geometric invariants
are used to ensure that the shape representation for
a 3-D object remains the same even after applying a
rotation or uniform scaling [2,5]. The applications of
this technique could be regarded as a navigational sys-
tem for neurosurgical assistance, robot vision, provision
of artificial eyes for the blind, microsurgery, aircraft
navigation and virtual reality. Also, the prototyping
and copying of complicated mechanical parts can be
achieved through a 3-D range scanner.

In the approach considered here, diffusion of
the surface is achieved through convolutions of local
parameterizations of the surface with a 2-D Gaussian
filter [6-8]. Semigeodesic coordinates [9] are utilized as
a natural and efficient way of locally parameterizing
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surface shape. The most important advantage of this
method is that unlike other diffusion techniques such as
volumetric diffusion [10,11] or level set methods [12], it
has local support and is, therefore, applicable to partial
data corresponding to surface-segments. This property
makes it suitable for object recognition applications in
the presence of occlusions. Another advantage of this
method is its high efficiency, since 2-D|rather than 3-D

convolutions are employed in it.

The organization of this paper is as follows.

First, a brief overview of previous wo

rk on 3-D object

representations is provided. Then, the relevant theory
from differential geometry and how a multi-scale shape
description can be computed for a free-form 3-D surface
are described. Both semigeodesic and geodesic polar

coordinates are covered.

Implementation issues en-

countered when adapting semigeodesic coordinates and
geodesic polar coordinates to 3-D triangular meshes are
also explained. Finally, diffusion results, discussion and

the concluding remarks are presented

LITERATURE SURVEY
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then blurred by being subject to the diffusion equation.
The boundary of each blurred object can then be
defined by applying the Laplacian operator to the
smoothed area or volume. The major shortcoming of
these approaches is the lack of local support. In other
words, the entire object data must be available. This
problem makes them unsuitable for object recognition
in the presence of occlusion. Another form of 3-D
surface smoothing has been carried out in [23,24]. This
method has drawbacks, since it is based on weighted
averaging using neighboring vertices and, therefore,
is dependent on the underlying triangulation. The
smoothing of 3-D surfaces is a result of the diffusion
process [25]. For parameterization of a 3-D surface,
other methods have also been studied, such as the
asymptotic coordinates [26], isothermic coordinates
[9,27] and global coordinates [28] used for closed simply
counnected objects.

Global representations such as the Extended
Gaussian Image (EGI) [29-31] describe 3-D objects in
terms of their surface normal distributions on the unit
sphere with appropriate support functions. However,
arbitrary curved objects have to be either approxi-
mated by planar patches or divided into regions based
on Gaussian curvature. Another approach for specify-
ing a 3-D object is view-centered representations. The
graph approach [32] attempts to group a set of infinite
2-D views of a 3-D object into a set of meaningful
clusters of appearances. Murase and Nayar (33] and
Swets [34] also have exploited photometric information
to describe and recognize objects. Part based represen-
tations capture structure in object descriptions [35,36],
but there is a lack of agreement in deciding the general
set of part primitives that need to be used in order to
be sufficient and appropriate.

SEMIGEODESIC AND GEODESIC POLAR
PARAMETERIZATIONS

A crucial property of 2-D contours and space curves
(or 3-D contours) is that they can be parameterized
globally using the arclength parameter. However, free-
form 3-D surfaces are more complex. As a result,
no global coordinate system exists on a free-form 3-D
surface which could yield a natural parameterization of
that surface. Indeed, studies of local properties of 3-D
surfaces are carried out in differential geometry using
local coordinate systems called curvilinear coordinates
or Gaussian coordinates [9]. Each system of curvilinear
coordinates is introduced on a patch of a regular surface
referred to as a simple sheet. A simple sheet of a surface
is obtained from a rectangle by stretching, squeezing,
and bending without tearing or glueing together. Given
a parametric representation r = r(u,v) on a local patch,
the values of the parameters u and v determine the
position of each point on that patch.
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Geodesic Lines

Before the semigeodesic and geodesic polar coordinates
can be described, it is necessary to define geodesic lines
on a regular 3-D surface. The following definitions are
useful [9,37]:

Definition 1

A geodesic line or a geodesic of a surface is a
curve whose geodesic curvature is zero at every point.
Geodesic curvature is the magnitude of the vector of
geodesic curvature.

Definition 2
The vector of geodesic curvature of curve C lying on
surface S at point P on C is obtained by projecting

the curvature vector of C at P on the tangent plane to
S at P.

Definition 3

The curvature vector of a curve C at point P is of the
same direction as the principal normal vector at P and
of length equal to the curvature of the curve at P.

Definition 4
The principal normal vector of curve C at point P
is perpendicular to C at P and lies in the osculating
plane at P. The plane with the highest possible order
of contact with the curve C at point P is called the
osculating plane at P.

The following crucial property of geodesic lines
is actually utilized to construct geodesics on 3-D
triangular meshes.

Minimal Property of Geodesics

An arc of geodesic line C passing through point P and
lying entirely in a sufficiently small neighborhood of
point P of surface S of class C; is the shortest join of
P with any other point of C by a curve lying in the
neighborhood.

Semigeodesic Coordinates

Semigeodesic coordinates at point P on surface S of
class C; can be constructed in the following way:

e Choose a geodesic line C through point P in an
arbitrary direction,

¢ Denote the arclength parameter on C by v, such that
P corresponds to the value v = 0,

e Take further through every point of C, the geodesic
line L perpendicular to C at the corresponding point,

e Denote the arclength parameter on L by u.

The two parameters, u and v, determine the
position of each point in the domain swept out by
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these geodesic lines. It can be shown that in a suf-
ficiently small neighborhood of point P, semigeodesic
coordinates can always serve as curvilinear coordinates
in a regular parametric representation of S [9]. The
orthogonal cartesian coordinates in the plane are a
special case of semigeodesic coordinates on a flat
surface.

Geodesic Polar Coordinates

Geodesic polar coordinates can be constructed at point
P on surface S of class C; in the following way:

o Choose an arbitrary direction w on S at point P,

o Consider all geodesic lines emanating from point P,

e Denote the arclength parameter on each geodesic in
the previous step by v,

Denote the angle between w and the tangent vector
of each geodesic in Step 2 at point P by u,

Again, the two parameters, v and v, determine
the position of each point in the domain swept out
by these geodesic lines. It can be shown that in a
sufficiently small neighborhood of point P (with P itself
deleted), geodesic polar coordinates can always serve
as curvilinear coordinates. Point P is a singular point
of this parameterization since its coordinates are not
uniquely defined. The polar coordinates in the plane
are a special case of geodesic polar coordinates on a flat
surface.

Gaussian Smoothing of a 3-D Surface

The procedures outlined above can be followed to
construct semigeodesic coordinates or geodesic polar
coordinates at every point of a 3-D surface. In the case
of semigeodesic coordinates, local parameterization at
each point P yields:

r(u,v) = (x(u,v), y(u,v), 2(u,v)).
The new location of point P is given by:

R(u,v,0) = (X(u,v,0), Y(u,v,0), Z{u,v,0)),
(1)

where:

X(u,v,0) = z(u,v) ® Gu,v,0),
Y(u,v,0) =y(u,v) ® G(u,v,0),

Z(u,v,0) = z(u,v) ® G(u,v,0),

1 . _?4e?)
G(u,v,0) = 3mo? 207 (2)

and ® denotes convolution. In the case of geodesic
polar coordinates, the Gaussian function becomes one-
dimensional. As a result, each of the 2-D convolutions
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above can be expressed as a series of 1-D convolutions.

In either case, this process is repeat
of §. After filtering, the new point

the coordinates of the smoothed surface.

ed at each point
positions define
Since the

constructed coordinates are valid locally, the Gaussian

filters always have o = 1.

Multi-Scale Description of a 3-D
Diffusion

Surface via

In order to achieve multi-scale descriptions of a 3-D

surface, the surface has to be smoot
the process described earlier. The s
is then considered as the input to t

hed according to
moothed surface
he next stage of

smoothing. This procedure is then iterated many times
to obtain multi-scale descriptions of §. This process is

equivalent to diffusion smoothing:

as
— = H
ot ™

(3)

since the Gaussian function satisfies the heat equation.
In the above equation, ¢ is time, H i§ mean curvature

and n is the surface normal vector. ¢t
as the number of iterations.

IMPLEMENTATION ON A 3-D
TRIANGULAR MESH

can be regarded

The theory explained in the previous section must be

adapted to a 3-D triangular mesh. B

oth semigeodesic

and geodesic polar coordinates involve construction

of geodesic lines.
that lies on any given triangle is a st

Clearly the segment of a geodesic

raight line. Two

situations must be considered that are being addressed

in Theorems 1 and 2:

o Extension of a geodesic when it int
edge,

¢ Extension of a geodesic when it int
vertex.

Theorem 1

ersects a triangle

ersects a triangle

Suppose a geodesic intersects an edge e shared by

triangles 77 and T». The extension

of this geodesic

beyond e is obtained by rotating T about e so that it

becomes co-planar with Ty, extendin
a straight line on 75, and rotating T4
its original position.

Proof

z the geodesic in
about e back to

Assume by contradiction that the progedure above does

not construct a geodesic. Let g; be
the geodesic on 77 and let go be the

the segment of
> segment of the

geodesic on T5. Rotate T about e sg that it becomes
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co-planar with T}. According to the assumption, ¢;
and g, will not be co-linear. Hence, for point P on
g1 and point P, on go, there will be a shorter path
from P; to P,. This is the straight line joining P
to P;. Now rotate To back to its original position.
The length of the path just constructed remains the
same, so it will still be shorter than the geodesic
from P; to P,. A contradiction has been reached.
Therefore, the procedure described correctly constructs
a geodesic. Note that the construction above extends
to several triangles as long as they remain in a local
neighborhood.

Theorem 2

Suppose a geodesic arrives at vertex V of the mesh.
Define the normal vector n at V' as the average of
the surface normals of all the triangles incident on
V weighted by the incident angle. Let @ be the
plane formed by the geodesic incident on V' and n.
The extension of this geodesic beyond V is found by
intersecting @ with the mesh.

Proof

The curvature vector k& of the path obtained by the
above procedure lies in . k is also perpendicular to
tangent plane 7' (which is defined as perpendicular to
n at V). The vector of geodesic curvature of the path
is obtained by projecting k onto the tangent plane.
It follows that geodesic curvature of the path is zero.
Hence, the path is a geodesic line.

Construction of Geodesic Line on a Triangular
Mesh

Since triangular meshes are used to model 3-D surfaces,
the construction of a geodesic line on a triangular mesh
is first explained. Figure 1 shows the triangles CDFE
and GDC with common edge C'D on a triangular mesh.
If a geodesic line is required between two arbitrary
points A and B, the triangle GDC is rotated at the
common edge C D until both triangles CDE and GDC
are co-planar. The straight line AB’ is the shortest line
joining points A and B’.

On the triangles CDE and G'DC, the geodesic
line AB’ intersects the common edge CD. At the
intersection I, the opposite angles 1) and ¢ are equal.
The angle ¢ is the direction of segment I B’ of geodesic
line on the triangle G’ DC. When rotating the triangle
G'DC back to the position of triangle GDC, the length
of AB does not increase and it is still the shortest line.
The angle ¢ at the common edge CD determines the
direction of the segment /B of the geodesic line and
the angle 17 of the segment IB at the new common
edge DG provides the new intersection angle. Thus,
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Rotated
segment

The triangle
GDC rotates
at the common
edge CD to
produce a flat
surface G'DEC

Rotation

1) Angle ¢ is constant before
and after the rotation;

2) On the flat surface @' DEC, the straight line between point A
and point B’ is a geodesic line.

Figure 1. Geodesic line on a triangular mesh.

the next segment of the geodesic line can be created.
Therefore, a complete geodesic line on this local patch
is generated.

Arbitrary Direction of a Geodesic Line

Before semigeodesic coordinates can be generated on
a local patch at a chosen vertex B, an arbitrary
geodesic line is required. Since the direction of the
arbitrary geodesic line can be randomly selected, the
edge between vertex B and the first neighbor F is
chosen as the arbitrary direction, shown in Figure 2.
The next step is to create an arbitrary geodesic

N(B)

Second neighbor

Anti-clockwise

Figure 2. The first segment of the arbitrary geodesic line.
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line from the vertex B. The construction of the positive
portion +u of the arbitrary geodesic line can now begin.
First, weighted average normal vector W at vertex B
is generated from the unit normal n; and the vertex
angle a; of neighboring triangles.

W = —mel =l (4)
i=1 i

where m is the number of neighboring triangles. There-
fore, a normal plane N(B) is defined by the weighted
average normal unit vector W and the arbitrary direc-
tion F'B. The intersection I between this normal plane
N(B) and the opposite edge CD produces the first
segment BT of the arbitrary geodesic line. Then, each
segment used in the construction of the geodesic line
is sampled at equally spaced intervals. The number of
sample points depends on the sample step size and the
length of the current segment. The sampling interval
is normally equal to the average edge length L of
the triangular mesh. Furthermore, a perpendicular
direction F;S; and the closest vertex at each sample
point .S; are generated and stored for the construction
of second family of lines, where 7 is the sample point
number. For a filter size of 9, ¢ ranges from —4
to +4. The negative portion —u of the arbitrary
geodesic line can be constructed from the same vertex
B by applying the same construction procedure for
the positive portion +u. Then, these two portions are
joined together to form a completed arbitrary geodesic
line on the mesh.

Adjustment of an Arbitrary Geodesic Line

It is possible that an arbitrary geodesic line could lie
near and almost parallel to an edge. It is also possible
for a sample point to be very close to a vertex or
edge. In these cases, the failure to find the intersection
of the parallel lines or the failure to calculate the
distance between very close points may result in a
computational fault. Therefore, a fine adjustment
to the direction of the arbitrary geodesic line or the
position of a sample point is required. The criterion
for this adjustment is based on the threshold of the
average edge length L. Figure 3 shows that if the angle
a between segment VI of the arbitrary geodesic line
and edge VU is very small, the segment VI and the
edge VU are almost parallel. Thus, the segment VI can
be adjusted and placed over the edge VU. Similarly,
if the sample point S7 is very close to the edge MK
and the sample point Sy is very near to the vertex
V, the sample point S; can be moved on the edge
MK and the sample point S3 can be moved to the
vertex V.



270

B

So

<

A segment of the
arbitrary geodesic line

{

I
Figure 3. The adj

Construction of Perpendicular D

For the construction of the perpend
many different conditions have to b
a sample point is placed on vertex
N(S) can be created by the weighteq
vector W at the vertex, given by |
segment SI of the arbitrary geodesi
in Figure 4.

The perpendicular direction PS

/
— )
/na,d_]u!ted

(a)

irection

licular direction,
e considered. If
S, normal plane
1 average normal
FEquation 4, and
c line, as shown

on the surface is

obtained by rotating the normal plane 90 degrees anti-
clockwise from the segment SI of the arbitrary geodesic
line. This rotated normal plane is then intersected with

the edge of a neighboring triangle.
When a sample point resides

IN(S)
wp
V’ !
]
= .
| .
! :
; I
| ' Rotated
v l
' 1
' UnWa
©--oiVanteq
3/ /;terSeCEfén\ S
2 T
s . ;
z
< s )
I p

Figure 4. A perpendicular direction of
geodesic line.

pn an edge of a

\

Rotated

90 degrees NS

an arbitrary

F. Mokhtarian, N. Khalili and P. Yuen

=
&
=
0
o
o
=5
%]
¥

A

segment of the
arbitrary geodesic line
Edge

U
] (b)
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triangle, three different cases arise for constructing
the perpendicular directions: 1) If the segment IS
of the arbitrary geodesic line and the edge CD are
orthogonal, then a segment of the edge CD becomes
the perpendicular direction PS (see Figure 5a); 2) If
the angle ¢ between the segment IS of the arbitrary
geodesic line and the edge C'D is less than 90 degrees as
shown in Figure 5b, then the perpendicular direction
PS is produced by rotating the segment I.S by 90 de-
grees anti-clockwise (in this case, the rotated segment
intersects with an edge on the same triangle CDE);
3) If the angle ¢ is greater than 90 degrees, then the
segment [S is rotated 90 degrees clockwise. In this
case, the rotated segment intersects with an edge on
the same triangle CDE to produce a segment P'S of
the pseudo geodesic line (see Figure 5c¢). The segment
P'S is extended from the triangle CDFE to the triangle
GDC by using the construction techniques of an ar-
bitrary geodesic line mentioned earlier. The extended
segment P.S becomes the perpendicular direction of the
arbitrary geodesic line. This simplifies the procedure of
constructing a perpendicular direction on a triangular
mesh.

When the segment II’ of the arbitrary geodesic
line lies on the common edge CD, the perpendicular
direction PS at the sample point S is defined by
rotating the common edge CD on the right hand
side triangle GDC, 90 degrees anti-clockwise at the
sample point S (see Figure 6a). Finally, if a sample
point S is inside a triangle, the perpendicular direc-
tion PS is defined by simply rotating the segment
II" of the arbitrary geodesic line 90 degrees anti-
clockwise at the sample point S as shown in Fig-
ure 6b.
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o]

Common
edge

A segment of the
arbitrary geodesic line

L,,__ S

1

Perpendicular
direction

Rotate
90 degrees |
clockwise ' .

(<)
Figure 5. Creation of a perpendicular direction of the
arbitrary geodesic line when a sample point resides on an
edge of a triangle.

Implementation of Semigeodesic Coordinates

Semigeodesic coordinates can now be constructed at
each vertex of the mesh which becomes the local origin.
The following procedure is employed:

¢ Construct a geodesic from the origin in the direction
of one of the incident edges,
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e Construct the other half of that geodesic by extend-
ing it through the origin in the reverse direction using
the procedure outlined in Theorem 2,

¢ Parameterize the geodesic by the arclength parame-
ter at regular intervals to obtain a sequence of sample
points. The sampling interval should be proportional
to the average edge length,

e At each sample point on the first geodesic, construct
a perpendicular geodesic and extend it in both
directions,

e Parameterize each of the geodesics constructed in the
previous step by the arclength parameter at regular
intervals. The sampling interval should be equal to
what was used in Step 3.

Figure 7 shows the complete semigeodesic coordinates
on a triangular mesh.

Due to the displacement of vertices which occurs
as a result of smoothing, very small and/or very thin
triangles can be generated during smoothing. These
odd triangles can cause computational problems and
are, therefore, removed or merged with neighboring
triangles using known existing algorithms for mesh
decimation and refinement [38]. Detection of these
triangles is based on the length of the shortest side or
the smallest angle. When the smallest side or the small-
est angle of a triangle is less than a small threshold,
that triangle is removed by merging it with neighboring
triangles. Decimation and refinement are applied after
each iteration to simplify the mesh. As a result, the
number of triangles gradually decreases during smooth-
ing. It is also possible for a surface to become very thin
locally as a result of smoothing. When this happens,
smoothing cannot continue without segmentation of
the surface into parts. Such a segmentation also occurs
as aresult of mesh decimation and refinement, since the
thinned area of the surface always consists of very small
and thin triangles. Smoothing can then continue after
segmentation with each part of the object smoothed
independently.

Implementation of Geodesic Polar Coordinates

Geodesic polar coordinates are also constructed at each
vertex of the mesh which again becomes the local
origin. The following procedure is used:

e Construct a geodesic from the origin in an arbitrary
direction such as the direction of one of the incident
edges,

o Let NV be the normal plane at the origin defined by
the geodesic constructed in the previous step and the
normal vector n defined in Theorem 2,

o Rotate NV about n by angle o and intersect it with
the mesh to obtain the next geodesic emanating from
the origin,
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Where “O”s are the semigeodesic coordinates and “B” is

the current vertex.

Figure 7. A completed semigeodesic cgordinates on a

triangular mesh.
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Semigeodesic Coordinates on Open Surfaces

Quite often, due to occlusion or complex object shape,
it is not possible to construct complete and closed
surfaces. As a result, the algorithm described above
should be modified to make it also applicable to open

direction from the segment of the arbitrary geodesic line which lies on the common

surfaces. The algorithm for smoothing an open surface
is defined in the following way:

e Grid construction and smoothing at internal vertices
is carried out as on closed surfaces. Any geodesic line
that reaches the boundary will stop. The last sample
point at or near the boundary will be duplicated until
the grid is filled. Likewise, if some geodesic lines
cannot be constructed, the last geodesic line near the
boundary will be duplicated until the grid is filled;

e If the vertex V of triangle T resides on the boundary,
measure the angle a between the two edges of T' that
are incident on V. Choose the first geodesic line as
the bisector of a. Only half of the first geodesic line
is constructed because the other half falls outside the
surface boundary;

e At the same vertex, construct another geodesic line
perpendicular to the first one;

e One of those geodesic lines might soon intersect the
boundary, so compare the lengths of those lines and
choose the longer one. This allows the maximum size
grid to be constructed;

e Construct the second family of geodesic lines as
perpendicular to the longer geodesic line determined
above;

o As before, any geodesic line that reaches the bound-
ary will stop, and the last sample point at or near the
boundary will be duplicated until the grid is filled.

RESULTS AND DISCUSSION

The smoothing routines were implemented entirely
in C++. Complete triangulated models of 3-D ob-
jects used for the presented experiments were con-
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structed [4]. In order to experiment with these tech-
niques, both simple and complex 3-D objects with a
different number of triangles were used. Each iteration
of smoothing of a surface with 1000 vertices takes about
0.5 second of CPU time on an UltraSparc 170E.

The first test object was a cube with 98 ver-
tices and 192 triangles. The smoothing results using
semigeodesic coordinates (with filter size equal to 9)
are shown in Figures 8a and b. The original cube
is changed to a sphere after five iterations. The
experiment was also repeated using geodesic polar
coordinates (with 9 polar lines) and the smoothing
results are shown in Figures 8c and d. These results
indicate that smoothing using semigeodesic coordinates
and geodesic polar coordinates produce similar out-
comes. Therefore, this smoothing technique, using
semigeodesic coordinates with filter size equal to 9, is
applied to the following 3-D surfaces.

The second test object was a foot with 2898
triangles and 1451 vertices. The smoothing results
are shown in Figure 9. The foot becomes rounded
iteratively and evolves into an ellipsoidal shape after
100 iterations. Now the technique is examined with
more complex 3-D objects.

Figure 10 shows the third test object which was
a telephone handset with 11124 triangles and 5564
vertices. Notice that the surface noise is eliminated
iteratively with the object becoming smoother grad-
vally and after 15 iterations the object becomes very

(a) 1 iteration (b) 5 iterations

Semigeodesic coordinates

(¢) 1 iteration

(d) 5 iterations

Geodesic polar coordinates
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thin in the middle. Decimation and refinement then
removes the thin handset and segments the object into
two parts. Smoothing then continues for each part as
shown in Figure 11.

The fourth test object was a chair with 3788

(b) 20 iterations

(c) 40 iterations (d) 100 iterations

Figure 9. Diffusion of the foot.

{a) Original (b) 3 iterations

(c) 10 iterations (d) 15 iterations

Figure 10. Diffusion of the telephone handset.

(a) 16 iterations (b} 25 iterations

Figure 8. Smoothing of the cube.

Figure 11. Smoothing of the segmented phone handset.
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triangles and 1894 vertices as shown in Figure 12, where
again the legs of the chair become thin|after 4 iterations
as observed for the phone handset. The thin legs are
then removed and the object is segmented into two
parts, where after smoothing each part the results are
shown in Figure 13.

The method is then applied to more complex
objects. The next test object was a cow with 3348
triangles and 1676 vertices as shown in Figure 14. The
surface noise is eliminated iteratively with the object
becoming smoother gradually, where @after 8 iterations
the legs, ears and tail are removed.

The last test object was a dinosaur with 2996
triangles and 1500 vertices as shown in Figure 15. The
object becomes smoother gradually and the legs, tail
and ears are removed after 20 iterations, as seen for
the cow.

These examples demonstrate that the technique

(a) Original (b) 2 iterations

(c) 3 iterations

d) 4 iterations

Figure 12. Smoothing of the chair.

(a) 7 iterations (b) 14 iterations

Figure 13. Smoothing of the segmented chair.

F. Mokhtarian, N. Khalili and P. Yuen
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\ b

(a) Original (b) 1 iteration

(c) 3 iterations (d) 8 iterations

(e) 12 iterations (f) 21 iterations

Figure 14. Smoothing of the cow.

T

(a) Original

(b) 2 iterations

(d) 8 iterations

(e) 12 iterations

(f) 20 iterations J

Figure 15. Smoothing of the dinosaur.

presented here is effective in eliminating surface noise
as well as removing surface detail. The result is a
gradual simplification of object shape. Animation of
surface diffusion can be observed at the following web
site: http://www.ee.surrey.ac.uk/Research /VSSP/ de-
mos/css3d/index.html.

This smoothing technique was also applied to a
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(a) Original

(b) 2 iterations (c) 5 iterations

Figure 16. Diffusion of the partial foot.

(a) Original (b) 3 iterations (c) 5 iterations

Figure 17. Diffusion of the partial telephone handset.

number of open/incomplete surfaces. Figure 16 shows
the smoothing results obtained for a part of the foot
object in Figure 9. Figure 17 illustrates the results
for a part of the telephone handset in Figure 11. This
object also has a triangle removed in order to generate
an internal hole. Figure 18 depicts the smoothing
results found for the lower part of the chair object in
Figure 12. Figure 19 shows smoothing results obtained
for a partial rabbit. The object is smoothed iteratively
and the ears disappear as well.

CONCLUDING REMARKS

In this paper, a novel technique for multi-scale smooth-
ing of a free-form triangulated 3-D surface was pre-
sented. The method was independent of the underlying
triangulation. This was achieved by convolving local
parameterizations of the surface with 2-D Gaussian
filters iteratively. The method for local parameteri-
zation made use of semigeodesic and geodesic polar
coordinates as natural and efficient ways of sampling
the local surface shape. It was shown that smoothing
techniques using semigeodesic coordinates and geodesic
polar coordinates produce similar results. The smooth-
ing eliminated the surface noise and small surface
details gradually and resulted in simplification of the
object shape. During smoothing some surfaces can
become very thin locally. Application of decimation
followed by refinement removes very small/thin trian-
gles and segments those surfaces into parts which are
then smoothed separately. The approach is preferable
for volumetric smoothing or level set methods since it
is applicable to incomplete surface data which occurs
during occlusion. Finally, surfaces with holes and
surfaces that are not simply connected do not pose any
problems.

(a) Original

(b) 3 iterations (c) 4 iterations

Figure 18. Smoothing of the partial Chair.

(a) Original (b) 5 iterations

(c) 9 iterations

(d) 15 iterations

Figure 19. Smoothing of the rabbit head.
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