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Momentum Factor and Steepness
in Backpropagation Algorithm

Using Fixed Structure Learning Automata

Backpropagation (BP) algo

H. Beigy* and M.R. Meybodi'

rithm is a systematic method for training multi-layer neural networks,

which, despite many successful applications, also has many drawbacks. For complex problems,
backpropagation may require a long time to train the networks and it is possible that no training
occurs at all. Long training time can be the result of non-optimal parameters. It is not easy

to choose an appropriate v

alue for the parameters of a particular problem and the parameters

are usually determined by trial and error. If the parameters are not chosen appropriately, slow

convergence, paralysis and

the parameters at the begi

continuous instability can result [1-4]. Moreover, the best values for
nning of training may not be good enough later. In this paper, a

technique has been incorparated into BP algorithm for adaptation of steepness parameter and

momentum factor in order

of Fixed Structure Learnin

automata scheme is applie
random response of neural
adaptation algorithm is in
surfaces. The feasibility of

to achieve a higher rate of convergence. Through interconnection
g Automata (FSLA) to the feedforward neural networks, learning
d in order to adjust these parameters based on the observation of
networks. The main motivation in using learning automata as an
ts capability of global optimization when dealing with multi-modal
the proposed method is shown through simulations on three learning

problems: exclusive-or, encoding problem and digit recognition. These problems are chosen

because they have different

error surfaces and collectively present an environment that is suitable

to determine the effect of the proposed method. The simulation results show that the adaptation
of these parameters using this method increases not only the convergence rate of learning but
also the likelihood of escaping the local minima. Computer simulations provided in this paper
indicate that at least a magnitude of savings in running time can be achieved when FSLA is
used for the adaptation of momentum factor and steepness parameters. Furthermore, simulations

demonstrate that the FSLA
Automata (VSLA) approac

approach performs much better than the Variable Structure Learning
h reported in [1,2].

INTRODUCTION

Error backpropagation training algorithm (BP), an
iterative gradient descent algorithm, is a simple way to
train multi-layer feedforward neural networks [5]. The
backpropagation algorithm is based|on the gradient
descent rule:

Awjp(n) = —« OF

Fwe + pAw;i(n — 1), (1)
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where wj; is the weight on the connection outgoing
from unit j and entering unit &, a, ¢ and n are learning
rate, momentum factor and time index, respectively.

In the BP framework, o and g are constant and E is
defined as:

#patterns outputs

Bm=3 > X (Tn- 0P 2)
= j=1

where T}, ; and O, ; are desired and actual outputs for
pattern p at output node j and the index p varies on the
training set. In the BP algorithm framework, each com-
putational unit computes the same activation function.
The computation of sensitivity for each neuron requires
the derivative of activation function, therefore, this
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function must be continuous. The activation function
is normally a sigmoid function chosen between the two
following functions:

fo) = T 3)
_ oAz
fo) = o )

The steepness parameter A determines the active region
(region in which the derivative of sigmoid function is
not very small) of the activation function. As the
steepness parameter decreases from positive infinity to
zero, (Figure 1) the sigmoid function changes from a
unit step function to constant value of 0.5.

Figure 2 shows the derivative of sigmoid function
in its active region where the derivative is greater than
0.01. For large values of the steepness parameter X, the
derivative is very large and the active region of sigmoid
function is very small. In this region, the high value
of the derivative forces the algorithm to oscillate. A
small active region means that the weights are updated
rarely. For small values of steepness parameter X,
the active region is very wide, but the derivative is
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Figure 1. Sigmoid function with different steepness
parameter A.
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Figure 2. Derivative of sigmoid function in its active
range.
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very small and speed of convergence very low. The
steepness parameter A is often set to a constant value
and is not changed by the learning algorithm. Much
flexibility is gained if the net inputs of the sigmoidal
functions are moved near to their active regions, where
the associated gradients are not very close to zero.
This enables the BP algorithm to avoid some points in
the network parameters space where the BP algorithm
would effectively stop, even though it is not close to a
local minima point. This will cause the gradient of the
error function to be small if the sigmoidal is shifted far
outside the active region of the input to the function.
Therefore, it is desirable to center each sigmoid to be
inside the active region of the sigmoidal function.

The momentum term in Equation 1 causes great
changes in weights (Awjx(n)), if the current changes
of weights (Aw;x(n — 1)) are large and causes small
changes in weights if the current changes are small.
This means that the network is less likely to get stuck
in local minima early on, since the momentum term
pushes the changes towards a local downward trend.

Momentum is of great assistance in speeding up
convergence along shallow gradients. The momentum
term allows the path the network takes toward the
solution to pickup speed in the downhill direction. The
error surface may consist of long gradually sloping
ravines that end at a minima point. Convergence
along these ravines is slow and usually the algorithm
oscillates across the ravine valley as it moves towards
a solution. Therefore, it is difficult to speed up the
process without increasing the chance of overshooting
the minima, however, the addition of the momentum
term is fairly successful. This difficulty could be
removed if the momentum factor were selected to
be small near the minima and large far from the
minima. The proper choice of 1 and A has a significant
effect on the performance of BP learning algorithm.
Improper choices of these parameters may result in slow
convergence, paralysis and continuous instability.

Several researchers have investigated the effect
of adaptation of momentum factor and steepness pa-
rameter on the performance of BP algorithm. In [6],
the steepness of every neuron is adjusted such that
the average distance of the two closest data points
from the dividing hyper-plane is attained, while in [3],
the steepness of every neuron is adjusted by gradient
descent algorithm. In (7], the momentum factor is
adjusted in order to cancel the introduced noise (which
is the result of misadjustment of momentum factor)
and to retain the speed-up as well as convergence.
In [8], the momentum factor is considered as a function
of gradient and in [9], the error function is divided
into five regions, in which the momentum factor and
learning rate are adjusted differently. In [10], the
Mean Square Error (MSE) is considered as a function
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of the learning rate and momentum [factor and these
parameters are adjusted to minimize the MSE.

Often the mean-square error surfaces for back-
propagation algorithm are multi-modal. The learn-
ing automaton is known to have a well-established
mathematical foundation and global |optimization ca-
pability [11]. This latter capability] of the learning
automaton can be used fruitfully to search a multi-
modal mean-square error surface. Variable Structure
Learning Automata (VSLA) have been used to find the
appropriate value for different parameters of BP learn-
ing algorithm including learning rate [12,13], steepness
parameter [2] and momentum factor [1,14]. In this
paper, the application of the Fixed Structure Learning
Automata (FSLA) is presented for appropriate selec-
tion of the momentum factor and steepness parameter
of BP algorithm in order to achieve|a higher rate of
convergence and also to increase the probability of
escaping the local minima. The feasibility of the pro-
posed method is shown through simulations on three
learning problems: exclusive-or, encoding problem and
digit recognition. These problem are chosen because
they posses different surfaces and collectively present
an environment that is suitable to determine the effect
of the proposed method. Simulation on these problems
shows that the adaptation of momentum factor and
steepness parameter using this method increases not
only the convergence rate but also [the likelihood of
bypassing the local minima. Also
that the FSLA approach for adaptation of BP param-
eters performs much better than the VSLA approach
reported in [1,2].

The paper is organized as follows: The learning
automaton is introduced in the next section and then,
the proposed method is presented. Simulation results
and discussion are also provided followed by the con-
clusion.

LEARNING AUTOMATA

Learning automata can be classified into two main
families, fixed and variable structure learning au-
tomata [11]. Examples of the FSLA type, which is
used in this paper, are Tsetline, Krinsky and Krylov
automata. A fixed structure automaton is quintuple
< a,¢,8,F,G > where:

1. @ = (a1, ...,ap) is the set of actions that must be
chosen from,

2. ¢ =(¢1,...,¢s) is the set of states;

3. 5 =1{0,1} is the set of inputs where 3 = 1 represents
a penalty and 8 = 0 a reward;

4. F : ¢ x B — ¢ is the transition map, which defines
the transition of the state of the automaton on
receiving an input, F' may be stochastic;
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Figure 3. The state transition graph for Lan,2.

5. G : ¢ — « is the output map and determines the
action taken by the automaton if it is in state ¢;.

The selected action serves as the input to the
environment which in turn emits a stochastic response
B(n) at time n. B(n) is an element of g = {0,1}
and is the feedback response of the environment to the
automaton. The environment penalizes (i.e., 8(n) = 1)
the automaton with the penalty probability ¢;, which
is action dependent. On the basis of 3(n) response,
the state of the automaton ¢(n) is updated and a new
action is chosen at (n+1). Note that ¢; are unknown
initially and it is desired that as a result of interaction
between the automaton and the environment, the
action with minimum penalty response in an expected
sense is obtained. In the next few paragraphs, two
action-fixed structure learning automata and a variable
structure learning automaton, used in this paper, are
described.

Tsetline Automaton (Lzn,2)

This automaton has 2N states and two actions and
attempts to incorporate the past behavior of the system
in its decision rule for choosing the sequence of actions.
The Lyn 2 automaton keeps an account of the number
of successes and failures received for each action. It is
only when the number of failures exceeds the number
of successes, or some maximum value N, that the
automaton switches from one action to another. The
procedure described above is a convenient method for
keeping track of the performance of the actions a; and
ag. N is called the memory depth associated with each
action and automaton is said to have a total memory
of 2N. The state transition graph of this automaton
is shown in Figure 3. For every favorable response,
the state of automaton moves deeper into the memory
of the corresponding action and for an unfavorable
response, moves out of it.

TsetlineG Automaton (G2n,2)

This automaton behaves exactly like Loy 2 automaton
when the response of the environment is favorable, but
for unfavorable responses it switches from state ¢y
to ¢n+1 and from state ¢gaony to ¢;. Consequently,
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Figure 4. The state transition graph for Gan,;.
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Figure 5. The state transition graph for Krinsky
automaton.

this automaton performs an action at least N times
(resulting in N consecutive unfavorable responses)
before switching to another action. The state transition
graph of this automaton is shown in Figure 4.

Krinsky Automaton

This automaton behaves exactly like Lyn 2 automaton
when the response of the environment is unfavorable,
but for favorable responses, any state ¢; (for i =
1,---,N) passes to the state ¢; and any state ¢; (for
i=N+1,---,2N) passes to the state ¢nx41. This
implies that a string of N consecutive unfavorable
responses is needed to change an action to another.
The state transition graph of this automaton is shown
in Figure 5.

Krylov Automaton

This automaton has state transitions that are identical
to the Loy 2 automaton when the output of the envi-
ronment is favorable. However, when the response of
the environment is unfavorable, state ¢, (1 # 1, N, N +
1,2N) passes to state ¢;41 or ¢;,_1 with the probability
of 0.5. When s =1o0ri= N + 1, ¢; stays in the same
state with a probability of 0.5 and moves to ¢;+1 with
the same probability. When ¢ = N, automaton state
moves to ¢n_; or to don with the same probability of
0.5. When ¢ = 2N, automaton state moves to ¢an—1
or to ¢n with the same probability of 0.5. The state
transition graph of this automaton is shown in Figure 6.

All of the above mentioned automata can be
extended to multiple action automaton.
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Figure 6. The state transition graph for Krylov
automaton.

Variable Structure Learning Automata

Variable structure learning automaton is represented
by sextuple < 8, ¢, «, P, G, T >, where 3 is a set
of input actions, ¢ is a set of internal states, o is a
set of outputs, P denotes the state probability vector
governing the choice of the state at each stage k, G is
the output mapping and 7T is learning algorithm. The
learning algorithm is a recurrence relation and is used
to modify the state probability vector.

It is evident that the crucial factor affecting
the performance of the variable structure learning
automata is the learning algorithm for updating the
action probabilities. Various learning algorithms have
been reported in the literature [15]. Let a; be the
action chosen at time k£ as a sample realization from
distribution p(k). The linear reward-inaction algorithm
(Lg—1) is one of the earliest schemes. In an Lp_;
scheme, the recurrence equation for updating p is
defined as:

(k) +6(1 — p;(k))
p;(k) = { po(k) — b, (k)

if 3 is zero, P is unchanged if 3 is one. The parameter
# is called step length and determines the amount of
increase (decrease) of the action probabilities.

In linear reward-penalty algorithm (Lgr_p)
scheme, the recurrence equation for updating p is
defined as:

if i = j

p;(k)+0(1—p;(k)) ifi=j
pi(k+1)= =0,

p;(k)—0p; (k) if ij (6)

pi(k)(1-7)) ifi=j

pi(k+ 1= p=1 .
=+ —y)pi(k) ife#j) (7)

The parameters § and v represent step lengths and
determine the amount of increase (decreases) in the
action probabilities.

Learning automata have been used in many
applications such as: graph partitioning [16], graph
isomorphism [17], optimization of neural network struc-
tures [18,19], cellular learning automata [20], queuing
theory [21], telephone traffic control [22] and pattern
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recognition [23] (for more informat
automata, refer to [11,15,24-28]).

THE PROPOSED METHOD

In the method proposed here, the fixed
ing automaton is used for adjusting
factor and steepness parameter. The
of learning automaton and neural n
in Figure 7. The neural network is
for the learning automaton. The leax

ion on learning

l-structure learn-
the momentum
> interconnection
etwork is shown
the environment
ning automaton,

according to the amount of error received from the

neural network, adjusts the values
the backpropagation algorithm. Th
automaton correspond to the values d
factor (or steepness parameter) and
tomata is a function of error in the
network.

At the beginning of each epoch
the learning automaton selects one of
fixed-structure learning automaton,

of parameters of
e actions of the
f the momentum
input to the au-
output of neural

of BP algorithm,
ts actions (in the
action is selected

by means of output function G and in variable structure
learning automaton, the action is selected by a sample

realization of probability vector p)

The value of

selected action is used in BP algorithm for that epoch.

The response of the envirenment, whi
learning automaton, is a function of
error as explained below.

ch is given to the
the mean square

In the kth epoch, the average of mean square error

in past W epochs is computed by the f
(W is called the window size):

w
MSEw(k) = ﬁl/— > MSE(k—-m)
m=1

where MSE(n) and MSEw (k) den
error in the nth epoch and average n
in the past W epochs, respectively. 1

pllowing equation

) (8)

ote mean square
lean square error
hen, MSE(k) is

compared with M SEw (k) and if M SEw (k)—MSE(k)
is less than a threshold, the automaton receives a

penalty from the environment, othe
a reward. Now, the response of

rwise it receives
the environment

(input to the learning automaton) can be formulated

as follows:

(0 if MSEw(n)— MSE
ﬁ(")—{ 1 if MSEw(n) — MSE

a(n
Neural network

Response of
neural network

B{n)

Value of parameter
being adapted

Automata

Figure 7. The interconnection of learning automaton and

neural network.
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At the beginning of the first epoch, the action of the
learning automaton is selected randomly from the set
of allowable actions.

The algorithms presented later in this paper
are backpropagation algorithms in which the learning
automaton is responsible for the adaptation of the BP
parameters. In such an algorithm, at each iteration,
one input of the training set is presented to the neural
network, then the network response is computed and
the weights are corrected. The weight correction is
applied at the end of each epoch. The amount of
correction is proportional to the BP parameters. Using
the learning automaton as an adaptation technique, the
search for optimum values for the BP parameters is
carried out in probability space rather than parameter
space and, therefore, the algorithm is provided with the
ability to locate the global optimum.

Algorithms of Figures 8 and 9 describe how fixed-

Procedure One LA-BP Algorithm
Initialize the weights to small random values
Initialize the parameters of LA
repeat

for all training pairs (X, T) do
call FeedForward
call ComputeGradiant

end for

call UpdateWeights

call Response (Network)

call Adjust-BP-Parameter

until termination condition is satisfied

end procedure

Figure 8. Backpropagation algorithm with a single
learning automaton.

Procedure Two LA-BP Algorithm
Initialize the weights to small random values
Initialize the parameters of LA
repeat
for all training pairs (X, T) do
call FeedForward
call ComputeGradiant
end for
call UpdateWeights
call Response (Hidden Layer)
call Adjust-BP-Parameter (Hidden Layer)
call Response (Output Layer)
call Adjust-BP-Parameter (Output Layer)
until termination condition is satisfied

end procedure

Figure 9. Backpropagation algorithm with two learning
automaton.
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structure learning automata can be used for determi-
nation of momentum factor and steepness parameter
of backpropagation algorithm. In the first algorithm,
a single learning automaton is responsible for deter-
mination of the BP parameter for the whole network,
whereas in the second algorithm, a separate learning
automaton has been used for each layer (hidden and
output layers). Simulation results demonstrate that by
using separate learning automaton for each layer of the
network not only does the performance of the network
improve over the case where only a single automaton
is used, but also the likelihood of bypassing the local
minima increases. These two algorithms have been
tested with respect to several problems and the results
are presented in the next section.

Simultaneous Adaptation of Momentum Factor
and Steepness Parameter

The rate of convergence and the stability of the training
algorithm can be improved if both momentum factor
and steepness parameter are adapted simultaneously.
The following two algorithms (Figures 10 and 11)
describe the simultaneous adaptation of momentum
factor and steepness parameter.

In the first algorithm, the network uses one
automaton to adjust the momentum factor and another
automaton to adjust the steepness parameter. Both au-
tomata work simultaneously to adjust the momentum
factor and steepness parameter.

In the second algorithm, the network uses two
pairs of automata, the first pair of automata (one for
each layer) is responsible for adjusting the steepness
parameter and the second pair (one for each layer) is
responsible for adjusting the momentum factor. These
four automata work simultaneously to adapt steepness
parameter and momentum factor. The algorithms have
been tested with several problems and the results are
presented in the next section.

Procedure Simultaneous-LA-BP Algorithm
Initialize the weights to small random values
Initialize the parameters of LA
repeat

for all training pairs (X, T) do
call FeedForward
call ComputeGradiant
end for
call UpdateWeights
call Response (Network)
call Adjust (Steepness Parameter)
call Adjust (Momentum Factor)
until termination condition is satisfied
end procedure

Figure 10. Backpropagation algorithm for simultaneous
adjustment of momentum factor and steepness parameter.
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Procedure Simultaneous-Two-LA-BP Algorithm
Initialize the weights to small random values
Initialize the parameters of LA
repeat

for all training pairs (X, 7T) do

call FeedForward

call ComputeGradiant
end for
call UpdateWeights
call Response (Hidden Layer)
call Adjust (Hidden layer steepness parameter)
call Adjust (Hidden layer momentum factor)
call Response (Output Layer)
call Adjust (Output layer steepness parameter)
call Adjust (Output layer momentum factor)

until termination condition is satisfied
end procedure

Figure 11. Backpropagation algorithm for simultaneous
adjustment of momentum factor and steepness parameter
when each layer has its own automaton.

SIMULATION

In order to evaluate the performance of the proposed
method, simulations are carried out on three learn-
ing problems: exclusive-or, encoding problem and
digit recognition. The results are compared with
those obtained from the standard BP and variable
structure learning automata based algorithm reported
in [1,2,12,14]. These problems are chosen due to
possessing different error surfaces and collectively pre-
senting an environment that is suitable for determining
the effect of the proposed method. Actions of the
learning automata in these simulations are selected in
[0,1] interval with equal distance, i.e., the value of the
1th action of the learning automaton with K actions
is chosen to be % For the sake of convenience in
presentation, automaton (K, N) is used to refer to a
fixed structure learning automaton, with K actions
and memory depth of N. For all simulations reported
in this paper, the same values for BP parameters are
used in all experimentation of different algorithms,
except for parameters which are being adapted by the
algorithm.

XOR

The network architecture used for solving this problem
consists of 2 input units, 2 hidden units and 1 output
unit [5]. Figure 12 illustrates the effectiveness of using
FSLA and VSLA on the adaptation of momentum
factor and Figure 10 shows the effectiveness of FSLA
and VSLA regarding the adaptation of steepness pa-
rameter. For automaton in Figure 13, the threshold
of 0.001 and window size of 1 and in Figure 10, the
threshold of 0.0001 and window size of 1 are chosen.



256

1.2

—o— Krylg

v(2,4)

ky(2,4)

ne(4,4)

r reward penalty
ard BP

Error

96 144
Epoch

0 48

Figure 12. Adaptation of momentum f{
problem when a single learning automat

192 240

actor for XOR

on is used.

1.1
—— Krylpov(2,4)
0.9 —a— Linepr reward penalty
' —o~ Standard BP
—a Tsetline(4,4)
0.7 “e Krinsky(2,4)
e
5
5 0.5
=
0.3
o9 oo
-0.1
0 40 80 120 160 200
Epoch

Figure 13. Adaptation of steepness paj

rameter for XOR

problem when a single learning automaton is used.

For linear reward-penalty automaton, the reward and

penalty coefficients are 0.001 and 0.0

Encoding Problem

001, respectively.

In this problem, a set of orthogonal input patterns

are mapped to a set of orthogonal
through a small set of hidden units
architecture used for solving this pi
8 input units, 3 hidden units and
Figures 14 and 15 show the effectiven
and VSLA regarding the adaptati

factor and steepness parameter, respectively.

output patterns
[5). The network
oblem consists of
8 output units.
ess of using FSLA
n of momentum

For

automata in these figures, the threshold of 0.01 and
window size of 1 are considered. For linear reward-

penalty automaton, the reward and p
are 0.001 and 0.0001, respectively.

8 X 8 Dot Numeric Font Learni

enalty coefficients

ng

Ten numbers, 0, ... ,9, each represented by a 8 x 8 grid

of black and white dots are consid
Figure 16 [3]. The network must le

ered, as shown in
arn to distinguish

H. Beigy and M.R. Meybodi

8
o Standard BP
—_a— Tsetline(4,4)
6 —«— Krinsky(2,4)
—o— Krylov(2,4)
—— Linear reward penalty
B 4
2
el
€3]
2
]
o] 200 400 600 800 1000
Epoch

Figure 14. Adaptation of momentum factor for encoding
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Figure 16. The training set of neural network for digit
problem.

these classes. For this problem, the network consists
of 64 input units connected to 6 hidden units and 10
output units.

Figures 17 and 18 illustrate the effectiveness of
using FSLA and VSLA regarding the adaptation of mo-
mentum factor and steepness parameter, respectively.
For automata in these figures, the threshold of 0.01
and window size of 1 are chosen. For linear reward-
penalty automaton, the reward and penalty coefficients
are 0.001 and 0.0001, respectively.

The results obtained when a single learning au-



Fixed Structure Learning Automata

—o— Standard BP
3.0 —=— Tsetline(4,4)
~+ Krinsky(2,4)
—~— Krylov(2,4)
—— Linear reward-penalty

2.0

Error

1.0

0.0

0 400 800 1200 1600
Epoch

2000
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Figure 18. Adaptation of steepness parameter for digit
problem when a single learning automaton is used.

tomaton is assigned to the whole network for adjusting
the momentum factor are presented in Table 1. For all
automata in this simulation, the threshold of 0.01 and
window size of 1 are chosen. The error of standard BP
after 5000 epochs is 0.1675668 .

Table 2 shows the results obtained- when a single
learning automaton is assigned to the whole network for
adjusting the steepness parameter. For all automata
in this simulation, the threshold of 0.01 and window
size of 6 are chosen. The error of BP with constant
steepness parameter after 5000 epochs is 0.1017534.

Table 3 depicts the performance of the network
when different automata are assigned to different layers

Table 1. Simulation results for digit problem when
momentum factor is adapted (single learning automaton).

Learning Final Mean Epochs for
Automata Square Error | Error Goal = 0.01
Tsetline (4, 4) 0.0099858 3289
TsetlineG (2,4 ) 0.0099850 564
Krinsky (2, 4) 0.0099918 1101
Krylov (2, 4 ) 0.0099962 879
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Table 2. Simulation results for digit problem when

steepness parameter is adapted (single learning

automaton).
Learning Final Mean Epochs for Error
Automata Square Error Goal = 0.01
Tsetline (4, 4) 0.0099855 4560
TsetlineG (2, 4) 0.0074391 2886
Krinsky (2, 4) 0.0074391 2886
Krylov (2, 4) 0.0099975 4005

Table 3. Simulation results for digit problem when

momentum factor is adapted (one learning automaton for

each layer).

Hidden Layer|{Qutput Layer Final Mean Epochs for
Automata Automata Square Error = O.dl
Error
Tsetline (4, 4) |Tsetline (4, 4) 0.0099984 3010
Tsetline (4, 4) |Krinsky (2, 4) 0.0089071 2407
Tsetline (4, 4) [Krylov(2, 4) 0.0099510 775
Tsetline (4, 4) |TsetlineG(2, 4) | 0.0099897 622
Krinsky(2, 4) |Tsetline (4, 4) | 0.0099577 112
Krinsky(2, 4) |Krinsky(2, 4) 0.0099736 649
Krinsky(2, 4) |Krylov(2, 4) 0.0099965 789
Krinsky(2, 4) |TsetlineG(2, 4) | 0.0099998 822
Krylov(2, 4)  |Tsetline (4, 4) | 0.0099859 899
Krylov(2, 4) Krinsky(2, 4) 0.0099850 417
Krylov(2, 4) Krylov(2, 4) 0.0099891 880
Krylov(2, 4) TsetlineG(2, 4) | 0.0099806 614
TsetlineG(2, 4) |Tsetline (4, 4) | 0.0099882 113
TsetlineG(2, 4) |Krinsky(2, 4) 0.0099924 801
TsetlineG(2, 4) (Krylov(2, 4) 0.0099941 635
TsetlineG(2, 4) |TsetlineG(2, 4)| 0.0099970 895

to adapt the momentum factor. Each automaton is
responsible for adaptation of momentum factor for its
assigned layer. For all automata in this simulation, the
threshold of 0.01 and window size of 1 are chosen. The
error of BP with constant momentum factor after 5000
epochs is 0.1675668.

Table 4 presents the results of the experiments
in which one automaton is used by each layer of the
network to adjust the steepness parameter of that layer.
For all automata in this similation, the threshold of
0.01 and window size of 6 are chosen. The error of
standard BP after 5000 epochs is 0.1017534.

Remark 1

Assuming that the region within which the adapted
parameter changes is fixed, by increasing the number,
of actions, the difference between the values of two
consecutive actions are reduced and as a result, the
parameter being adapted changes smoothly. This
leads to less oscillation on error function, which itself
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Table 4. Simulation results for digit problem when
steepness parameter is adapted (one learning automaton
for each layer).

Hidden Layer|Output Layer|Error After | Epochs For
Automata Automata (5000 Epochs|Error of 0.01
Tsetline (4, 4) [Tsetline (4, 4) 0.0099448 2969
Tsetline (4, 4) [Krinsky (2, 4) 0.0089643 2477
Tsetline (4, 4) [Krylov(2, 4) 0.0014180 3656
Tsetline (4, 4) |TsetlineG(2, 4)| 0.0098581 4949
Krinsky(2, 4) [Tsetline (4, 4) 0.0990697 5000
Krinsky(2, 4) [Krinsky(2, 4) | 0.1082491 5000
Krinsky(2, 4) |Krylov(2, 4) 0.0006661 3439
Krinsky(2, 4) |TsetlineG(2, 4)| 0.1110588 5000
Krylov(2, 4)  |Tsetline (4, 4) 0.0087339 2317
Krylov(2,4)  [Krinsky(2, 4) 0.0097019 1726
Krylov(2, 4)  [Krylov(2, 4) 0.0796143 5000
Krylov(2,4)  |TsetlineG(2, 4)! 0.0029425 3983
TsetlineG(2, 4) [Tsetline (4, 4) 0.0098257 1384
TsetlineG(2, 4) [Krinsky(2, 4) 0.0097729 1355
TsetlineG(2, 4) [Krylov(2, 4) 0.0095585 4715
TsetlineG(2, 4) [TsetlineG(2, 4)| 0.0098836 2520

11
—— Tsetline(4,4)
9 s Tsetline(2,4)
—— Tsetline(10,4)
7
2 o5
3}
3 \\\‘\\‘
1 Tt a
-1
0 20 40 60 80 100

Epoch
Figure 19. Effect of number of actions on the speed of
convergence for digit problem when a single learning
automaton is used.

results in a higher rate of convergence of the training
algorithm. Figure 19 shows the effect of a number of
actions on speed of convergence for the digit recognition
problem. For this simulation, the window size of 10,
threshold value of 0.01 and Tsetline automaton with
memory depth of 4 are chosen.

Remark 2

As the memory depth increases, the selected action
must be more penalized in order for the automaton
to change this action. Therefore, by increasing the
memory depth, the probability that the automaton
chooses a wrong action will be reduced. This may
lead to speeding up the convergence of the algorithm.
Figure 20 shows the effect of memory depth on the
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Figure 20. Effect of memory depth on the speed of
convergence for digit problem when a single learning
automaton is used.
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Figure 21. Effect of threshold value on the speed of

convergence for digit problem when a single learning
automaton is used.

speed of convergence for a digit recognition problem.
For this simulation, the window size of 10, threshold
value of 0.01 and Tsetline automaton with 4 actions
are chosen.

Remark 3

Increasing the value of the threshold, the probability of
penalizing a given action will increase. This causes the
learning automaton to change its action more quickly,
which enables it to find a better parameter for the
region of the error surface that is being searched.
Figure 21 illustrates the effect of threshold value on the
speed of convergence for the digit recognition problem.
For this simulation, the window size of 10 and Tsetline
(4,4) automaton are used.

Remark 4

If the window size is small, then the response of the en-
vironment (neural network) is based on the information
of a small region of the error surface, which may not
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Figure 22. Effect of window size on the speed of
convergence for digit problem when a single learning
automaton is used.

well characterize the whole error surface. By increasing
the window size, the algorithm uses information from
a larger region of the error surface for parameter
adaptation. This may lead to a better performance.
Figure 22 depicts the effect of window size on the speed
of convergence for the digit recognition problem. For
this simulation, the threshold of 0.01 and Tsetline (4,4)
automaton are used.

Remark 5

In the first order methods of gradient descent (such
as BP), weights are adapted in the negative direction
of the gradient vector. In this approach, the path
from the initial point (initial weight) to minimum may
follow a zigzag path. The adaptation in ith iteration
may spoil the adaptation in (i — 1)th iteration. The
zigzag path slows down the speed of convergence of the
algorithm. The conjugate-gradient method avoids the
low speed of convergence by incorporating the direction
vector (direction in which the weights are adapted)
and gradient vector. Assuming that ¢(n) denotes the
direction vector at mth iteration, the weight vector w
of neural network is updated by the following equation:

Awgi(n+1) = a(n) x g, (n), (10)

where a(n) is the learning rate in iteration n and chosen
in such a way to minimize the error surface along
the direction vector ¢g(n), computed by the following
equation:

a(n) = arg m(in MSE(w(n) + ag(n)). (11)

The initial value of direction vector is the negative of
gradient vector. In (n + 1)th iteration, the direction
vector is computed as a linear combination of gradient
vector and previous direction vector given by:

OFE
Bwjk

gr(n+1) = + ¥(n)q(n), (12)
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Figure 23. Comparison of conjugate gradient method
and adaptation of momentum factor using learning
automata for encoding problem.
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Figure 24. Comparison of conjugate gradient method
and adaptation of momentum factor using learning
automata for digit problem.

where ¥(n) is time varying parameter computed as:

48 (n + DI"(4E(n + 1]

S ()T [3E(n)]

¥(n) = (13)

Figures 23 to 26 compare the performance of
conjugate-gradient method with the proposed scheme
when the momentum factor or steepness parameter is
adapted for encoding and digit recognition problems.
For these simulations, the threshold of 0.01 and window
size of 1 are used.

Remark 6

Baba and Handa [14] have used a similar approach
for adaptation of the momentum factor of BP al-
gorithm. In their method, a hierarchical structure
learning automaton has been employed instead of a
single learning automaton in order to automatically
choose an appropriate momentum factor. In this
approach, the learning automaton selects a momentum
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Figure 25. Comparison of conjugate gradient method
and adaptation of steepness parameter using learning

automata for encoding problem.
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Figure 26. Comparison of conjugate gr
and adaptation of steepness parameter
automata for digit problem.

factor and BP algorithm uses this pai
the weights of neural network in an
end of every epoch, the learning au
a reward if the mean square error
receives a penalty otherwise. In Figux
performance of Baba method has bee
the proposed scheme for encoding and
problems, when the momentum facto
this simulation, the threshold of 0.01
of 1 are used. The parameters of Bab
same as parameters used in their pr
As shown in Figures 27 and 28, the
exhibits a higher performance compar
method.

Careful inspection of Baba algor

800 1000

adient method
sing learning

ameter to adjust

epoch. At the
tomaton receives
s decreased and
es 27 and 28, the
n compared with
digit recognition
r is adapted. For
and window size
a method are the
evious work [14].
proposed scheme
ed with the Baba

ithm reveals that

it is a special case of the algorithm proposed here
when window size is 1 and threshold value is 0.

The proposed algorithm is superior

to Baba scheme

because: 1) Advantages of window size and threshold
value have not been considered in Baba algorithm, 2)

In Baba scheme, hierarchical automat

on has been used
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Figure 27. Comparison of different learning automata
based methods for adaptation of momentum factor for
encoding problem.
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Figure 28. Comparison of different learning automata
based methods for adaptation of momentum factor for
digit problem.

which makes the algorithm more complicated and time
consuming, 3) Baba method is proposed for adaptation
of momentum factor only.

Remark 7

Adaptive steepness (ASBP) method [3] is a method
which uses gradient descent rule for adaptation of
steepness parameter. In this method, each neuron &
has a steepness parameter Ay, which is changed by the
following rule:

A)\k = —6—8£.

o, (14)

Figures 29 and 30 compare the performance of ASBP
and proposed schemes for encoding and digit recog-
nition problems, respectively. For these simulations,
the threshold of 0.01 and window size of 1 are cho-
sen.
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Figure 29. Comparison of different methods for
adaptation of steepness parameter for encoding problem.

11

—s— Standard BP
9 —a— ASBP

—— Tsetline(4,4)
7

Error

n i i . ]

0 200 400 600 800 1000
Epoch
Figure 30. Comparison of different methods for
adaptation of steepness parameter for digit problem.

Simulation Results for Simultaneous
Adaptation

In another experiment, whose results are presented
in Table 5, two automata of the same kind are used
to adapt momentum factor and steepness parameter
simultaneously. As seen in this table, the best result
is obtained for the case when two Krinsky automata
are used for adaptation of both steepness parameter
and momentum factor. For these experiments, the
threshold of 0.01 and window size of 3 are chosen. The
error of BP after 5000 epochs is 0.0976520.

Table 6 shows the effect of associating different

Table 5. Simultaneous adaptation of momentum factor
and steepness parameter for digit problem when a single
learning automaton is used for the whole of the network.
Final Mean

Square Error

Learning Automata Epochs for Error
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Table 6. Simultaneous adaptation of momentum factor
and steepness parameter for digit problem when a single
learning automaton is used for each layer.

Hidden Layer | Output Layer Error Epochs
Automata Automata

Tsetline (4, 4) Tsetline (4, 4) 0.0098906 1822
Tsetline (4, 4) Krinsky (2, 4) 0.0099240 1124
Tsetline (4, 4) Krylov(2, 4) 0.0094257 1614
Tsetline (4, 4) TsetlineG(2, 4) | 0.0099214 814
Krinsky(2, 4) Tsetline (4, 4) 0.0036989 2076
Krinsky(2, 4) Krinsky(2, 4) 0.0099466 566
Krinsky(2, 4) Krylov(2, 4) 0.0070825 1187
Krinsky(2, 4) TsetlineG(2, 4) 0.0095368 62
Krylov(2, 4) Tsetline (4, 4) 0.0050398 31
Krylov(2, 4) Krinsky(2, 4) 0.0098945 1303
Krylov(2, 4) Krylov(2, 4) 0.0099984 386
Krylov(2, 4) TsetlineG(2, 4) | 0.0099983 724
TsetlineG(2, 4) | Tsetline (4, 4) 0.0081699 1758
TsetlineG(2, 4) | Krinsky(2, 4) 0.0099911 606
TsetlineG(2, 4) | Krylov(2, 4) 0.0098906 131
TsetlineG(2, 4) | TsetlineG(2, 4) | 0.0099330 780

Tsetline (4, 4) 0.0092784 807
TsetlineG (2, 4 ) 0.099826 982
Krinsky (2, 4) 0.0084366 49
Krylov (2, 4) 0.0098485 699

automata to different layers of the network for ad-
justing the momentum factor and steepness parameter
simultaneously. The same pair of automata are used
for adjusting both steepness parameter and momentum
factor. It can be seen that the best pair of automata
which gives the highest rate of convergence is Krylov
for hidden layer and Tsetline for output layer. Note
that this pair of automata is used for adaptation of
momentum factor as well as steepness parameter. For
all automata in these experiments, the threshold of 0.01
and window size of 3 are chosen. The error of BP
with constant momentum factor after 5000 epochs is
0.0976520.

Remark 8

In this remark, the ability of the proposed algorithm
to escape local minima is considered. For this purpose,
a problem in which local minima occurs frequently is
chosen [29]. The training set of this problem is given in
Table 7. The network considered has two input nodes
z and y, two hidden units and one output unit. In this
problem, if hidden units produce lines a and b, a local

Table 7. Training set for a given problem.

Pattern X y Desired Output
A 0 0 0
B 1 0 1
C 1 1 0
D 0 1 1
E 0.5 | 0.5 0
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minima will occur and if hidden units produce lines ¢
and d, a global minima will occur [30]/ Figure 31 shows
these configurations.

The error surface of the given network as a func-
tion of weights Wy 11 and Wi 1, is given in Figure 32.

In each simulation, the same initial points for
both BP (with constant momentum) and the proposed
algorithm are chosen to adapt the steepness parameter.
Simulations have been carried out for 20 runs. Each
run uses a random initial point near the local minima.
In these simulations, the BP stuck at|local minima for
all 20 runs whereas the proposed algorithm escaped
local minima for 13 runs and stuck|at local minima
for 7 runs. Figures 33 to 35 show several sample runs
for both BP and the proposed algorithm. In these
figures, the initial point is denoted by [letter ‘B’ and the
converged point is denoted by letter ‘A’. The curves

«

line d

A B
B8 ~
/ 0.5 \ 1 line a

line b

Figure 31. Lines produced by hidden units of neural
network.

¥, e L8

Error
-

Figure 32. Error surface as a function
and W1,1,1.
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Figure 33. Sample run 1.
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Figure 34. Sample run 2.
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1.9 r T Proposed methm Table 8. Mean square error after 10000 epochs.
1.7 & Before training Standard BP Proposed Algorithm
oo —&- After training
Run | Error | Converged Point | Error | Converged Point
L5 1 0.97 Local Minimum 0.01 [Global Minimum
‘g‘ 13 2 0.96 Local Minimum 0.66 [Local Minimum
= 3 0.96 Local Minimum 0.01 | Global Minimum
1.1 4 0.96 Local Minimum 0.01 | Global Minimum
5 0.97 Local Minimum 0.01 |Global Minimum
0.9 6 0.96 Local Minimum 0.66 |Local Minimum
0.7 7 0.96 Local Minimum 0.01 [Global Minimum
.20 -12 -4 4 12 20 8 0.96 Local Minimum 0.66 |Local Minimum
W(1,1,1) 9 | 0.97 | Local Minimum | 0.01 |Global Minimum
;. 7 10 0.97 Local Minimum 0.66 |Local Minimum
o Standaid BP 11 0.96 Local Minimum 0.68 |Local Minimum
1.6 -3 Before training 12 0.97 Local Minimum 0.01 [Global Minimum
O After training 13 | 0.97 | Local Minimum | 0.67 |Local Minimum
14 0.96 Local Minimum 0.01 |Global Minimum
15 1.05 Local Minimum 0.98 |Local Minimum
16 0.98 Local Minimum 0.01 [Global Minimum
17 0.98 Local Minimum 0.01 |Global Minimum
18 0.96 Local Minimum 0.01 |Global Minimum
19 0.96 Local Minimum 0.01 | Global Minimum
20 0.97 Local Minimum 0.01 |Global Minimum

-20 -12 -4 4 12 20
W(1,1,1)

Figure 35. Sample run 3.

in these figures are obtained by projecting the error
surface on axis Wi 1 ;.

Table 8 shows the mean square error of the pro-
posed method when used to adapt steepness parameter
and standard BP algorithm after 10000 epochs for this
problem.

CONCLUSIONS

In this paper, a fixed structure learning automaton
is applied for adjusting the parameters of the BP
algorithms based on the observation of the random
response of a neural network. It has been demonstrated
through simulations that the use of fixed-structure
learning automata for adaptation of momentum factor
and steepness parameter of a BP algorithm increases
the rate of convergence by a large amount. By using
fixed-structure learning automaton in a BP algorithm,
it is possible to compute a new point that is closer
to the optimum than the point computed by the
algorithm itself. In all the problems studied so far, the
convergence of BP, which uses fixed-structure learning
automata or variable structure learning automata for
adaptation of momentum factor or steepness param-
eter, have been higher than that of the standard
BP. Simulation results also indicate that the speed of
convergence can be improved if both momentum factor

and steepness parameter are adapted simultaneously
(Tables 5 and 6). It should be mentioned that
for almost all the experiments conducted, the FSLA
approach has yielded better results than that of the
VSLA approach when used for adaptation of steepness
parameter and momentum factor. The result of this
paper can be generalized for application multi-layer
neural networks.
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