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Ensuring the Localization of Responsibilities
in the Adaptive Agent Oriented
Software Architecture (AAOSA)

B. Hodjat* and M. Amamiya'

Distribution in dynamic multi-agent systems is only justifiable if there is a level of localization
guaranteed by the system for each domain the agents represent. Adaptive Agent Oriented
Software Architecture (AAOSA) is a new dynamic approach to software design based on agent-
oriented architecture. In this approach, agents are considered as adaptively communicating con-
current modules which are divided into white box modules, responsible for the communications
as well as learning, and black box modules, responsible for the independent specialized processes
of the agent. A distributed learning policy that takes advantage of this architecture is used for
the purpose of system adaptability. Then, a method is proposed to ensure the localization of

responsibilities in this multi-agent methodology.

INTRODUCTION

In the classical view of agent oriented systems, each
agent is considered as an autonomous individual, the
internals of which are not known, that conforms to
a certain standard of communications and/or social
laws with regard to other agents [1]. Architectures
viewing such agents must introduce special purpose
agents (e.g., broker agents, planner agents, interface
agents...) to shape the structure into a unified entity
desirable to the user [2,3]. The intelligent behavior of
these key agents, with all their complexities, would be
vital to the performance of the whole system.

On the other hand, methodologies dealing with
the internal design of agents tend to view them
primarily as intelligent decision-making beings. In
these methodologies, techniques in artificial intelli-
gence, natural language processing and machine learn-
ing seem to overshadow the agent’s architecture, in
many cases undermining the main purpose of the
agent [4,5].
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In Adaptive Agent Oriented Software Architec-
ture (AAOSA), instead of using assisted coordina-
tion, in which agents rely on special system pro-
grams (facilitators) to achieve coordination [2], new
agents supply other agents with information about
their capabilities and needs. In order to obtain a
working system from the beginning, the designers pre-
program this information at startup. This approach
is more efficient because it decreases the amount of
communication that must take place and does not rely
on the existence, capabilities, or biases of any other
program [6].

One of the aspects that makes agents more at-
tractive to be used in software than objects is their
quality of volition. Using AI techniques, adaptive
agents are able to judge their results, then modify
their behavior (and thus their internal structure) to
improve their perceived fitness. This modification may
even effect and correct the domain of responsibility for
that agent. On the other hand, because each agent is
considered to be adaptive, there has to be a way to
restrain the agents from intruding into other agents’
domains.

In this paper, a method is proposed to limit
each AAOSA agent’s domain and present an example
in interactive systems. First, a description of the
Adaptive Agent Oriented Software Architecture [7] is
presented. Then, an implementation of AAOSA for
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interactive systems using a simple example is described. Communication Unit

Finally, a simple distributed learning algorithm and the
overall evaluation of the proposed system are presented.
Moreover, some suggestions are made|for future work

in this area. o

ADAPTIVE AGENT ORIENTED
SOFTWARE ARCHITECTURE

Agents in AAOSA are adaptively communicating con-
current modules. The modules, therefore, consist of
three main parts: a communications unit, a reward unit
and a specialized processing unit. The first two units
are called the white box and the third unit is the black .
box of an agent (Figure 1). The white box part of an
agent is common in all AAOSA agents although some
functions may be left unused in certain|cases. Here, the
black box is regarded simply unknown and completely
left to the designer. The main responsibilities of each
unit are as follow:

This unit facilitates the communicative functions of the
agent and has the following sub-systems:

Input of received communication items: These items
may be in a standard agent communication language
such as KQML;

Interpreting the input: Decides whether the process
unit is capable of processing certain input, or it
should be forwarded to another agent (or agents).
Note that it is possible to send one request to more
than one agent, thus creating competition among
agents;

Interpretation policy (e.g., a table): Determines
what has to be done about the input. This policy
could be improved with respect to the feedback
received for each interpretation from the reward unit.
Some preset policy is always desirable to make the
system functional from the beginning. In the case of
a system reset, the agent will revert to the basic hard-
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Figure 1. Each agent is comprised of a black box section (specialties) and a white box section (communications).
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coded startup information. The interpretation policy
is, therefore, comprised of a preset knowledge base
and a number of learned knowledge bases acquired on
a per-user basis. A ‘learning’ module is responsible
for conflict resolutions in knowledge-based entries
with regard to feedback received on the process
of past requests. Past requests and the processes
conducted on them are also stored in anticipation of
their feedback;

o Address-book: keeps an address list of other agents
known to be useful to this agent, or agents known as
being able to process input that cannot be processed
by this agent. Requests to other agents may occur
when:

1. The agent has received a request it does not know
how to handle;

2. The agent has processed a request and a number
of new requests have been generated as a result.

This implies that every agent has an address and
there is a special name server unit present in every
system to provide agents with their unique addresses
(so that new agents can be introduced to the system
at run time). This address list should be dynamic
and, therefore, adaptive. This list may be limited,
it also may contain information on agents that
normally send their requests to this agent. In many
cases, the address-book can be considered as an
extension of the Interpretation Policy and, therefore,
implemented as a single module.

¢ Output: Responsible for sending requests or outputs
to appropriate agents, using the address-book. A
confidence factor could be added to the output based
on the interpretations made to resolve the input
request or to redirect it. It will be shown later that
this could be used when choosing from suggestions
made by competing agents or output agents.

Reward Unit

Two kinds of rewards are processed by this module:
outgoing and incoming. An agent is responsible for
distributing and propagating rewards that are being fed
back to it. (A special purpose agent is responsible for
the interpretation of user input as feedback to individ-
ual user requests, which will then initiate the reward
propagation process.) This unit will determine what
portion of the incoming reward is deserved and how
much should be propagated to requesting agents. The
interpreter will update its interpretation policy using
this feedback. The rewards will also serve as feedback
to the address-book unit, helping it in adapting to the
needs and specifications of other agents. The process
unit could also make use of this feedback.

The rewards may not be the direct quantification
of user states and in most cases will be interpretations
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of user actions made by an agent responsible for it.
This point is further clarified later in this paper.

Processing Unit

This unit is considered as a black box by the methodol-
ogy employed in this paper. The designer can use other
methods that seem more suitable for implementing the
processes that are unique to the requirements of this
agent. The only constraint is that the process unit is
limited to the facilities provided by the communication
unit for its communications with other agents. The
process unit may also use the reward unit to adapt
its behavior with regard to the system. Note that
each agent may have interactions outside of the agent
community. Agents responsible for user I/0O are an
example of such interactions. These agents generally
generate requests or initiate reward propagation in the
community, or simply output results.

The white box module can easily be added to
each program module as a transducer. According
to its definition [6], the transducer mediates between
the existing program (the process unit) and other
agents. The advantage of using a transducer is that
it requires no knowledge of the program other than its
communication behavior.

The process unit has been mentioned as being able
to conduct non-agent I/O. It is easy to consider 1/0
recipients (e.g., files or humans) as agents and make
the program redirect its non-agent I/O through its
transducer. Other approaches regarding agentification
(wrapper and rewriting) are discussed in [6].

Design Issues

The AAOSA design methodology is essentially a
bottom-up approach. The tasks necessary to achieve
overall goals are identified and suitably decomposed [8].
Then, the data-flow between these tasks is deter-
mined. Through this way, pre-existing codes can also
be incorporated in the design as non-decomposable
tasks by wrapping them into the black-box of AAOSA
agents.

The break up of software into sub-domains is the
responsibility of the designer who should also define
the interpretation policies. This is done by looking at
the system input from each agent’s point of view. Tt
is important not to over-generalize in order to avoid
claiming an input that really belongs to other agents.
However, there is no need to be too conservative either.
Designers should keep in' mind that interpretations
are done in the context of the communication path
by which the input has arrived at the agent and
resolving ambiguities that arise as a result of overlap-
ping interpretations are the responsibility of up-chain
agents.
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(d) An AAOSA hyperstructure designed to reduce
the number of functions and condition checks.

Figure 2. Designing a seven-segment system using AAOSA. Arrows depict the direction of querying.

The designer determines the leyel of localization
of each agent. In other words, it is advisable that each
agent be kept simple in its responsibilities and limited
to the decisions that it must make to reap the benefits
of distribution and enhance its learning abilities. The
overhead of the required units (the white-box) should
also be taken into consideration.

Agents can be replaced at run-time with other
more complete agents. The replacement can even be
a hierarchy or network of new agents breaking down
the responsibilities of their predecessor. This feature
provides for the incremental design pnd evaluation of
software.

In AAOSA, the emphasis is on the distribution
of capabilities. Therefore, if a capability is general
enough to be coded into the white-box and distributed
over all agents, it is much more desirable than as-
signing a specific agent to be responsible for it. For
instance, using the learning module in the white-box is
more desirable than creating a separate learning meta-
agent.

In the following example, it is shown that the
manner by which a system is agentified depends on
the various objectives the designer has in mind.

Seven-Segment Example

The design of a simple application is, now, followed
to observe the various advantages AAOSA may result
through applying different levels of localization to
agents. The system to be designed takes a number
between 0 and 9 and switches on the appropriate LEDs
in a seven-segment display (Figure 2a). There are, of
course, tried and tested algorithms for designing this
system that provide optimal results. This is mainly
because the problem is a limited one and all the possible
inputs and desired outputs are known.

The first step in the design of this system is
identifying the range of possible input to the system
and the set of output functions available. In this case,
there are 10 possible inputs, namely the numbers 0
to 9. There are 7 functions which should be used to
produce the overall desired output: Switch LED 1 on
(or On(1) for short), On(2), On(3)... On(7). A non-
modular centralized solution (Figure 2b) would involve
48 functions and 5.5 condition checks on average, as-
suming each number is inputted with equal probability
(1/10).

An alternative to this approach would be a sys-
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tem in which one agent represents each function and
an input agent receives the input and distributes it
(Figure 2c). If this agent (i.e., the input-agent) would
have any interpretation of its own, they would be
of the transitive kind, declaring an input to belong
to one of the down-chain agents. However, in this
example, transitive interpretations are not necessary,
since the fact that the input has been handed down
through the input-agent does not effect the route or
process that it might be taking later. It is always
preferable not to use transitive interpretations as it
prevents the agents from being self-sufficient and makes
the problem of maintaining the localization of agents
even more difficult (Figure 3). Therefore, in the case
of hyperstructure in Figure 2c, each agent will have its
own interpretation policy, namely, checking its input
against the number it represents.

Although the number of functions in this system is
the same as the centralized system in Figure 2b, certain
useful features appear due to the way modularization
1s conducted. Each agent is reusable in other systems
and in the case of using a parallel platform, the number
of conditions that may be checked on average would be
much less (in a fully parallel system it would be one
condition on average).

As stated previously, a system can be modeled
using many different hyperstructures and the choice of
the hyperstructure to be used depends on the require-
ments of the application. Now, the hyperstructure in
Figure 2d is considered. This system is modularized
based on the optimization of the number of functions,
while maintaining a relatively low number of average
condition checks. The total number of functions

Input
agent
Iy is 1:
output 0
Iz is 0: Iy is 1:
Output 1 Output 0

Figure 3. The NOR function using AAOSA. The input
agent receives [y /3 as input. This proves that there exists
an AAOSA hyperstructure with no transitive
interpretations for any computable function.
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implemented here is 24 (half of the last two designs).
The average condition check, if the system is taken as
running on a fully parallel platform, can be calculated
as follows:

1. Bach possible input between 0 to 9 would occur 1/10
of the time;

2. If input were 1, 2, or 3, one condition must be
checked;

3. For inputs 4, 6 and 7, two conditions would have to
be checked;

4. For inputs 0, 3 and 9, the number of conditions
checked would be 3;

5. For input 8, four conditions would have to be
checked.

Thus, the average conditions checked would be 2.2. Tt is
evident that for calculating this number, the conditions
checked in the white-box of the agents during the query
and delegation phase are disregarded. However, in
general, unlike this example, the complexity of the
interpretation process for each agent usually outweighs
the complexity of the processes involved in these two
phases. In comparison to the hyperstructure in Figure
2¢, the reusability has been reduced and the average
condition checks have been increased, in order to
minimize the number of functions.

MODELING AN INTERACTION SYSTEM
USING AAOSA: A MULTIMODAL MAP

Multiple input modalities may be combined to produce
more natural user interfaces. To illustrate this tech-
nique, Cheyer and Julia [9] have presented a prototype
map-based application for a travel-planning domain.
The application is distinguished by a synergistic com-
bination of handwriting, gesture and speech modalities;
access to existing data sources including the World
Wide Web and a mobile handheld interface. To
implement the described application, a distributed net-
work of heterogeneous software agents was augmented
by appropriate functionality for developing synergistic
multimodal applications.

A simplified subset of this example is considered
here to show the differences of the two approaches.
A map of an area is presented to the user and she
is expected to give view port requests (e.g., shifting
the map or magnification), or request information on
different locations on the map. For example, a user
drawing an arrow on the map may want the map to
shift to one side. On the other hand, the same arrow
followed by a natural language request such as: “Tell
me about this hotel.” may have to be interpreted
differently.

Cheyer and Julia [9] have used Open Agent
Architecture (OAA) [2] as a basis for their design.
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Pigure 4. A structural view of the multimodal map example as designed using OAA in [9]. Boxes represent facilitators,
ellipses represent macro agents and circles stand for modality agents.
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Figure 5. The multimodal map example designed based on AAOSA.

In that approach, based on a “federation architec-
ture” [10], the software is comprised|of a hierarchy of
facilitators and agents. The facilitatars are responsible
for the coordination of the agents under them so that
any agent wanting to communicate with any other
agent in the system must go through a hierarchy of
facilitators (starting from the one directly responsible
for it). Each agent, upon introduction to the system,
provides the facilitator above it with information on its

capabilities (Figure 4). No explicit provision is given
for learning.

An example design based on AAOSA is shown in
Figure 5. It must be noted here that the design shown
here is not rigid and communication paths may change
through time with the agents adapting to different
input requests.

The text and pointer input agents determine the
end of their respective inputs and pass them on to the



Adaptive Agent Oriented Software Architecture

input regulator. This agent in turn determines whether
these requests are related or not. It then passes them
down to the agent it considers more relevant. The
output agents simply actuate suggestions made by
shifting, magnification, hotels, restaurants and general
information agents. Note that the combination of these
output suggestions could also be chosen for actuation.
The feedback agent provides the system with rewards
interpreted from user input.

Some of the differences in the two designs are
given below:

¢ The AAOSA design is much more distributed and
modular by nature and many of the processes con-
centrated in the facilitator agents in Figure 4 are
partitioned and simplified in Figure 5;

e AAOSA is more of a network or hyperstructure [11]
of process modules as opposed to the hierarchical
tree-like architecture in the OAA design;

e Al behavior such as input interpretation (e.g., nat-
ural language processing) and machine learning are
incorporated on the architecture and distributed over
the multi-agent structure rather than introduced as
single new agents (as is the case with the natural
language macro agent in Figure 4).

It must be stressed that AAOSA-like architectures
could be obtained with an OAA if each OAA facilitator
and its macro agents be considered as one agent and
add learning capabilities to each facilitator. Another
point worth mentioning is that agents in OAA are
usually pre-programmed applications linked together
through facilitators. The designers have a fewer options
regarding the software architecture as a whole because
they are forced to use what has already been designed,
possibly without the new higher-level framework in
mind.

In designing an interactive system using AAOSA,
an agent has been assigned to each individual function
of the system (e.g., Magnification, Shifting, Hotel
information, Restaurant Information, General Informa-
tion). The functionality of these agents is implemented
in the black box of each agent. These agents are also
responsible for maintaining a representation of their
respective domain. For instance, the magnification
agent maintains a variable representing the current
degree of magnification.

The structure of agents that lead to these leaf
agents represents the designer’s view of the system
hierarchy. These agents usually have a much simpler
black box. Their role is mainly to direct requests to the
appropriate agents and learn or resolve contradictions
that may occur at their juncture.
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A AOSA Interaction System’s Communication
Performatives

In this section, the common performatives used by the
agents to communicate are described. These performa-
tives are all general and, therefore, pre-implemented in
the white box modules of these AAOSA agents.

Register

Agents need to register themselves with each other to
be able to send messages to one another. Unlike similar
systems, in AAOSA, it is not necessary that all agents
be aware of all other agents and registration may be
much more distributed and localized. For instance,
the information agent only needs to register with
the location, general information and input regulator
agents. Fach agent, upon receiving a register message,
adds the registering agent’s name and address in its
address book. Registration may take place at run time.

Advertise and Un-Advertise

Agents advertise their responsibilities in order to draw
requests from other agents. When an agent receives an
advertise message, it updates its interpretation policy
so as to redirect certain requests to the advertising
agent. This information is removed from the interpre-
tation policy once an un-advertise message is received.
An advertise message specifies a community to which
the advertising agent belongs. If the agent receiving
this message does not recognize such a community
in its interpretation policy, it may add it as a new
community. In the multimodal map example, shifting
agent advertises “shifting” to map view-port agent
which in turn creates a new community by that name in
its interpretation policy. This allows for more than one
agent being member of an interpretation community of
another agent.

Now, a sample run of the multimodal map exam-
ple is followed.

THIS-IS-YOURS

When an agent is successful in interpreting a request,
it must pass it over to an agent from the interpreted
community. The performative under which this request
is forwarded is called THIS-IS-YOURS. The receiving
agent knows that if it cannot interpret this request,
then the point of contradiction is itself. For example,
consider that the input regulator agent receives “Map
to the right” from the text input agent. If the
interpretation policy for routing requests to the map
view-port community is simply the presence of the word
“map” in the requests, this request is sent to an agent in
that community. In the example presented here, only
one agent exists per community so THIS-IS-YOURS
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B. Hodjat and M. Amamiya

o Using priorities or weights for agents of different
levels in the hyperstructure. For instance in a
contradiction that has occurred in the input regu-
lator agent, the IT-IS-MINE that originates in the
locations agent will have a higher priority than the
one originating in the left agent;

e Using the recency of agent invocations can cause a
context switching capability in the system;

o Determining the regions of input that have triggered
agents can be a good contradiction resolution policy.
If these agents are mutually exclusive, multiple
agents may be required to handle a single request;

e Querying the user directly and adjusting the inter-
pretation policy accordingly (i.e., learning). Note
that in this case, the interaction is limited to the
point of contradiction.

Contradiction plays an important role in learning
and pinpointing the agent which is responsible for
a contradiction and resolving it, insuring the correct
distribution of responsibilities in the hyperstructure.

DISTRIBUTED LEARNING

The problems regarding multi-agent learning have been
extensively ignored. Designing agents that would learn
about anything in the world is against the basic philoso-
phy of distributed AL This issue has not really received
considerable attention, which might be the reason
behind the ill-behavior of some systems (the more they
learn, the slower they perform) [13]. Through allowing
the agents to adapt, refine and improve, automatically
or under user control, a holistic system can be created
in which the whole is significantly more than the sum
of its parts [12].

The combination of machine learning and multi-
agent systems can have benefits for both. Multi-agent
systems having learning capabilities reduce cost, time
and resources and increase quality in a number of forms
[13]:

o Ease of programming,

e Ease of maintenance,

¢ Widened scope of application,
o Efficiency,

e Coordination of activity.

On the other hand, machine learning in a multi-
agent set-up becomes faster and more robust [13].

Adaptability in AAOSA materializes in the fol-
lowing forms:

o The ability of the system to accept new agents at
run time,
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e The ability of each agent to adapt its behavior
according to the feedback it receives (i.e., learning).

A sample of the program run and the contradic-
tion resolution process is described in Figure 4. The
learning algorithm in the simplest form could be a
memorization of the user response. This method lacks
generalization and is context independent. In other
words, the interpretation cannot be modified to include
the previous state of the system.

In step 3 of Figure 6, a contradiction is resolved
based on the user response. In this case, “move it
closer” is considered to fall into the map view-port
domain and, therefore, the user response is learned by
this agent. In the example of Figure 7, however, the
request’s domain is simply not identifiable. The system
learns the appropriate response to grow through its
interactions with the user, but “grow”, which seems
to fall into the map view-port agent’s domain, has also
been learned by the input regulator agent (step 3a of
Figure 7).

Learning can be applied to AAOSA in a number
of ways depending on the objectives and application of
the software:

¢ Inside the agents: In large and complex software, dis-
tributing the learning over a hyperstructure of more
simple sub-domains is less complex than centralized
learning: Learning can be used to improve the
agent’s own specialized performance and to improve
its interpretation policy to reduce ambiguities. This
latter form of learning is driven by the ambiguities
themselves. There are various machine learning
algorithms that can be used in the learning module
of the white-box, sometimes in combination. For
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instance, reinforcement learning can be used to fine-
tune the choice of relevant interpretation rules, while
rule learning algorithms add or update them. The
former being more gradual and statistic based while
the latter changes the agent behavior in quantum
leaps and is based on a comparison of the actual
interpretation with the desired one;

e Over the architecture (Dynamic AAOSA): Evolu-
tionary and statistical learning can be used to split
agents that are more complex into hyperstructures of
simpler ones, or join redundant agents to form more
efficient ones. This brings about the possibility of
hyperstructures self-organizing themselves to achieve
a balance between the degree of distribution and the
efficiency of the overall software.

AAOSA should maintain the localization of each
agent. In other words, AAOSA should guarantee that:

1. The agents each stay responsible for the limited
domain they were originally assigned to, while:

2. Containing the distribution of responsibilities, thus:

3. Demonstrating the simplicity of each component
through adaptive change or developmental up-
grades.

Therefore, learning should guarantee the balance
of distribution and learning methods should not impede
each other. For instance, when a new interpretation
rule is learned by a down-chain agent, “A”, it may
have to send Un-Learn messages to all up-chain agents
requesting them to remove any identical rule that
results in delegation of input to agent “A”.

5)  User inputs “move it closer”

a) “move it closer” is sent to the input regulator agent with a “This-Is-Yours” performative.
b) The input regulator agent in turn sends “move it closer” down to the information community and the map view-port

community with an “Is-This-Yours?” performative.

c) Agents in the communities beneath the information all respond with “Not-Mine” and therefore the information agent
also sends a “Not-Mine” message to the input regulator agent.

d) The magnification agent and the shifting agent both claim “move it closer” to be theirs by sending “It-Is-Mine”
messages to the map view-port agent. Simple word spotting techniques may be used for the interpretation of each

in the request so it may belong to the shifting agent. There is a “closer” in the request so it

»

agent: There is a “move
may belong to the magnification agent.

e) The map view-port agent announces a contradiction by sending a “Maybe-Mine” message to the input regulator

agent.

f) The input regulator agent sends a message to the map view-port agent asking it to “resolve” its contradiction because
it has not had any other positive responses from agents with a higher priority.
g) The map view-port agent interacts with the user to resolve the contradiction:

6) System Asks User: “Do you mean magnification or shifting?”

7)  User responds with “Magnification”

a) The map view-port agent learns that “move it closer” belongs to the magnification agent and resolves the contradiction.
b) The map view-port agent sends “move it closer” to the magnification agent with “This-Is-Yours”.
c) The magnification agent interprets “move it closer” and sends a “This-Is-Yours” performative with “Zoom in” as the

content to the view-port output agent.

8)  View-port is magnified

Figure 6. A sample run of the multimodal map example.
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6) User inputs “grow”

a) “grow” is sent to the input regulator agent with a “This-Is-Yours” performative.

b) The input regulator agent in turn sends “move it closer” down to the information community and the map view-port
community with an “Is-This-Yours?” performative.

c) Agents in the communities beneath the information agent all respond with “Not-Mine” and therefore the information
agent also sends a “Not-Mine” message to the input regulator agent.

d) Agents in the communities beneath the map view-port agent also respond with “Not-Mine” and therefore the map
view-port agent also sends a “Npt-Mine” message to the input regulator agent. It is assumed that the magnification
agent does not recognize “grow’ as an interpretation keyword.

8) User Responds With “map view-pqg
a) The input regulator agent learn

¢} The map view-port agent has nd
memory of interpretations done
d) The map view-port agent canno

also sends a “Not-Mine” messag

a) The map view-port agent learns
b) The map view-port agent sends
¢) The map view-port agent sends
d) The magnification agent interpr
to the view-port output agent.

e) The input regulator agent interacts with the user to resolve the contradiction:

7) System Asks User: “Do you mean map view-port or information?”

rt”

for this request).

9) System Asks User: “Do you mean magnification or shifting?”
10}  User Responds With “magnification

»

that “grow” belongs to the map view-port agent and resolves the contradiction.
b) The input agent sends “grow” tp the map view-port agent with “This-Is-Yours”.
t been able to interpret “grow” before (this can be checked by looking up a temporary

t interpret the request to decide between magnification or shifting and so sends
“grow” down to the shifting community with an “Is-This-Yours?” performative.

e) Agents in the communities beneath the shifting agent all respond with “Not-Mine” and therefore the shifting agent

e to the map view-port agent.

f) The map view-port agent interacts with the user to resolve the contradiction:

that “grow” belongs to the magnification agent and resolves the contradiction.

an “Un-Learn” to all calling agents for “grow”.

“grow” to the magnification agent with “This-Is-Yours”.

ets “grow” and sends a “This-Is-Yours” performative with “zoom in” as the content

Figure

Learning can be deployed to a
biguation, and/or resolve conflicts bet
tion rules in a single agent. The la
when a single agent has rules that
conflicting interpretations based on
criteria. In these cases, weighting th
past experience and utilizing this weig
a choice between rules that apply to 4
a form of learning.

The learning used in the cun
AAOSA, on the other hand, is a v
learning algorithm that records inter
for ambiguities explicitly disambiguat
by the user. This learning happens
therefore, it is very important that th
conservative as possible. For instan
only occur when a single contiguous fg
string is identified as unencountered
criteria for the agent’s policies. As if
this learning algorithm is sufficient iz

natural language interface application.

where implicit statistical (history-bas
tion is used more often, the learning al

utomate disam-
ween interpreta-
tter case occurs
may result in
similar decision
e rules based on
ht when making
certain input is

rent version of
ery simple rote-
pretation results
ed for the agent
implicitly and,
e learning be as
ce, learning will
cus of the input
rule invocation
is will be seen,
1 the interactive
In other cases
ed) disambigua-
corithm will also

have to be more complex. In these cases, reinforcement

learning methods could be used.

UN-LEARN

To resolve the domain problem and ensure localization,

a new performative, UN-LEARN, is

added. Agents

7. Example of domain localization in AAOSA.

that learn a new interpretation rule, send the rule to all
agents they know with the UN-LEARN performative.
The agents receiving this message from a certain agent
will check to see if they are using the same rule to
send requests to this agent. If this is the case, they
will remove this rule from their interpretation policy.
For example step 5b of Figure 7 will cause the Input
Regulator agent delete the rule telling it to redirect
requests containing the “grow” keyword to the map
view-port community.

This change may seem to make the system less
efficient because the agents will have to communicate
more often to be able to resolve input requests. How-
ever, keeping the agents from learning local domain
information belonging to other agents will guarantee
the intended distribution of responsibilities according
to user interactions. This will prevent the upward
or downward drift of responsibilities in the agent
hierarchy, which may cause certain agents to become
overloaded while others are left idle.

EVALUATION AND CONCLUSION

Proof that AAOSA can be used to parse any context
sensitive language is provided in [14], showing the po-
tential power of the interpretation phase of an AAOSA
application and its application in Natural Language
Processing.

AAOSA has been evaluated in several large scale
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applications, namely, as an interface to a home AJV
system, an e-mailing and contact application interface,
a database retrieval application and a car entertain-
ment interface in which more than 150 agents where
used. User testing has been conducted on all of these
applications to generate test corpus. The size of the
corpus for each test was determined based on the esti-
mated number of functions involved and at its largest
(for the car interface) included 2000 entries. Each
entry may result in one or more function calls and/or
ambiguity resolution interactions, for which average
rates of more than 90% have been accomplished. Each
of these applications was developed by teams of up to
three engineers that spent no more than 45 days for it.

Viewing software as a hyperstructure of agents
(Le., intelligent beings) results in designs that are much
different in structure and modularization. Some of the
benefits of this approach are noted here.

e Flexibility: There is no rigid predetermination of
valid input requests. An AAOSA application at-
tempts to map any possible input to the functionality
of its agents, thus input is not limited;

e Parallelism: The independent nature of the agents
creates a potentially parallel design approach. Cur-
rent implementations of AAOSA can be executed
in a distributed environment. The message driven
communications between the agents make this dis-
tributed execution possible;

e Multi-platform execution: Agents can run and com-
municate over networks of computers (on the inter-
net for instance). This is, again, a result of having
agents only communicate through messages. The
implementation platform of the AAOSA agents is
not important as long as the messaging protocols are
observed. The current version of AAOQSA is coded in
Java language, which furthers this possibility;

e Runtime addition of new agents and, thus, incre-
mental development of software is possible. Agents
introduce themselves to each other, thus, forming
the hyperstructure at runtime. Consequently, the
“capabilities” of each up-chain agent can be modified
and changed upon the introduction of new down-
chain agents at runtime;

¢ Reusability of agents due to the increased modularity
brought about by the agentification of modules. This
type of modularization can also increase encapsula-
tion and provide for mobility of modules, and the
incremental design and evaluation of an AAOSA
application;

¢ Learning and intelligence: The distributed nature of
learning introduced in this paper suggests a powerful
adaptive software design that potentially breaks
down an application to a hyperstructure of simple
learning modules [11].
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FUTURE WORK

Although the use of AAOSA architecture in the area
of interactive systems seems to be promising, this
methodology is still at its infancy and, therefore, should
be tested for its scope of applicability. Two main areas
in AAOSA have the potential for greater improvement;

e Each agent’s learning algorithm can be improved
immensely. Even so, in simple implementations the
fact that the learning was distributed resulted in an
effective system. Improvements could be made to
provide for:

1. Generalization,
2. Context sensitivity,
3. Acquisition of undefined concepts [15].

¢ Using AAOSA, it was possible to successfully localize
the responsibilities of a society of agents collaborat-
ing in an interactive application. This localization
is vital if usage of distributed learning, effectively, is
intended because it helps in limiting the complexity
each agent has to deal with to the pre-designed
scope for that agent. The problem here is that
the success of this localization depends on designers.
One improvement to the current system is to have
the initial design evolve and optimize at run time.
This optimization could be done using evaluational
feedback from different sources that give an estimate
for the complexity the different agents should deal
with. The estimate can be made using:

1. Explicitly from the user,

2. Implicitly from the user (e.g., the feedback agent
can interpret user actions),

3. From the rate of contradictions occurring in dif-
ferent agents,

4. Time or resources.

According to the feedback, new agents could
be added to the system once the points of highest
complexity are found. The ultimate goal would be,
in this regard, the capability of agents in splitting
their responsibilities and knowledge (like a single cell
organism dividing). On the other hand, using evo-
lutionary methods, unwanted and redundant agents
can be removed, passing their responsibilities to other
agents.
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