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Diagonalization of ARMA
Stationary Autocovariance Matrices

R. Chinipardaz!

In this paper, the problem of diagonalization of the autocovariance matrices of stationary
processes is discussed. Basically, there is no explicit form for the diagonal matrices. An analytic
solution has been provided for stationary ARMA models based on Band matrices. The results
have been compared with Dargahi-Noubary [1] and Fuller [2] in a numerical study. It has been
demonstrated that the results are more accurate compared to Dargahi-Noubary [1] and Fuller [2]

approaches.

INTRODUCTION

Let y: = {y1,¥2,...,yr} be a random vector which
follows a stationary ARM A(p,q) process; i.e.:

®(B)Y; = O(B)e,

where ¢ is a zero mean white noise process with
variance o2 and:

®B)=1+aB+0o2B*+ - +a,B?,
O(B)=1+pB+ (B*+ -+ §,B9,

where a’s and 3's are real constants and B is backward
shift operator such as BY; = Y;_;. Suppose that the
stationary condition is satisfied. The covariance matrix
of the process is given by:

[Elrs = 0rs =7(Ir — s), (1)

which is a particular case of a Toeplitz matrix:
[E]rs = Ors = Or—s.

These matrices arise frequently in statistical works
as covariance matrices of wide-sense stationary pro-
cesses in time series analysis, stochastic processes,
nonparametric theory and some other areas. The
diagonal form of these matrices is often used to es-
timate parameters, likelihood function, discriminant
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analysis and many other features especialy in time
series.

In literature, some attempts have been made
to obtain an exact or approximate diagonal form for
producing expression for the elements of the inverse
of the covariance matrix and its determinent, e.g. [3-
9]. These approaches seem to require extremely heavy
calculations and involve cumbersome matrices opera-
tions.

Using the diagonal form, can also be considered
as involving eigenvalues and eigenvectors. It leads
to the eigenproblems which are available only for
special forms of matrices such as tridiagonal matri-
ces, symmetric band, circular and companion ma-
trices [10]. Dargahi-Noubary and Laycock [11] and
Dargahi-Noubary [1] considered the problem as a eigen-
problem and gave an approximately diagonal form us-
ing fast Fourier transform. A similar approach has been
considered in {12-14]. Fuller gave a complementary
approach to the full utilization of the covariance matrix
in time series. His approach is based on companion
and circular matrices. These two approaches made a
further restriction, circular covariance matrix, to the
stationary covariance matrix. It leads to a simple
calculation, but fairly standard, especially for short
processes (see [15]).

The purpose of this paper is to give an appropriate
expression for the elements of the diagonal form of
the covariance matrix and no more restriction has
been made to the stationary matrix. The approach
is based on a tridiagonal band matrix and eigenvalues
and eigenvectors. The paper is organized as follows:
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In the next section, the band matrix of width 2¢ + 1
is discussed and a close approximation is obtained
to the diagonal form of covariance matrix M A(q)
processes. The results are analytical and lead to
exact diagonal form for M A(1) processes. Then, the
attention is devoted to obtaining a diagonal form
to covariance matrix ARM A(1,1). Furthermore, two
important approaches to diagonalization (i.e. [1,2])
have been described.

Finally, a numerical comparison has been made
between this approach and those presented in [1,2]
to investigate the performance of the diagonaliza-
tion of the autocovariance matrix based on this ap-
proach.

DIAGONALIZATION OF THE
COVARIANCE MATRICES MA (q)

Consider the symmetric T x T band matrix, Bs, of
width band three given by:

g r==5
{Bglrs = Iy |7" — 3| =1 (2)
0 otherwise,

where z;,7 = 0,1 is a real number.
The rth eigenvalue of Bs given in Equation 2 is:
T
= + 2 —_— 3
§r = To + 221 008 (3)

and the normalized associated eigenvector of B3 given
in Equation 2 is:

¢ =4/ 2 sin — " sin 2rm sin——Tr7r
’ T+1 T+1  T+17777 7 T+1

(r=1,2,...,T). (4)

The T x T matrix of eigenvectors can be given by:

L,:{€17€27~-~ 7<T}' (5)

Therefore, the exact diagonal form can be obtained by:
L,BgL = A = diag{{l,ﬁg, e 7£T}~

For a M A(1) process y; = €;+ B¢;_1, the diagonal form
of the covariance matrix is:

(6)

rs

1+52+2ﬂCOSTT—:1 T=3s
[Al, = :
0 otherwise.

The symmetric T x T band matrix, Bag4+1, of width
2q + 1 is given by:

x\r—s| [T - S| S q

[BZ(H-l]rs = {O

otherwise.
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Tt is clear that a M A(q) process has a Bagy1 form with:

q—|r—s|

Tr_s = Z ﬁ‘rﬁr+|r—s|7
7=0

where By = 1. There is no diagonal form matrix for
Bs,41. However, Bj is approximately a symmetric
band matrix of band width 2¢ + 1 band with some of
the elements in the upper corner and the lower corner
slightly different. This leads to the approximation of
Byg41 by a polynomial in Bs of degree ¢. Chan [16]
in a numerical study has shown that the best matrix
with band 3 in the approximation of (2¢+ 1) symmetric
band matrix is given by:

B -1 |r—s]=1 )
[Bsl., = 0 otherwise,
(see also [17]). The approximation is then:
B2q+1 =~ col +c1Bs + Cng +---+ Cqu, (8)
where I 1s an T identity matrix.
The rth eigenvalue of £, = —2cos T’J’r‘l and the
associated eigenvector are as before. ¢y, c1,... ¢4 are

constants which can be obtained by equating X in
Equation 8.
For example in M A(2) processes:

$0:1+ﬂ%+ﬂ§,

xy = b1 + B1f,
1‘22527
r3=x4 = =zxp =0.

The covariance matrix can be approximated by a power
series of B3 given in Equation 8 so that:

co=1+B7+ 83 —2B, c1 = —Bi(l+B), c2=Po.

It is easy to show that only two elements [Bs];, and
[Bs|pp must be corrected to obtain an exact value.
Because:

LB}*L' = L(B3L'L)(B3L'L) ... (B3L'L)
= (LB3L')(LBsL").. (LB3L')y = A™,
the rth eigenvalue of ¥ = Bagy is:
LBygi1L' = col + ciAs + -+ cgAY,

where A™ is a diagonal matrix with the elements:

T )’VTL

r=s

0 otherwise.
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Therefore, the rth eigenvalue of Bagy1 is:

T k
T
Ar R E 2 — = T
2 c( cos 1> r=1,2,...,

Again the associated eigenvector is as before. The
approximately diagonal form for the covariance matrix
of M A(q) process is:

(Al = Do o (—2cos 7)* +0(3) r=s
rs O(#%) rts.

DIAGONALIZATION OF THE ARMA(1,1)
COVARIANCE MATRIX

An ARM A(1,1) process is given by:
Ty = Xy + Bes1 + € (t=1,2,...,T).

The elements of the covariance matrix of this model
are:

1+8% 4200 o2

T T=0
(Zg,0), =7(r)=q H2BAgtBl 52 7 -
ay(t — 1) T=23,...,T (9)

where 7 = |r — s|. After some algebra it can be shown
that:

o?

A7) =175 {1+ B)al" + Bl ol
(r=0,1,...,T —1). (10)

Diagonalization of the covariance matrix in ARM A
(1,1) process is usually considered in literature to
obtain the inverse of the covariance matrix. Many
authors have investigated the diagonalization of the
covariance matrix and have suggested very complicated
approximate matrices such as [4,7].

Without loss of generality consider o2 = 1. The
matrix in Equation 9 can be expressed approximately
as the product of the covariance matrix of the autore-
gressive process of order one and of the moving average
process of order one, i.e., X ~ AB, where:

[r—s| 1+p r=s
[A],s:f—_?, and [B],s=< 13 Ir—s|=1
0 otherwise, (11)

which can be easily obtained from Equation 10 for
r,s =1,2,...,T. Only some elements of the first row
and the first column have to be corrected to give a
precise matrix. The eigenvalues of a triangular band
matrix, Bs, with band width 3, have been derived.
However, the determinant of ¥ is more complicated
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since it is the product of a band matrix, B, and a
non band matrix, A. Calculating the roots of the
characteristic equation:
| — M|~ |AB - M|,
requires some algebraic matrix operation manipulation.
The approximate inverse matrix of A is given
in [4,17,18] as:
1+a?2 r=s
-1
[A],, = —@
0 otherwise.

|r—s|=1

Calculating the eigenvalues of [AB — M| is equivalent
to calculating the eigenvalues of |[B — AA |

Since A~! is positive definite, there exists an
orthogonal matrix such that E’A='E = I. Define
E = L where L is given in Equation 5. Since the
matrix A;! is a triangular band matrix, the following
can be given:

LAD'L = [LA7LY.,

1+ a? - 2acos T+1 r=s
0 otherwise

= (LATE)LAC Yy

_1
Now define the matrix F = LA, ?, consequently, F' =

A—1/2L’
and:
s TTH _
[F'BF|,s = Tfo?2acos 72y r=35
0 otherwise.

Due to the fact that B is a triangular matrix and LBL'
is a diagonal matrix given in Equation 6,

LY =~ LABL' = A, (12)
where A is a diagonal matrix of approximate eigenval-
ues of 3, i.e.:
1+ (3% + 28 cos == T+1
1+ a—-2acos 77

r & .
T+1

DIAGONALIZATION OF THE
COVARIANCE MATRIX OF AN ARMA(1,1)
PROCESS USING FULLER AND
DARGAHI-NOUBARY METHODS

There are other solutions suggested by different authors
like Fuller [2], Dargahi-Noubary and Laycock [11] and
Dargahi-Noubary [1]. In this section, the performance
of the diagonalization of the autocovariance matrix
based on (i) The L matrix method, (ii) Fuller approach,
namely the F matrix, and (iii) Dargahi-Noubary ap-
proach, namely the D matrix, will be studied.
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Fuller Approach

The T x T covariance matrix of a stationary process,
say © can be written as Equation 1. Fuller [2] made a
further assumption that the covariance matrix is such
that, v(7) = 7(T — 7) called a “circular autocovariance
matrix” which has been well used in simplifying many
analytical problems involving the covariance matrix.
Note that this is the covariance matrix of a circular
process, T4+t = Xt

This restriction on the process becomes less
as T increases (For properties of a circular process
see [15,19]). Since X is positive semidefinite covariance
matrix, there exists an F matrix such that F'F = I
and F'SF = A, where A is diagonal and X; (j =
1,2,...,T) are the characteristic roots of X. Fuller’s
investigation demonstrated that for large T, A; are
approximately equal to 27rf(w]) ‘where f(w]) is the
spectral density of x with w; = =22, (1 =1,2,...,T -
1). The matrix F' suggested by Fuller [2], for providing
an approximate diagonal matrix, is:

1

E r=1
[F,, = %cosﬂr—;ils— r=2.4,...,T-1
%sinﬂr;lsz—:ll r=3,5...,T. (13)

for odd n. When = is even, an additional row:

1
—[1,-1,1,...,1,1], 14
vl | (14)
is added to F. Fuller also proved that the elements of
F'SF converge to 2rA and every element of F'SF —
27 A is less than % in magnitude value, where d is a

finite and given by:

x

Y Il =d.

T=—00

Dargahi-Noubary Approach

Dargahi-Noubary and Laycock [11] and Dargahi-
Noubary [1] gave the discrimination of two stationary
processes in the spectral domain. Again they consid-
ered the processes to be circular. Dargahi-Noubary [1]
used the finite Fourier transform, which is defined as:

Wn((T)(Wn -

—itwn}

for the sequence {z;}, t = 1,2,... ,T where w, = .

The separation of the real and imaginary part leads to:
Wi (wn) n=0

\/_ReW (wn) n=12,...,k
VZImW T (w,) n=k+1,...,T -1,

CTNwn)=

R. Chinipardaz

where Re and Im denote real and imaginary parts,
respectively and T = 2k + 1. In fact the suggested
matrix for diagonalizing the autocovariance matrix is:

L r=1

V2
r=23,...,k (15)

D)., = cos%
singﬁ—_:—r@—s r=k+1,...,T.

7,8

Then, he showed that in this case,

[DEDJ=diagf(wo)f(wi)- -, flwr), f(wi) -, fwr)]

where f(w;) denotes the spectrum of x;.

NUMERICAL STUDY DIAGONALIZATION
OF THE COVARIANCE MATRIX OF
ARMA(1,1) PROCESSES USING FULLER’S;
DARGAHI-NOUBARY’S; AND THE L
METHOD

A numerical study was carried out to compare the
performance of the L method with those of Fuller and
Dargahi-Noubary. The first example is an ARM A(1, 1)
process with T = 5 for which then T = 20, 50 and
100 are used. The three approaches to diagonalize the
autocovariance matrix are:

1. LY L' where “L” is given in Equation 12,

2. FEF' where “F” is given by Fuller (Equation 13
or 14),

3. DTD' where “D” is given by Dargahi-Noubary
(Equation 15).

For each approach the sum of the principal diag-
onal elements (SPD) and sum of off-diagonal elements
(SOD) have been calculated and then the ratio of
the principal sum to the off-diagonal sum has been
considered as a criterion for comparing of the three
approaches.

Then the example was repeated for T = 3,
20, 50 and 100 with different values of parameters.
Results are shown in Tables 1 and 2. As can be
seen from the tables, L diagonalize ¥ better than
F or D for all values of o and $. In the case of
a = 0,ARMA(0,1)(i.e., MA(1)) it can be seen that
the elements of the off-diagonal LEL’ are zero. This
confirms the results found previously where it has
been shown that for the M A(1) processes the matrix
LYL’ is completely diagonal. Comparison between
Fuller approach and Dargahi-Noubary approach shows
that Fuller approach gives slightly better results. As
T increases both approaches provide better results.
However, in all cases the L-method is better than the
other two.
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Table 1. Comparison between Fuller, Dargahi-Noubary and the . methods in diagonalizing the covariance matrix of

ARMA(1,1), T =5, 20.

Ratio SPD over SOD (T = 5) Ratio SPD over SOD (T = 20)

o Jé) L F D L F D

0.2 0.2 324.876 24.124 1.897 228.244 1.117 0.715
0.2 0.4 102.104 7.582 1.802 71.734 1.047 0.735
0.3 0.7 182.419 20.066 1.956 125.640 1.115 0.733
0.1 0.8 55.010 2.010 1.297 39.084 0.710 0.654
-0.2 0.3 18.680 1.291 1.006 13.124 0.547 0.532
-0.4 0.8 5.202 0.556 0.524 3.635 0.266 0.311
-0.5 0.8 3.877 0.488 0.463 2.608 0.230 0.281
-0.1 -0.7 57.521 2.049 1.088 40.869 0.765 0.581
0.5 0.5 12.353 2.239 1.166 7.899 0.817 0.530
-0.2 -0.4 102.104 7.054 1.638 71.734 1.065 0.728
0.2 -0.7 13.018 0.912 0.654 9.357 0.430 0.344
0.1 -0.5 35.260 1.288 0.827 25.052 0.565 0.440
-0.8 -0.9 2.885 0.627 0.559 1.397 0.290 0.290
0.8 0.6 2.858 0.751 0.731 1.384 0.432 0.264
0.7 0.1 3.640 0.887 0.771 2.001 0.474 0.300
0.0 0.5 o0 1.688 1.179 o) 0.644 0.613
0.0 0.3 00 2.453 1.359 00 0.787 0.667
0.5 0.3 7.059 1.279 0.894 4.514 0.599 0.402
0.8 0.0 2.526 0.663 1.166 1.223 0.388 0.243
-0.5 -0.5 12.353 1.936 0.681 7.899 0.751 0.568

Table 2. Comparison between Fuller, Dargahi-Noubary and the L methods in diagonalizing the covariance matrix of
ARMA(1,1), T = 50, 100.

Ratio of SPD over SOD (T = 50) Ratio of SPD over SOD(T = 100)
a B L F D L F D
0.2 0.2 216.782 1.032 0.668 213.359 0.998 0.645
0.2 0.4 68.131 0.938 0.678 67.056 0.889 0.660
0.3 0.7 119.077 1.023 0.681 117.131 0.989 0.665
0.1 0.8 37.165 0.606 0.590 36.589 0.551 0.569
-0.2 0.3 12.465 0.462 0.473 12.268 0.417 0.454
-0.4 0.8 3.468 0.225 0.290 3.420 0.204 0.285
-0.5 0.8 2.482 0.201 0.262 2.447 0.184 0.257
-0.1 -0.7 38.862 0.646 0.552 38.260 0.585 0.543
0.5 0.5 7.421 0.695 0.497 7.283 0.632 0.488
-0.2 -0.4 68.131 0.951 0.684 - 0.901 0.671
0.2 -0.7 8.934 0.351 0.328 8.808 0.311 0.329
0.1 -0.5 23.822 0.467 0.414 23.453 0.417 0.406
-0.8 -0.9 1.240 0.253 0.233 1.201 0.233 0.218
0.8 0.6 1.229 0.352 0.231 1.190 0.312 0.221
0.7 0.1 1.835 0.388 0.271 1.791 0.344 0.261
0.0 0.5 [o3] 0.546 0.550 [=s] 0.495 0.529
0.0 0.3 oo 0.677 0.603 [=3) 0.620 0.582
0.5 0.3 4.241 0.494 0.372 1.051 0.441 0.363
0.8 0.0 1.086 0.314 0.211 12.353 0.279 0.200
-0.5 -0.5 7.421 0.648 0.505 7.283 0.595 0.485
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