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Research Note

Optimal Control of Service Rates
in Jackson Networks for Solving a
Bicriteria Optimal Control Problem

A. Azaron! and F. Kianfar*

Each dynamic job shop can be represented as a network of queues, in which each service station
indicates a machine or a production department. Now, assume that the service rates of these
service stations can be controlled. In this paper, a new model is developed for bicriteria optimal
control of service rates of all service stations in a class of Jackson networks, in which the expected
value of the shortest path of the network and, also, the total operating costs of all service stations
of the network, per period, are minimized. The expected value of the shortest path of such a
network of queues is equal to the expected value of the time that the first product is completed.
This is an important factor in production systems, because, related to design and manufacture
of a new product, the first manufactured product often has the maximum flow time, in effect,
which can be minimized through the model. The networks of queues analyzed in this paper, have
all the specifications of Jackson networks, except for not containing M/M/C queueing systems.

INTRODUCTION

One of the most important subjects in queueing theory
is the network of queues, because of its applications and
also due to the complexity of the subject. A network
of queues contains several service stations and each
customer should refer to some of them. Many problems
in the area of production or services can be formulated
in the form of queueing networks. Taking into account
the absence of the subject of the shortest path in the
research of queueing networks in the literature, the
method referred to here can be useful for solving many
problems in the areas of production systems, reliability
modeling and computer networks.

In this paper, a model is developed for optimal
control of service rates of service stations in a network
of queues in the steady-state, in which the expected
value of the shortest path of the network and, also,
the total operating costs of all service stations of the
network per period, are minimized. These networks of
queues have all the specifications of Jackson networks
except for not containing M/M/C queueing systems.
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Therefore, they only contain M/M/1 and M/M/co
queueing systems. Practically, if it is necessary to wait
for starting the service in a production department,
this could be represented by a M /M /1 queueing system
and, if enough servers exist in this production depart-
ment and it is possible not to wait in queue, a M/M/co
queueing system can be considered.

It is also assumed that the demand for each
product arrives at the source node according to a
Poisson process and the finished products leave the
system from the sink node.

If the service rates of the service stations or
machines are increased, the expected value of the
shortest path of the network will be reduced, but the
total operating costs per period will be raised, which
is undesirable. Therefore, a bicriteria problem should
be solved, in which the first criterion is minimizing the
expected value of the shortest path of the network and
the second criterion is minimizing the total operating
costs of all service stations of the network per period.

Finally, the weighted sum approach is used for
obtaining the optimal values of this bicriteria optimal
control problem, which is transformed into a bicriteria
nonlinear programming after discretization.

The length of a path in each network of queues is
the sum of the lengths of the nodes of the network,
in which the length of each node is equal to the
waiting time in the system. Although no papers
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could be found corresponding to the shortest path in
networks of queues, there are several papers available
concerning the distribution function of the shortest
path in stochastic networks. Martin [1] found the
distribution function of the shortest path and, also,
the expected value of the shortest jpath in stochastic
networks, in which the arc lengths are independent ran-
dom variables with polynomial distribution functions,
in the form of multiple integrals. Frank [2] computed
the probability that the time of the shortest path in the
stochastic network is smaller than a specific value. He
assumed that the arc lengths are continuous random
variables. Mirchandani [3] presented another method
for finding the distribution function of the shortest
path in stochastic networks. It is not required to solve
multiple integrals in this paper, but this method can
only be used in special cases where the arc lengths are
discrete random variables. Kulkarni [4] presented an
algorithm for finding the distribution function of the
shortest path in directed stochastic networks, in which
the arc lengths are independent random variables with
exponential distributions, based o1 continuous time
Markov processes. The framework of this paper is
used for finding the expected value of the shortest path
of the network of queues, after tra, sforming it to an
equivalent stochastic network.

There are several papers cor esponding to the
control of the parameters of the networks of queues.
Jordan and Ku [5] considered admission policies to
two multiserver loss queues in series with two types
of traffic. The first type requires service at the first
queue and enters the second queue with a positive
probability.  The second type requires service at
only the second queue. They showed that, under
appropriate conditions, the optimal admission policy
that maximizes the expected total discounted reward
over an infinite horizon, is given by a switching curve.
Schechner and Yao [6] considered the control of the
service rate at each node of a closed|Jackson network.
They assumed that for each node, there is a holding and
an operating cost. It was also assumed that both costs
are arbitrary functions of the number of jobs at the
node. The objective is to minimize|the time-average
expected total costs. They showed that an optimal
control, characterized by a set of thresholds (one for
each node), exists such that it is optimal for each node
to serve at zero rate, if the number of jobs is below the
threshold and to serve at maximum afllowed rate, when
the number of jobs exceeds the threshold. Lazar [7]
considered the special case of the |following model:
Two node cyclic networks with the service rate of one
node being controllable for the objective of minimizing
throughput. Lazar showed that there exists one opti-
mal control of the threshold type. Tseng and Hsiao [§]
analyzed the optimal control of arrival at a two-station
network of queues for the objective of maximum system
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throughput under a time-delay constraint optimality
system criterion. They showed that the optimality
problem is formulated using dynamic programming
with a convex cost function. Shioyama [9] developed an
optimal control problem in a queueing network system.
The system consists of the first stage with a server
and the second stage with two servers. Two types
of customers are first served at the first stage server
and, subsequently, proceed to the queue at the server
corresponding to their types in the second stage. When
the first stage server completes a service, he determines
the type of customer to be next served. The optimal
control problem is to select the type of customer to be
next served, in order to minimize the expected cost per
hour. He formulated the problem as an undiscounted
semi-Markov decision process.

In these papers, nothing is found regarding con-
trol of the queues’ parameters for minimizing the
expected value of the shortest path of the network
of queues, which is an important factor in production
systems. In the next section, a method is presented
for transforming the network of queues to a stochastic
network. Then, the framework of the bicriteria optimal
control is described. Subsequently numerical example
is solved, followed by the conclusion.

TRANSFORMING THE NETWORK OF
QUEUES TO A STOCHASTIC NETWORK

The main steps for transforming the network of queues
to a stochastic network are as follows:

Step 1: Compute the density function of the waiting
time in system for each node, taking into
account the relations of the queueing theory;

Step 2: Transform the network of queues to a stochas-
tic network by transforming each node that
contains a service station to a stochastic arc
corresponding to the waiting time in system.

In this step, suppose that the arcs by,by,--- b,
end at the service station of the node k and the arcs
di,da,- - ,d,, start from that node and the waiting
time in system for this service station is equal to T}.
In the transformed network, node & is transformed to
an arc (k',k") with the length of T}, in which node
k' settles between the arcs b; for i = 1,--- ,n and arc
k and node k" settles between arc k and the arcs d;
for j = 1,---,m. Therefore, a network of queues is
transformed to a stochastic network. The indicated
process is the opposite of absorbing an edge in a graph
(G.e) (see [10] for more details).

Now, Let G = (V, A) be a directed network. Let
V represent the set of nodes, A the set of arcs of the
network and s,¢ the source node and the sink node
of the network, respectively. Let I(u,v) represent the
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Figure 1. The network corresponding to the above
example.

length of arc (u,v) € A, which is an exponential ran-
dom variable with the parameter A(u,v) (the expected
length of arc (u,v) is equal to 1/A(u,v)).

For constructing the proper stochastic process, it
is convenient to visualize the network as a communi-
cation network with the nodes as stations capable of
receiving and transmitting messages and arcs as one-
way communication links connecting pairs of nodes.
As soon as a node receives a message over one of the
incoming arcs, it transmits it along all the outgoing
arcs and then disables itself. Now, let X(¢) be the set
of all disable nodes at time ¢.

Definition 1

For describing the evolution of the stochastic process
{X(t_),t > 0}, for each X C V, in which s € X and
t € X =V — X. These sets are defined as follows:

1. X; C X is the set of nodes that do not belong to X,
in which each path that connects each node of this

set to the sink node ¢, contains at least one member
of X;

2. S(X)=XUX,.
Example

In the network shown in Figure 1, if one considers
X ={1,2}, then X; = ¢ and S(X) = {1,2}. Now,
consider X = {1,4}. The only path that connects
node {2} to node {5} passes through node {4}, but
for node {3} there is a path that does not include
any nodes of X. Therefore, X; = {2} and S(X) =
{1,2,4}.

Definition 2

N={XCcV/seX,te X,X =S(X)}, (1)
Q' =QUV. (2)

In the above example, O* = {(1),(1,2),(1,3), (1,2,3),
(1,2,4),(1,2,3,4),(1,2,3,4,5)}.

Pefinition 3

If X C V such that s € X and ¢t € X, then a cut is
defined as:

C(X,X)={(v,v) € AJlue X,ve X}. (3)

There is a unique minimal cut contained in C(X, X).
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Denote this cut by C(X). If X € Q then C(X,X) =
c(X).

It is shown that {X{(¢),t > 0} is a continuous
time Markov process with state space Q* and this
infinitesimal generator matrix @ = [¢(X,Y)](X,Y €
2*) (see [4] for more details):

Alw,v) HY =S(XU{v})
(u,v)EC(X)
gX,v)y=<{- > Au,v) fY=X
(u,v)eC(X) (4)
0 otherwise.

Let T represent the length of the shortest path in the
network. If 1is considered as the initial state and NV as
the final state of the stochastic process {X(t),t > 0},
it is clear that T = min{t > 0: X (t) = N/X(0) = 1}.
Thus, the length of the shortest path in the network is
equal to the time until {X(t),¢ > 0} gets absorbed in
the final state starting from state 1. It is required to
compute F(t) = P{T <t} or the distribution function
of the shortest path in the stochastic network. The
Chapman-Kolmogorov backward or forward equations
can be applied for computing F'(¢). Using the backward
algorithm, the following is defined:

Pi(t) = P{X(t) = N/X(0) =4}, 1<i<N.

(5)

Therefore, F(t) = P;(t).
The system of differential equations for vector
P(t) = [Pi(t), Pa(t), - , Pu(8)]T is given by:

P'(t) = Q.P(t),
P(O) = [050, Tt 71]T’ (6)

where P(t) represents the state vector of the system
and @ is the infinitesimal generator matrix of the
stochastic process {X(t),t > 0}. Owing to the
upper triangular nature of ), the above differential
equations can be easily solved by using an analytical
or a numerical method. Therefore, if the waiting time
in system for each service station is an exponential
random variable, after transforming the service stations
to the arcs, the above results can be utilized for finding
the distribution function of the shortest path in the
network of queues.

Networks of Queues with M /M /oo Queueing
Systems

The simplest case for finding the shortest path is a net-
work with all of its nodes containing M /M /oo service
stations. In this case the waiting time in system, is
equal to the service time with exponential distribution
because there is no queue. Therefore, each node that
contains a service station with service rate g can be
transformed to an exponential arc with parameter p,
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as mentioned previously. Then th
can be applied to obtain the diff
corresponding to the state vector of
solving these equations, the distribut
shortest path in the network is obta

Networks of Queues with M /M
Systems

In this case, the density function of
in system, in each M /M /1 service s

w(t) = (p—ANe BNV >0,

e previous results
erential equations
the system. After
ion function of the
ined.

/1 Queueing

the waiting time,
tation is:

(7)

where A and p represent the arrival and service rate

of the service station, respectively.

Therefore, the dis-

tribution of the waiting time in system, is exponential

with parameter (4 — A\). Each no
M/M/1 service station can, therefo

le that contains a
re, be transformed

to an exponential arc with parameter (u — A) and

the distribution function of the sh

ortest path in the

network found, according to the proposed method.

FRAMEWORK OF THE BICRITERIA
OPTIMAL CONTROL PROBLEM

Each dynamic job shop system can

be represented as

a network of queues, in which each service station

indicates a machine or a production

department. Now,

assume that the service rates of these service stations

can be controlled. It is also assume

1 that the demand

for each product arrives at the source node according

to a Poisson process and the finished
system from the sink node. Assume
products which are produced by the

products leave the
that the number of
system is equal to

m. It is clear that each product spends a time equal to

the waiting time in system, in each
station. Now, assume that there
processes for producing product 7
process corresponds to one path
queues). Therefore, path ¢, of the
i=12---,mand j = 1,2,---
production process for producing
example, consider a dynamic job s
is represented as the network of

Figure 2. Assume that 2 products

this production system. Path 1;

machine or service
are N; production
(each production
f the network of
network of queues
N;) indicates jth
product ¢. For
hop system which
queues shown in
are produced by
=1-2-4-6

indicates the unique production process for producing

| O,
g
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Figure 2. The dynamic job shop system.
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product 1 and path 2 =1 -3 — 4 — 6 and, also, path
22 = 1-3 -5 — 6 indicate two production processes
for producing product 2.

Representing T;; as the completion time of prod-
uct ¢ through production process j,C; as the comple-
tion time of the first finished product ¢ and T as the
time of the shortest path of the network, this relation
is obtained for each C;:

Ci = min{Tij}, ] = 1,2, ,Nl (8\I

Therefore, it is concluded that:

T =min{C;}, i=1,2,---,m. (9)
Therefore, E(T) or the expected value of the shortest
path of such network of queues is equal to the expected
value of the time that the first product is completed.
E(T) is an important factor in production systems
because, related to design and manufacture of a new
product, the first manufactured product has often the
maximum flow time. Therefore, if E(T") is minimized,
the maximum flow time or Fj,.x will be minimized,
which is an important performance measure in produc-
tion systems. Also, if there should be a process type of
layout, in which this production system would produce
other products except the new products, the first new
manufactured product would have to wait for service
in common facilities.

If the service rates of the service stations or
machines were increased, this factor would be reduced,
but C or the total operating costs per period would
be raised, which is undesirable. Therefore, a bicriteria
problem should be solved in which the first criterion
is minimizing the expected value of the shortest path
of the network and the second criterion is minimizing
the total operating costs of all service stations of
the network, per period. Finally, the weighted sum
approach is utilized for obtaining the optimal values
of this bicriteria optimal control problem, which is
transformed to a bicriteria nonlinear programming
after discretization.

When the service rates of the service stations are
constant then, after transforming the network of queues
to the corresponding stochastic network, the expected
value of the shortest path of the network or E(T") can
be obtained from the following equation:

E(T) = /0 T - P, (10)

where Py (t) is computed from Equation 6, as described
before.

Now, assume that the service rates of the service
stations of the network can be controlled and the
operating cost of each service station is a linear function
of its service rate. Let b; represent the goal for the
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expected value of the shortest path of the network and
by represent the goal for the total operating costs of
all service stations of the network per period. E; and
E, are free variables, which represent the deviations
from the first and the second goals. Let w; and ws
represent the weights corresponding to the deviations
from the first and the second goals. Let A(7) represent
the set of adjacent nodes of node ¢. Let r;; represent
the probability that the product, whose service was
finished in the service station settled in node ¢, goes
to the service station settled in node j € A(:). Let
A; represent the rate of arrival process to the service
station settled in node i, u; represent the service rate
of the service station settled in node 7 and ¢; represent
the cost of increasing the service rate by one unit. The
values of u; are the controllers of the system and the
values of ¢; are the coefficients of y; in the second
criterion. The other assumptions are as follows:

1. The total number of M/M/1 and M /M /oo service
stations settled in the network of queues is equal to
n;

2. The demands for all products arrive at the source
node according to the Poisson process with the rate
A, in which r; percent of this rate 1 = 1,2,--- ,m
would be the rate of demand for product i;

3. The values of r;; for all 7 and j € A(¢) are indepen-
dent from the state of the system and are determined
by the manager of the production system, taking
into account the limitations of the system and the
demands of the products. It should be noted that
each )\; is computed from the following equation:

A= ridy, i=2,8 (11)
i=1

Taking into account the above assumptions, the
infinitesimal generator matrix @ is not constant and is
a function of the control vector g = [u1, p2,- -, tn] 7.
Therefore, the system of differential equations for the
vector P(t) = [Pi(t), P2(t),- -+, Pn(t)]7 is given by:

P'(t) = Q(u)-P(t),
P(0)=0 i=1,2--,N~1,
Py(t)=1. (12)

Representing A as the set of nodes which contain
M/M/1 service stations and B as the set of nodes
which contain M /M /oo service stations, the following
relations should be satisfied to exist the response in the
steady-state:

i > A 1€ A,

>0 1€ B. (13)
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There are no such constraints in mathematical
programming. Therefore the following constraints
are used instead of ones in the final optimal control
problem:

Hi>Ai+e €A,

i€ B. (14)

Taking into account the above notations and
assumptions, the appropriate model to satisfy the
indicated goals is:

min Z = w1 By + wo Es

Wi > €

s.t.:

/oo(l — Pi(¢))dt — B = b,
0

n
Zciui — E3 = bs,
i=1

P'(t) = Q(u).P(t),
P(0)=0 ¢=1,2,---,N -1,
PN(t) =1,

Wi>A+e i€A,

pi>2¢e 1€ B,
P(t) >0,
E,,E, f{ree variables. (15)

This optimal control problem can be made dis-
crete and transformed into a nonlinear programming.
For this purpose, the differential equations should be
transformed into the equivalent difference equations
and, also, the integral term should be transformed
into the equivalent summation term. Therefore, the
continuous-time system P'(t) = Q(u).P(t) is trans-
formed into the following discrete-time system by divid-
ing the time interval into K equal portions with length
of At (see [11] for more details). If At is sufficiently
small, it can be assumed that P(t) varies only in times
0,At,- - ,(K—1)At. Therefore, if P(kAt) or kth value
of P is considered as P(k), the related discrete-time
system would be:

Pk +1)=P(k)+Q(n).P(k)At,

k=01, K —1.

(16)
If this procedure is continued, the constraint corre-
sponding to the first goal is transformed into the
following constraint:
K
> (1 - Pi(k)At - Ey = by. (17)
k=0
Finally, the optimal value of the control vector u =
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[/1'1,/1% e 7un]T
lowing nonlinear programming:
min Z = w1 By + we By
s.t.:

K
Z(l — Pi(k))At — E; = by,
k=0

n
Zciﬂi — E; = by,
=1

P(k +1)=P(k)+Q(n).P(k)At,

k=0,1,--- K1,
P(0)=0, i=1,2,---,N—-1,
Py(k)y=1, k=0,1,--- K,
Wi > A +e, 1€ A,
i > €, 1€ B,
P(k)>0, i=1,2---,N—1,
E\,E;, free variables.

It is understood that each Pi(t)
N, in the continuous-time system

is obtained through solving the fol-

’CZO,I,"' va
(18)

,fori=1,2,---,
is a distribution

function. Therefore, the following relation should be

satisfied:

lim P(t)=1, i=1,2,---,N,

t — oo.

Consequently, each P;(k), for i =

the discrete-time system should also
erty. This means that the following
1,2,---, N should also be satisfied:

P,,(KAt) >~1].

It is clear that when K At — oo, Relat
On the other hand, At should be
because of the accuracy of transforn
tial equations to the equivalent diff
Therefore, for increasing the accuraqg
time model, K should be large.
If the following constraints ar

the other constraints, nonlinear pro
tions 18) would have K(N —1)+n +
K(N —1) + 2n + 2 variables,
P;(0) =0,

1=12,-- ,N—-1,

(19)

1,2,---,N, in
posses this prop-
relation for i =

(20)

ion 20 is satisfied.
sufficiently small,
ning the differen-
erence equations.
y of the discrete-

e combined with

gramming (Rela-
2 constraints and

(21)

A. Azaron and F. Kianfar

NUMERICAL EXAMPLE

Consider the network of queues shown in Figure 3 and
the characteristics of the service stations in Table 1.
There are no service stations in node 5. The other
assumptions are as follows:

1. This production system produces only one product
and the demand for this product reaches to the
source node, according to Poisson process with the
rate A = 2;

2. Each product whose service is finished in the ser-
vice station settled in node 1 goes to one of the
service stations settled in node 2 or 3 with equal
probabilities. This means that ry = r;3 = 0.5.
Therefore, taking into account the Relation 11, the
rate of arrival process to each service station can be
easily computed.

Now, each node that contains a service station
is transformed into one arc whose length is equal to
the waiting time in system, for this service station.
Therefore, the network of queues is transformed into
a stochastic network shown in Figure 4.

In the above network, arc 1 indicates the waiting
time in system, in M/M /oo service station settled in
node 1 of the network of queues, which has exponential
distribution with parameter u;. Arc 2 indicates the
waiting time in system, in M/M/1 service station
settled in node 2 of the network of queues, which
has exponential distribution with parameter (u, —
1). Arc 3 indicates the waiting time in system,
in M/M/1 service station settled in node 3 of the
network of queues which has exponential distribu-
tion with parameter (pz — 1). Arc 4 indicates the
waiting time in system, in M/M/1 service station

O

Figure 3. The network of queues corresponding to the
numerical example.

Table 1. Characteristics of the service stations.

Node | Type of Service Station | Service Rate
1 M/M/o M1
2 M/M/1 12
3 M/M/1 13
4 M/M/1 L
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Figure 4. The stochastic network corresponding to the
numerical example.

settled in node 4 of the network of queues, which
has exponential distribution with parameter (ugq —

1).

The indicated stochastic process {X(t),t > 0}
has 4 states in the order of * = {(1),(1,2),
(1,2,3),(1,2,3,4)}. Table 2 shows the infinitesimal
generator matrix Q(u).

The appropriate nonlinear model to find the
optimal value of the control vector p = [u1, pa, p3, pa)7,
after combining the constraints Py(k) = 1 for k =
0,1,---, K with the other constraints, would be:

min Z = w Fy + we Bs
s.t.:

K
Z(l = Pi(k))At — Ey = by,

k=0

4
Zciui — By = bo,
i=1

Py(k+1) = Pi(k) — pu Py (k)AL + 1 Py()At,
k=01, K —1,
Py(k + 1) =Py(k) — ua Pa(k)At — us Py (k)At
+ 2Py (k)At + pa Py(k) At — Py(k)At
+ up At — At,
k=01, K1,
P3(k +1) =P3(k) — 2 Ps(k)At — pa P3(k)At
+ 2Py (B) At + pa At + pa At — 2At,

k=01, K —1,
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P(0)=0 :=1,2,3,
H1 2 €,
Wi >14+¢e, 1=2,3,4,
Pi(k)>0 1=1,2,3, k=0,1,--- K,
Ey, E; free variables (22)
The values of ¢; are:
c1 =20, ca =12, c3 =10, ¢4 = 15, (23)

It is also assumed that b; or the determined goal
for the expected value of the shortest path of the
network is equal to 4 and b, or the determined goal
for the total operating costs of all service stations of
the network per hour, is equal to 20. The values of
other parameters are:

wy = 0.5, Wz = 0.5,

K =8, At=3, e =0.05. (24)

GAMS is used to solve Nonlinear Program-
ming 22. Table 3 shows the optimal values of P;(k)
fori=1,2,3and k=0,1,---,8.

Table 4 shows the optimal values of yu; for ¢ =
1,2,3,4 and also the optimal values of E; and Es.

The optimal values of E(T), or the expected value
of the shortest path of the network of queues and C, or
the total operating costs of all service stations of the
network of queues per hour, would be:

E(T) = E; + b; = 8.01106,

C = E; + by = 46.1495. (25)

CONCLUSION

In this paper, a model is developed for optimal control
of service rates of the service stations, in which the
expected value of the shortest path of the network and,

Table 2. Matrix Q(u) corresponding to the numerical
example.

State| 1 2 3 4
1 —H1 1 0 0
2 —p2 ~pz +2 ps —1 pe —1
3 0 0 —p2— pa 2| gt pa — 2
4 0 0

Table 3. The optimal values of P;(k) fori =1,2,3 and k =0,1,--- ,8.

k 0 1 2 3 4 5 6 7 8
Pi(k) | O 0 0.55232 | 0.85073 | 0.95065 | 0.98370 | 0.99462 | 0.99822 | 0.99941
Pa(k) | 0 | 0.82463 | 0.99786 | 0.99991 | 0.99999 | 0.99999 1 1 1
Ps(k) | 0 | 0.97463 | 0.99936 | 0.99998 | 0.99999 | 0.99999 1 1 1
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Table 4. The optimal values of u; for 4=1,2,3,4 and E;

for1=1,2.

K1 H2 Hs Ha E, E2

0.22326

1.27488 | 1.06358 | 1.05 | 4.01106 | 26.1495

also, the total operating costs of the service stations of
the network, per period, are minimized.

This model can be used for solving several prob-

lems in the fields of transportation networks, computer

networks and production systems.

In production

systems, the expected value of the shortest path of the
network of queues would be equal to the expected value
of the time that the first product is completed. This

factor is important in production
related to design and manufacture

systems, because,
»f a new product,

the first manufactured product has often the maximum
flow time, which can be minimized through the model-

presented here.

This optimal control model was transformed into

a nonlinear programming and, finally, the optimal
values of the system controllers were obtained by a
multi-objective optimization technique.

The limitation of this model ig that the number

of constraints of Nonlinear Programming 18 can grow

exponentially with the network size.

In the worst

case scenario, for a complete transformed directed
network with [ nodes and (I — 1) arcs, the size of the

state space would be 212 + 1 and,

consequently, the

number of constraints of the mentioned model would be
K(2'72?) +n + 2. Therefore, the number of constraints

grows exponentially with I.

directions:

1. It could be considered that the
not constant values, rather they

The model can be extended| in the following

values of r;; are
could be system

controllers, like the service rates and they could be
optimally controlled. In this case, the distribution

of the demand for each product

could be optimally

controlled in the related production processes.

2.

A. Azaron and F. Kianfar

The arc lengths among the service stations could
be considered as independent random variables with
exponential distributions. These lengths would be
the transportation times among the departments or
machines.

3. The model could be extended to the networks of

queues with non-Markovian queueing systems, such
as M/G/1,G/M/1 and M/G/cc.
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