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jes are examined when the firms do not have accurate information
the mathematical model is formulated, the local asymptotical stability
ed under realistic conditions. Instability occurs when information lag
of limit cycles is examined, based on the Hopf bifurcation theorem.

time lags in obtaining and implementing information
on the rivals outputs.

This paper is developed in the following manner:
First, the mathematical models will be introduced.
Then, discussion reqarding the asymptotical behavior
of the equilibrium is presented which is followed by the
conclusion.

MATHEMATICAL MODELS

Assume that n firms produce the same product, or offer
the same service, to the same market. The decision
variable of each firm is the volume of its output, z;.
Assume that the cost function of firm 7 is ¢;(z;), which
is assumed to be known exactly by it. Let f be the
unit price function, which depends on the output of
the industry, @ = Z?=1 z;. Therefore, the profit of
firm 7 can be given as:

(21,3 Zn) = Tif Zil?j - ¢i(@i). (1)
7=1

Let Q; = ;, z; denote the output of the rest of the
industry, then this profit function can be rewritten as:

7i(2i, Qi) = zi f(xs + Q:) — ci(zs). (2)

In the theory of oligopoly, it is usually assumed that
functions f and c¢; are twice continuously differentiable.
Furthermore, for all z; 2 0 and Q 2 x;,

z:.f"(Q) + f(Q) <0, (A)
Q) (B)

These two assumptions imply that =; is concave in z;
with fixed values of @; and, if each firm has bounded
capacity, then the Nikaido-Isoda theorem implies that
there is at least one equilibrium z* = (z7,...,2})

- c(z;) <0.
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(e.g. [4]). It satisfies the following condition for all 4
and feasible z;,

* * * *
‘pi(xl""7zi—1axiaxi+1""7zn) g

wi(mf,...,:z:f_l,a:f,forl,...,x;). (3)

This condition shows that none of the firms can im-
prove its profit by changing its output from equilibrium
level 7. For any given value of Q;, the best response,
or reaction, of firm ¢ is the output z;, that maximizes
its profit (Equation 2). The first order conditions are:

f(zi + Q) + i f (i + Qi) — ci(mi) =0, (4)

where corner optimum is excluded. The second or-
der condition is satisfied by Conditions A and B.
Let R;(Q;) denote the best response function. Its
derivative can be obtained by implicitly differentiating
Equation 4 to get:

Q)+ f"(Q)

Q)= =550y + e (@) - e ®)
Conditions A and B imply that:
-1< RYQ;) <0. (6)

A vector x* = («%,...,2}) is a Nash-equilibrium if and
only if, each component z} is a feasible output of firm
1 and:

=R (> 27|, (7)

j#i

for all i. The computation of any positive equilibrium
is based on solving Equation 4 fors = 1,2, ..., n, which
is a special system of nonlinear algebraic equations. By
rewriting Equation 4 as:

Q) +z:f(Q) — ci(zi) = 0, (8)

and noticing that the left hand side is strictly de-
creasing in x; with fixed values of Q, it can be seen
that in the neighborhood of the equilibrium, z; is a
single-valued function of Q,z; = ¢;(Q), which can be
determined by the repeated solution of Equation 8 with
a set of Q) values. The derivative of function g can be
also obtained by differentiating Equation 8 with respect
to @ implicitly to have:

Q) +z:f"(Q)
(@) — ¢f(z:)

as a consequence of Conditions A and B. Next consider
the single-variable nonlinear equation:

9:(Q) = -

<0,

Q- g:(Q) =0. 9)

231

The left hand side is strictly increasing in Q, so this
equation can be solved by simple methods, such as
the bisection or secant method. Let Q* denote the
solution, then 2} = g;(Q*) gives the ¢th component of
the equilibrium point fori =1,2,...,n.

Assume next that the firms cannot assess the price
functions accurately. Firm ¢ (z =,1,2,...,n) believes
that the unit price function is some f; instead of the
true price function f. However, each firm observes
the market price and estimates the output of the rest
of the industry by computing it based on the unit
price received and its own output. If Q¢ denotes the
estimated total output of the rivals, then the unit price
equals:

f(zi+ Qi) = fi(z: + Q7),

which implies that:

Qf = (fitof) (i + Qi) — zi. (10)

The believed reaction function of firm i is the output
that maximizes its believed profit:

T2 (26, Q%) = mi fi(mi + QF) — i), (11)

By assuming that Conditions A and B are satisfied with
fi replacing f and by excluding corner optimum, it
can be seen that the believed reaction function z; =
REB(Q:) satisfies equation:

filzi + QF) + zifi (i + QF) — ci(z:) = 0. (12)
Differentiate this equation implicitly to see that

RP'(Q%) has the same form as Equation 5 with f;
replacing f, so:

—-1< RE'(Q%) <. (13)
Assume now that each firm adjusts its output into

the direction of its best response, then the following
dynamic equations are obtained:

() = ki(RP (Q5 (1)) — ma(t)),
where Q¢ is given in Equation 10 and k; > 0 is a given

constant. Hence, the resulting dynamic system can be
written as:

=1

zi(t)=k; RlB i_lo ; i(t —:v,-(t)) —zi(t)]
(t ((f o( X 200) "

fori=1,2,...,n.
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Example 1

Assume that each firm has a linear cost function,

ci(xi) =a;x;+b;, 1=1,2,...,

n. Let Q = d(p) denote

the market demand function and assume that each firm

mistakenly believes that the demand
wheree;, 1 =1,2,...,
or larger, than 1. The believed pric

i is the solution of equation Q = &;d

- (8)-1(2)

therefore, the following is obtained:

.MQ)=f<§>.

Notice that f;?

f (?—) =p,

function is £;d(p),

n, is a positive parameter smaller,

e function by firm
p) which is:

(15)

(p) is the solution of| equation:

which is :

Q =e:f " (p) = cid(p)- (16)
Therefore, from Equation 10 it is observed that:

Q¢ =ei(z; + Qi) — i = (ei — 1)z + Qs (17)

The believed reaction function is the solution of Equa-

tion 12, which has now the special f

f<:c1+Q >+ T g <x1+Q€>
£; €;

Drm:

-ai=0,

and if this equation is compared with Equation 4 it is

concluded that:

2n(2)
[ [

implying that:
RP@0) = e (L)

Based on Equations 17 and 18, §
rewritten as follows:

e —
kile:Ri | =

ii(t)=

mz +Zx

J#i
fori=1,2,...,n

(18)

ystem 14 can be

)| —=:(t) ],
(19)

As a particular case, assume that f(Q) = g %0

by assuming positive reaction the try
of firm ¢ is the solution of Equation
the form:

A4
i + Qs (i + Q)2

—ai:0,

e reaction function
4, which has now
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implying that:

Q2% g,

Any positive equilibrium is, therefore, the solution of
the following system of nonlinear algebraic equations:

As a further special case, assume that the marginal

(20)

sz ,t1=1,2,...,n

J#i

costs, a;, of the firms are identical, a; = -+ = a, = a.
Then, any symmetric equilibrium (z*,...,2*) is the
solution of equation:

A

z=14/=(n -1z~ (n-1)z,

a

that is:
An-1
P A1) (21)
an?

Next, the symmetric steady-state of dynamic Sys-

tem 19 will be found. If & = ---
any symmetric steady-state (z*(e),...,
solution of equation:

xza(\/?}(e—l
_(€;1x+(n—1)x)>,

which is:

= ¢, = ¢, then
z*(e)) is the

z+(n— 1)x)

A(ne — 1)

aen? (22)

z*(e) =
Notice that if ¢ # 1,z*(e) # z* showing that the
inaccurate knowledge of the price function results in
a different system equilibrium.

In the following sections, the asymptotic proper-
ties of the solutions of the dynamic System 14 will be
examined.

ASYMPTOTIC BEHAVIOR WITHOUT
TIME LAGS

In this section, it is assumed that, at each time period,
instantaneous information is available to all firms about
their own outputs, as well as about the unit price
obtained by the industry. This is the situation that
is described by System 14. The asymptotical behavior
of its solutions can be examined by investigating the
locations of the eigenvalues of the Jacobian at the
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steady-state. For the sake of simple notation, let
h: = f7lof. Notice that in the case of exact knowledge
of the price function, h; is the identity function. Simple
differentiation shows that:

kylrihi 1)) kyrihy kyrih
k‘z T9 h'2 kg(’l‘z(hé—l)——l) kz T2 h'2
J= . . . )
knrnhl, kntnhl, oo kalra(hl 1))
(23)
where:
m=r(Eae),
j=1
and:
r; = RF’ (hi (Z T} (g)) - acf(g)),
j=1
with ¢ = (¢1,...,€n). Notice that J has a special
structure:
J=D+al”,

with 17 = (1,1,...,1), D = diag (ki(r1 +1),...,
—kn(rn, +1)) and:

kl’l‘lhll
korohl,
a= 2121y
knrnhl,
It is realistic to assume that both the true and the
assessed price functions are strictly decreasing, so hi
strictly increases, implying that h; > 0 for all i.
Similarly, from Relation 13 it is known that r; < 0
and r; + 1 > 0. The characteristic polynomial of J can
be written as follows:

det (D+al7—AI) =det(D—Al)det(I+(D~M)~"al”)

= det(D - AD[1 +17(D — A)™'d]
= kirih!
et '(L_ —k,'-,; ) 1 '—)\ 1 ——:'1—_ )
(24)
where the fact was utilized that with any u, v € R,

det (I +w™) =1+,

which can be proved by finite induction with respect
to n.
The main result of this section is as follows.
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Figure 1. The graph of function g.

Theorem

Under the conditions given above, any positive steady-
state of System 14 is always locally asymptotically
stable.

Proof

It is sufficient to prove that all eigenvalues of J are real
and negative. Notice first that for all 4, —ki(ri + 1) <0,
so the roots of the first factor are all negative. The
bracketed factor can be rewritten as:

Wy

g(/\)=1+;5j_/\,

where 6; < 62 < < &, denote the different
—ki(r; + 1) values and wj = 3° ;) ki (ri+1)=5,} kbl <
0. Clearly, limy—4+00g(A) = 1,limy—s;+09(A) = Fo0
and:

j=1 "7

The graph of function g is shown in Figure 1. Equation
g(A) = 0 is equivalent to a polynomial equation of
degree s and there is a root before 6; and a root between
each §; and §;41,7 =1,2,...,8 — 1. Hence, s negative
roots were found. Since there are no more roots, the
proof is complete.

Remark

The believed price function f; can be a very inaccurate
approximation of -the true price function. If f and
f; (i = 1,2,...,n) satisfy Conditions A and B and
are strictly decreasing, the assertion of the theorem
remains true.
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ASYMPTOTIC BEHAVIOR WITH TIME
LAGS

In the case of the model of the previous section it was
assumed that at each time period each firm knows the
instantaneous price. This assumption is not realistic,
since price information is given to the manufacturers
by the retailers and other sellers |with some delay.
The exact value of the delay is usually not known, so
continuously distributed lags were assumed. The firms
do not observe Q; directly, since they do not know the
exact price function. Instead of Q;|the values of Q:,
given in Equation 10, are only observed with delay. As
in [5] a weighted average of past values is assumed:

Q:P(t) = / it = 5, Ts, ma)Q2(s)ds, (25)

where the weighting function is assumed to have the
form:

w(t —s,T,m) =

Le=7 if m=0
m mo_m—s) |,
#(T)m-'.l(t—s) € T 1fm Z 1. (26)

Here, T is a positive real parameter |and m 2 0is an
integer. Notice that this weighting function has the
following properties:

i) The area under the weighting function is unity for
all T and m;

ii) For m = 0, weights are exponentially declining
with the most weight given to the most current
value. If m 2 1 then zero weight is given to the
most current value, rising to maximum at t—s = T°
and decreasing exponentially afterwards;

iii) As m increases, the weighting function becomes
more peaked around ¢t — s = T.|As m — oo, the
weighting function converges to the Dirac delta
function centered at t — s = T

iv) As T — oo, the weighting function tends to the
Dirac delta function for all m > .

With delayed information, dynamic System 14 is
modified in the following way:

2.(t) = ki(RE(QP (1)) — (1)),
i=1,2,...n, (27)
where Q¢P(t) is given in Equation|25. This is a

system of nonlinear integro-differential equations, the
asymptotical behavior of which can be examined by
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linearization. The linearized equation can be written
as:

Ti5(t) =k; (r,-./otw(t - s,Ti,mi)<h§. izﬂ(s)
j=1

- m(s)) ds — a:ig(t)), (28)

where 7; and h} are the same as in the previous section
and z;s is the deviation of z; from its steady-state level.
As in [6], the solution is sought in the form:

ris(t) = vieM, j=1,2,... n. (29)

Substitute this solution into Equation 28 and let t — oo
to have:

] ~(mi+1)
[A+ki(1—ri(h’—1)(’\q; +1) )} v,

T: —(mi+1)
_k,-’l"ih; ()\ — + 1) Z v; =0, (30)
% i
where:
_ 1 ifm; =0
%= m; ifm;21.

Notice first that this equation can be rewritten in the
following way:

. m;+1
[()\ + k;) (/\TZ + 1) ~kiri(h; — 1)] 2
- k,;?"ihi ZI/J' = O,
J#i

which is equivalent to the determinant equation:

A1(A) Bi(d) ... Bi())
By(A) A2(A) ... Bay(})
det | . : .| =0, (31)
Ba(A) Ba(\) ... Ar())
with:
m;+1
A,(/\) =()\+ki)<%+1) —kﬂ“i(h;—l),
and:

Bl()\) = -k,‘?‘,‘h;.

The structure of Determinant 31 is similar to the
structure of the Jacobian given earlier in Equation 23.
Therefore, by using the same idea as in deriving the
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closed form Representation 24 of its characteristic
polynomial, it can be shown that Equation 31 is
equivalent to a nonlinear algebraic equation:

[”i o 5] )

w1 (Ai(A) =

Notice, in addition, that in the special case of T; = 0
(without time delay) for all i, Equation 31 formally
reduces to the characteristic equation of the Jacobian
(Equation 23).

Equation 32 is satisfied if either:

Ai(A) — Bi(A) =0, (33)
or:
- B\ _
1+;Aj(/\)_3j(/\)_0. (34)

Since B;()) is a constant and A;(A) is a polynomial,
both equations are polynomial. The roots of these
equations can be obtained by using standard numerical
techniques. For an introduction to the solution of
nonlinear equations see, for example [7]. In general
cases, analysis of the locations of the roots needs
numerical methods, however, in certain special cases,
it is possibly analytical.

Now the special case is considered where the firms
are identical,

ki=ke=-=ko=k, T1=--=Ta=r,
W, = =h =H, Ty= - =Ty=T
M= =My =1mM
Then ¢ = --+ = g, = q and Equations 33 and 34 are
simplified as:

AT m+1
(A+k)(—q—+1) +kr=0, (35)
and:

AT m+1
(A+k)(7+1) +kr(1 - nk')=0. (36)

Consider first the case of m = 0. Then there are two
quadratic equations:

NT+ A1+ kT)+k(1+71)=0, (37)
and:
MNT +X14kT) + k(L +r —rnh')=0. (38)

Notice that under the assumptions given earlier, all
coefficients are positive, so all eigenvalues have negative
real parts implying the local asymptotical stability of
the steady-state.
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Assume next that m = 1. Then two cubic

equations are obtained:

MT2 4 X2(2T + kT?) + M1 + 2kT) + k(1 +7)=0,
(39)

NT24 N2(2T +kT?)+ M1+2kT) +k(1+7—rnh')=0.
(40)

All coefficients are positive, however, the local asymp-
totical stability of the steady-state is not guaranteed, in
general, since the Routh-Hurwitz criterion is not neces-
sarily satisfied (see, e.g. [8]). In case of instability cyclic
behavior of the solution is possible. This phenomenon
is known as limit cycles. The Hopf bifurcation theorem
gives sufficient conditions for the birth of limit cycles
around the steady-state (see, e.g. [9]). Limit cycles
exist if there is a pure complex eigenvalue A* = ia* with
some a* # 0 and the derivative of this eigenvalue, with
respect to a bifurcation parameter (what is selected as
r), is nonzero at A*. A number A = ia is an eigenvalue
if either:

—i03T? — (2T +kT?) +ic(1+2kT) +k(147) = 0,
or:
—ia®T? — o*(2T + kT?) + ia(1 + 2kT)
+k(l+7r—7rnh’)=0.

Equating the real and imaginary parts to zero, the
following relations are obtained:

o k(l+7) 1+2kT
ToT+ kT2 T2
[0)
k(1+r—rnh')  1+2kT
2 _ _
= TryRrr T (41)

In both cases a? > 0, so real « exists. The critical value
of the bifurcation parameter is obtained by solving
these equations for r. The solutions are:

(14 2KT)(2T + kT?) — kT?
- kT2

1
z(ﬁ + kT + 2)
. (1+2kT)(@T+AT?)—kT? _

- kT2(1—nh')

2

Tah—1 (kT HRT+2). (42)

Since —1 < r < 0, the first solution is not feasible.
Figure 2 shows the value of 7 as a function of kT. In
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TRRT T

kT

Figure 2. The critical value of r as a function of kT

order to have feasible solution condition

8 > -1

nh! — 1 ’
must be satisfied, which is equivalent
is, if A’ is very close to 1, which is its

tonh' > 9. That
value in the case

of the knowledge of the true price function, then n = 9

or 10 is the possible smallest value

of n, depending

on the condition that A’ is less or larger than 1. If

h’ increases, then the value of the

smallest feasible

n decreases and if A’ decreases, then the smallest n

increases. The derivative of A, with
be obtained by differentiating Equati

BAZAT2 + 20 (2T +kT?) + A(1+2kT)

+k(1-—nh')=0,

where the simplifying notation \ =
Consequently,

k(nh' — 1)

respect to 7, can
on 40 implicitly:

dA/dr was used.

A= serE T 2A(2T + kT2) + (1 +

and the real part of its value at \* =
given in Equation 41, is as follows:

Re /'\'>‘=)\‘ - _k(nh - 1)

2kT)’

ta*, where o* is

70,  (43)

if i’ # L. This is a realistic condit
information case, ' = 1. Hence, the

202kT + 1)+ 2(2 + kT

ion, since, in full
Hopf bifurcation

theorem implies that there is a limit cycle for r in

the neighborhood of the steady-stat
derivative indicates that if the value o

e. This negative
f r decreases from
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*, then the real part of the corresponding eigenvalue
becomes positive, showing instability, and if 7 increases
then Re A decreases and becomes negative, implying
the local asymptotical stability of the steady-state.

CONCLUSIONS

In this paper, dynamic oligopolies were examined with-
out knowledge of the price function. Under realistic
assumptions on the exact and approximating price and
cost functions, it could be proven that if instantaneous
information is available to each firm about the market
price, then the steady-state is always locally asymptot-
ically stable. If time lag is assumed in obtaining and
implementing price information, then instability might
occur. Assuming continuously distributed time lags,
the possibility of the birth of limit cycles was examined,
based on the Hopf bifurcation theorem.
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