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A Multi-Objective Hierarchical Production
Planning Model Under Stochastic Demand

M. Ghazanfari* and B.A. Murtagh'

in this paper, a multi-objective Hierarchical Production Planning (HPP) model is presented for
a single stage problem with stochastic demands. The HPP model is assumed to have two levels:
Product type and product family, where a type is a set of families with similar costs per unit
of production time. A chance-constrained goal programming approach was suggested for the
first level of the HPP model, namely, Aggregate Production Plan (APP). For the second level,
Disaggregate Production Plan (DPP), a cost modified function was proposed based on set-up
cost and expected shortage cost within the families. The problem is also formulated as a Mixed-
Integer Programming (MIP) model. Considering three alternative formulations for APP, the
results of the models are compared in three directions: The versions of APP formulation, HPP
versus MIP and adjusted DPP versus unadjusted DPP. The computational results demonstrate

the effectiveness of the proposed approach.

INTRODUCTION

Production Planning (PP) can be defined as the
process of establishing strategies for converting raw
materials into finished products, so that manufac-
turing resources are used efficiently [1-3]. In this
process, a number of factors such as: Workforce
level (hiring/firing), inventory level (surplus/shortage),
production rate and capacity (fixed/variable), de-
mand forecasting (deterministic/stochastic), planning
horizon (long/medium/short), organizational planning
(strategic/tactical/operational) and manufacturing en-
vironment (line/batch/job shop) are involved.

Different models for PP problems can broadly be
classified in two distinct categories: Monolithic Pro-
duction Planning (MPP) and Hierarchical Production
Planning (HPP) models [4-6].

The first category tries to consider all detailed
decision problems over the entire planning horizon [7].
These approaches require data such as the forecasted
demand of every item for a complete seasonal cycle,
usually a full year. The second category has top-down
features and decisions are made in sequence. Aggregate
decisions are made first and impose constraints within
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which more detailed decisions are made. In turn,
detailed decisions provide feedback to evaluate the
quality of aggregate decision-making.

The major difference between the hierarchical and
monolithic models is the existence of structural levels in
the HPP models that reduce the variance of data, com-
plexity of production planning problem and split it up
into more or less independent subproblems integrated
by several interfaces. Also, this approach is consistent
with organizational level and decisions that lead to
better performance of this type of model compared
to others [6,8-10]. Also, some of the researchers refer
to the HPP approach as a way for bridging the gap
between theory and practice in the production planning
field [11-12].

The early motivation for the HPP approach was
noted by some of the developers of monolithic mod-
els, however, the first HPP model was presented by
Hax and Meal [4] who considered a three-level HPP
for product type, family and item. They applied
Linear Programming (LP) for Aggregate Production
Plan (APP) of types, the standard inventory control
model for Disaggregation Production Plan (DPP) of
families and, Equalization of Run Out Time (EROT)
for disaggregation of items. Bitran and Hax [13],
who presented two algorithms applying the knapsack
method to DPP of family and item, have extended
their work. Bitran et al. [5] modified the knapsack
method for the case of high set up costs. Mohanty
and Krishnaswamy [14] and Mohanty and Kulkarni [6]
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presented some modifications to minimize the number

of backorders. Other extensions of

f HPP models are:

Including machine groups in the HPP model [15,16],

considering the shop floor problem

with APP [17,18],

allocating feedback mechanism [9,19], considering dis-

crete part manufacturing, assembly

[20] and extension

for consumer goods [21]. Also, the issues of feasibility
and consistency of DPP, which affects the result of

the HPP solution, have been sty
searchers [22-24].

died by some re-

All of the previously mentioned models deal with
deterministic data. Because of the ¢complexity of deal-

ing with more realistic data, the de

veloped stochastic

models are few in number. Bitran et al. [25] developed
a two-level HPP for a multi-period production planning

problem with stochastic demand e
manufacturing of goods, which are

exactly one set-up for each family per year.

suo [26] extended this work and prq

ncountered in the
limited to having
Mat-
posed a stochastic

sequencing problem which simultaneously determines
the production sequence and volume of style goods.

The issue of consistency, in the c3
stochastic demand, is studied by Aj
and Ari [28]. Lassere and Merce [29]
and sufficient conditions for robustn
plan.

ise of independent
i and Axsater [27]
provided necessary
ess of an aggregate

Also, several approaches have been developed
to solve the probabilistic problem for single stage
production planning problem in a monolithic manner.

Silver [30] suggested a procedure fo
the timing and the sizes of the replen

r derermination of
ishment of product

with probabilistic time-varying demjand. As an alter-

native, Askin [31] developed a mo

del for production

lot sizing with probabilistic dynamic demand, based

on least cost per unit time.
are: Considering the stockout cost

Some| other approaches

as a criterion [32],

deterministic approximation [33] and studying rolling

horizon problem with probabilistig

mand [34].
Most of the models for produ

time-varying de-

ction planning de-

scribed above are either dealing with deterministic

demand or involve a single objectjive.

the most appropriate solution and

To find out
trade off between

conflicting goals, a multi-objective approach should be

considered.

In this paper, a multi-objective single-

stage production planning model is considered with
stochastic demand. The problem is characterized by

a two-level hierarchical structure,

including product

types and families. A type is a set| of families which

have similar costs per unit of production time.

The

families in each type may have different set-up costs or
priority of importance indicated with shortage costs.
For each family it is assumed that the demand in

each period is normally distributed

| The forecast for

each family is revised at the beginning of each period.
Also, the demands for product types are stochastic
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independent variables with normal distribution, with
their mean and variance given at the beginning for the
whole of the planning horizon.

A multi-objective formulation is considered for
the APP and it is solved using Preemptive Goal
Programming (PGP). Then, for the DPP, the result
of each period is disaggregated according to the lat-
est information about demand data and real initial
inventory. For this purpose, a non-linear programming
model is developed, in which the objective function is
to minimize modified set-up cost. The overall problem
is also formulated as a (monolithic) mixed-integer
programming model and its solution is compared with
the proposed HPP model.

In the next section, the formulation for APP is
presented, followed by the formulation for the DPP
of families. Then, the solution of the model for an
example is illustrated, finishing with some concluding
remarks on the approach.

AGGREGATE PRODUCTION PLANNING

The first level of the HPP model is Aggregate Pro-
duction Planning (APP), which addresses the strategic
issue of selecting factors such as workforce levels,
production rate and inventory for each product type.
Objectives such as minimization of production and
inventory cost, maximization of product profit and
workforce utilization are frequently mentioned as im-
portant objectives of management [35]. In view of the
multiplicity of competing objectives, Goal Program-
ming (GP) is used as a means of considering all of
them.

The product type demands are assumed to be
time-varying stochastic in nature with known mean
and variance, which is the summation of families
demands within the type. The aggregate forecast is
generated for each product type first and these are then
disaggregated into product family by forecasting the
proportion of the type demand corresponding to each
family.

The characteristics of the problem in hand lead
to the use of chance-constrained goal programming.
The Chance-Constrained Goal Programming (CCGP)
model can be expressed as follows:

lex min{(dy +d{),...,(d; +df)}, (1)
st:

> iz +(d7 —df) =0,
=1

Pr{d; and/or d} = 0} > a

vadz_vdj’ Z 0»
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where d7 and d} are the negative and positive devia-
tional variables about constraint ¢, the random variable
a;; is the technological coefficient associated with the
Jth decision variable in constraint i, z; is the jth
decision variable, b; is the resource level and «; is
the service level or minimum desired probability of
realizing goal ¢(0 < @, < 1). Lex means lexicographic
(or preemptive) goal requirements i.e., the goals are
grouped according to priorities and the goals at a
higher level are considered to be infinitely more im-
portant than goals at the lower level.

The deterministic equivalent constraints of the
original CCGP constraints give the following model:

lex min{(d] +df),..., (df +df)}
st:
y(r (O“) +di —df = Fb-,'l(ai)v
z;,d;,df >0, (4)
and:
y(z ZE[% Za, \/m,
(5)
Fy Y (oi) = Elbs]. + Zagy/ > Varlby] (6)

where F'~! is the inverse probability distribution func-
tion and Z, is the standard normal variation for the a
fractile. When the original constraints are a less-than
or equal sign, then the sign of Z, in Equations 5 and 6 is
reversed. Also, if none of the technological coefficients
are stochastic, the right-hand side of Equation 4 reverts
to the original one (Equation 2).

The APP model can now be formulated. It is
assumed that the goal with the highest priority for
management is to limit total shortage and overage
inventory at the end of the planning horizon. To avoid
potential opportunity cost of lost sales, it is desirable
to provide a 95% service level for meeting the planning
horizon demands. For overage, it is aimed to limit total
production so that the extra inventory at the end of
the planning horizon does not go beyond the necessary
safety stock to provide the 95% service level. The goal
constraint for each production type is as follows:

Pr{TI; + TI} =0} > 0.95, (7)
Alig + Y _ai+ (Tl - TI}) = D, (8)
t
where:
i = product type number (i = 1,...,T),

t = period number (¢t =1,...,T),
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decision variable indicating production
volume of product type ¢ in period 7,
available inventory of product type i at
the beginning of the planning horizon,
the overall demand which is the sum of
the demands of each product type ¢ in the
planning horizon (i.e., D; = 3", d;;) with
mean D; and variance V;,

the demand of product type i in period t
with mean d;; and variance

vie(Di =3, dir and V; = 37, vy,
TIz;,(TI}) = under (over) achievement of goal
constraint associated with total inventory
for service level 95%.

ALy =

D, =

dit =

The second goal is concerned with minimizing the
use of overtime for production. It is assumed that there
is a fixed number of regular time and a limited number
of overtime in each period. Also the required time to
produce each product is assumed to be deterministic.
Therefore, the capacity constraints may be formulated
as follows:

min Z wt
t

> omi X+ W - W= (9)
t

where:

R, = total available regular and overtime capacity in

period t,

required time to produce one unit product type
t,

m; =

W, ( W) = under (over) achievement of capacity goal
constraint in period ¢,

The last set of goal constraints establishes the
desire that overage and shortage production of each
product type per period should not go beyond the
amount necessary to provide the predetermined service
level. It is similar to the first goal but it deals
with the production level for each period rather than
the total production plan of the planning horizon.
Suppose a probability of 95% is also assigned for
achieving these goal constraints. The appropriate set of
chance-constrained goal constraints can be formulated
as follows:

Pr{TI; + TI} =0} > 0.95, (10a)
AL + Zaz” (TI; -TI})
t
= di(i=1,..,I)(t=1,.T-1),
T=1 (11&)
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where:

TI;(TI})= under (over) achievem
straint associated with
of product type ¢ from

ent of goal con-
ending inventory
period 1 to .

1t is possible to formulate these| goal constraints

in three ways, according to how the
sented. In the first case (APP-a) wh

demand is repre-
ch is formulated

above, the constraint in each period is concerned with
the demand from the first period to the current period.
In the second case (APP-b), each goal constraint
is associated with the shortage (or overage) inventory
for just one period. Therefore, it may be written as:

Pr{I;; + I} =0} >0.95,

(EI}_, - EL;_\) +zu+ 5 — I}

where:

(I = under (over) achieveme
1t (2
constraint associated w
product type ¢ in perio

EI}(EI}) = expected ending invent

(10b)

= dy.
(11b)

nt of the goal
ith inventory of
d ¢,

ory of product

type i at the end of period t.

As these goal constraints deal on
period demand, all of the Equations
will be omitted and Equations 10b an

y with individual
7,8, 10a and 1la
1 11b will become

the high priority goal constraints of APP-b.
The last case (APP-c) is a combination of the first

and second cases i.e., the first goal is

held for the sum

of demands in the planning horizon, but the individual

demand for goal constraint is used fo

Since the standard deviation of
independent random variable (r.v.)
sum of their standard deviations, th
for these cases are not similar.
formulations are compared accordin
on DPP solutions.

The whole proposed chance-con
gramming model for the APP-a (the f
may now be written as follows:

lexmin fy =Y (TI;+TI})

1

(i=1,..,1),
f2 :ZW1+»
t
fa=>_ > TI; +TI}
1 t

(i=1,...1), (t=1,..

fi =TC*

r each period.

the sum of some
is less than the
e solution results

The results of these

¢ to their effects

strained goal pro-
irst level of HPP)

T-1)
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st:

ALig+ 3w+ (Tg — TIf) = Fpl (i)
i

(i=1,..1), (12)
Zmit.xit + (Wt_ — Wt+) = R;
t=1,..T), (13)
AIiO+Z-Ti‘r + (I; - Ijt_) == Fi dn (i)
(i=1,.,I), t=1,...,T - 1), (14)
(EI?;_l — EI:{_l) = (EII - EI;) + i —di
i=1,..I), t=1,..,T), (15)

SN (e + by EI; + hi EL}

7 t

+3 " (we W+ wf W) +(TC™ - TCH)=0.
t (16)

Equation 15 shows the inventory relationship
between periods. The expected ending inventory in this
equation is calculated according to the mean demand
in each period. Equation 16 calculates the minimum
total cost for the APP problem. The parameters in
this equation are as follows:

Cit = unit production cost (excluding labor) for
type ¢ in period ¢,

h;;(h}) = inventory backorder (carrying) cost for
type ¢ in period ¢,

wi(w;) = cost per man-hour of regular (overtime)
labor in period t,

TCt  =total cost of APP model.

An alternative formulation for APP was presented
by Ghazanfari et al. [36,37]. The set-up cost has
been eliminated from the APP model and will be
considered within the DPP model, which deals with
families belonging to each type. The proposed pre-
emptive goal programming model was solved using the
GAMS/MIONS package [38,39]. The solution was then
disaggregated for each period, in turn, by applying the
DPP procedure. This will be discussed in the next
section.

DISAGGREGATE PRODUCTION
PLANNING

The second level of HPP is DPP, which can be defined
as the total process of going from an aggregated plan
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to a feasible and consistent, detailed plan. It translates
the strategic decisions into operational assignments,
thus, the effectiveness of the APP approach and,
consequently, the performance of HPP depends, to a
great extent, on this second process.

The disaggregation process is done period by
period. The results of the first period of the planning
horizon are disaggregated, then, at the beginning of
the second period, the available inventory and demand
forecasts are updated and the APP results for this pe-
riod are disaggregated and so on. The main constraint
for a coherent disaggregation is that the summation of
production quantities for each family must be less than
or equal to the amount dictated by the higher level for
this type.

Bitran and Hax [13] and also Bitran et al. [5]
used an objective function, including the original set-
up cost to disaggregate the APP results for the case of
a deterministic problem. Here, their work has been
extended and a new objective function proposed to
minimize total adjusted set-up costs among families.
The adjusted set-up cost for a family has been defined
as the summation of its original set-up cost and the
expected shortage cost. For families with similar orig-
inal set-up cost, this modification prioritizes families
with high expected shortage cost to assign the limited
available production capacity. Also, for families with
great demand variance, it causes the model to allocate
more safety stock.

Since the family demand is assumed to be nor-
mally distributed with mean ygp and variance 0%, the
expected shortage units for a product family j may be
computed as follows:

Bl = [T (D~ (AL +%)).4(D)dD,
’ AL +Y;

= O'Dj /koo(U(] - k‘j).fu(’u,o).d’LLo

3

= op,.Gu(k;), (17)

Gu(ke) = fulke) — kj.Puy(k;), (18)

PuZ(k]) = k%o fu(u(])'dUOa (19)
1 2

fulks) = Eexp(—kj /2), (20)

k= AL Zup, (21)

OD;
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where:

Al; = available initial inventory of family j,

E[I] = expected shortage of family j on the
condition that demand r.v. is D; and the
production, plus inventory level, is
AL +Y5,

©p;,0p; = mean and standard deviation of demand
of family j,

Y; = production level for family 7,

f(D;) = probability density function of demand of
family j,

Ug = standard normal r.v.,

fu(up) = probability density function of r.v. ug,

Gy(k;) = unit normal linear loss integral,

P,>(k;) = probability that u is at least as large as a
certain value k;,

k; = equivalent standardized normal r.v. of r.v.
D;/ (Y; + AL).

The following proposed DPP model has to be
solved for every product type i;

DPP,
min\;{sj + hj_.E[Ij_]}#i"yj, (22)
st:
> Y =X, (23)
J
E[I;] = op, .G(k)), (24)
ki = (Y; + Al; — pup;)/op;, (3=1,..,J),
(25)
AL +Y; > pp,, (G=1,..,7), (26)
Y; >0, (27)

where:

S; = set-up cost of family j,
h; = shortage cost per unit of backorder of family j.

The proposed model generates a solution reflect-
ing the competition between families of each type
for limited capacity, according to their set-up costs,
shortage costs and demand means and variances. The
GAMS/MINOS package has been used to solve this
non-linear programming model. To show the effect of
the adjusted set-up cost, its result will be compared to
the DPP solution without this modification.
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NUMERICAL APPLICATION

The authors conducted a series of| experiments to
examine the performance of the HPP|model. Also, for
comparison with an alternative solution, a (monolithic)

MIP model has been solved using the constraints of
APP (a, b and c).

Description of the Experiments

The assumed product structure used for the tests is
given in Figure 1. Product types 1/and 2 have two
and three families, respectively. The planning horizon
consists of four periods of equal length.

Table 1 shows the demand mean and variance for
each product type. The demand mean of each family
is based on its proportion of the total type demand.
Also, the variance of each family has been calculated
according to the assumption of equality between the
summation of variances of families |demands within
each type with variance of that type demand. For more
details about mean and variance of family demand see
Appendix A.

The only difference between the data for the HPP

Product type PT1 PT2

PF1 PF2 PF1 PF2 PF3

Product family

Figure 1. Product structure.
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and MIP experiments is the demand variances. It is
assumed that the family demand standard deviations
in the HPP experiments are 80% of those of MIP.
This is due to the fact that in the HPP approach
the demand forecasted for family level is revised at
the beginning of each period, which makes it more
accurate; an advantage which monolithic approaches
do not have.

The information about demand proportions, hold-
ing costs and shortage costs for all families are shown in
Table 2. Also, the cost data, labor capacity and other
type relevant information is given in Table 3.

The APP model has been run using preemptive
goal programming for its a, b and ¢ versions. Then, for
each APP result, the DPP has been solved periodically
using a normal random number generator, to produce
demand data for each period based on the demand
means and variances of families. These numbers
operate as real demand data and help to specify the real
ending inventory, which is necessary to disaggregate the
next period solution.

This simulation is repeated 100 times. At the
end of the simulation, total set-up costs, shortage and
overage costs, regular and overtime labor costs and the
number of inventory and backorder were accounted for.
The same procedure is applied to the MIP models to
obtain comparable results.

Results of the Experiments

The initial results of the APP and DPP level are shown
in Tables B1 to B4 of Appendix B. These are a small

Table 1. Forecast demand.

Period Type TP1 Type TP2
Demand Mean | Demand ST. Dev. | Demand Mean | Demand St. Dev.
1 5000 214.29 6000 257.14
2 4000 228.57 6000 285.71
3 6000 428.57 6000 321.43
4 4000 342.86 6000 342.86

Table 2. Data related to family.

Family Name | Proportjon of Total Holding Cost Shortage Cost Set-up Cost
Type|Demand ($/Unit/Period) | ($/Unit/Period)
PT1-PF1 0.6 0.2 0.6 90
PT1-PT2 0.4 04 0.3 90
PTI1-PF1 0.2 0.3 04 120
PT2-PF2 0.3 0.4 0.3 120
PT2-PF3 0.5 0.5 0.2 120
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Table 3. Cost data of produce type.

PT1

PT2

Type holding cost

0.30 ($/unit/period)

0.40 ($/unit/period)

Type holding cost

0.45 ($/unit/period)

0.30 ($/unit/period)

Type backorder cost

4 ($/hour)

4 ($/hour)

Regular time cost

10 ($/hour)

10 ($/hour)

Overtime cost

0.10 (hour/unit)

0.05 (hour/unit)
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Total regular workforce capacity

700 (hour/period)

Total overtime workforce capacity

200 (hour/period)

sample of a large number of experiments carried out to
compare the alternative models. Analysis of the results
is given in four section:

1. Comparison between alternative versions (a, b and
c) for APP in HPP,

2. Comparison between the same alternative versions
for MIP,

3. Comparing the HPP approach with MIP as the
alternative method to solve the production planning
problems,

4. Considering the effect of proposed cost modification
for DPP.

Comparison 1

Figure 2a depicts the total shortage level for 3

formulations of APP. As can be seen, APP-a generally
gives the better performance. When the number of
overage inventory is an important criterion, the APP-b
results in a better solution than the others (Figure 2b).

400 T
-+ {} --HPP-a
300 + e HPP-b
G HPP-c
200 T
100 4
0 + t t {
0 1 2 3 4

Period

Figure 2a. Total no. of shortage (Comparison 1).

2500 -

2000 4=

1500 +4

1000 +4

500 4

Period

Figure 2b. Total no. of overage (Comparison 1).

Comparison 2

The results from the MIP models (shown in Figures 3a
and 3b) are a little different. Dealing with preemptive
goal programming and lowering the set-up cost from a
high level to a lower level than the APP model in the
HPP approach, are the main reasons for these differ-
ences. The MIP-c gives a superior shortage performace
but highest overage inventory level. Compared to
others, an MIP-b with a low level of overage inventory
causes the most shortage.

200 - -
1 -
o] = MIP-a . u
150 + - oA = MIP-b ,
100 +
50 4

Period

Figure 3a. Total no. of shortage (Comparison 2).
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—F}—— MIP-
3500 4 @
- = MIP-b
e o
— © — MIPc -
-
2500 4- ja
- - - A
1500 4
500 4 $ $ 4
0 1 2 3 4

Period

Figure 3b. Total no. of overage (Comparison 2).

Comparison 3

Figures 4a and 4b depict a compar
and MIP approaches in terms of {

ison between HPP
otal ending inven-

tory. Both of them result in shortage because of the

uncertainty situation involved in the
approach causes more extra invent
and reduces the probability of facin

Also, in term of cost, the HRE
a solution with less labor cost, hig
and equal set-up cost. Therefor
well-known limitations of MIP al
ing problems with great size, it c

> models. The MIP
ory in each period
g shortage.

P approach yields
her inventory cost
e, considering the
gorithms for solv-
ould be concluded

200 o=
wef}oeeee HPP-a
150 4 | e e MIP-2
100 <~
50 4 e,
-~ =~ a
A v /
4] i 3 i i
L] L] ¥ 1
0 1 2 3 4
Period

Figure 4a. Total no. of shortage (Comparison 3).

3000 - A
——&~——— HPP-a P
2500 f |w—fy s— MIP-a
! <
2000 L / /B/‘Z
1500 4 /
1000 +
500 $ t t {
0 1 2 3 4
Period

Figure 4b. Total no. of overage (Comparison 3).
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w{] = HPP-a o = MIP-a s HPP-b
mpip MIP-b —©&— HPP—c .- @ -MIP-c
1200
900 +
600 3
300 4
0 t } f —
0 1 2 3 4

Period

Figure 5. Total cost of shortage and overage inventory.

that HPP approaches are a suitable alternative to
solving the aggregate production problems, even in
the presence of the set-up cost and stochastic de-
mands.

Figure 5 shows a general comparison in terms
of total inventory cost among all of the HPP and
MIP models under consideration. In both approaches,
formulation b has superior performance.

Comparison 4

The last analysis is to consider the effect of adjusted
set-up costs on two decision making criteria i.e., short-
age and overage number of product families. The
same DPP model is used but the objective function
is changed into a simple one, i.e., minimizing the total
set-up cost as the ‘Unadjusted DPP’ (U-DPP) model
and solving the problem in hand for 3 versions of APP.
Figures 6a and 6b show that the ‘Adjusted DPP’ (A-
DPP) model has a strongly superior performance of
the U-DPP model, both in terms of number of shortage
and number of overage inventory and, therefore, total
inventory costs.

— {3 ~A-DPP-2  =@w=A-DPP-b w® =U-DPP-a —aA-U-DPP-b
500 +
400 4
300 4
200 +
100 +
0 ¥ : + —
0 1 2 3 4
Period

Figure 6a. Total no. of shortage (Comparison 4).
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w@= A-DPP-a --0—A-DPP-b {1 ~U-DPP-a -+ = U-DPP-b

2000 1
1500 +
1000 +
500 4
0 t + t {
0 1 2 3 4

Period
Figure 6b. Total no. of overage (Comparison 4).

It should be noted that realized performance of
all models in all experiments have a shortage/demand
ratio of less than 5% on average for all families in each
period. The greatest number for this ratio is 4%, which
is associated to period 4 of unadjusted DPP solution
for APP-b formulation. For the ratio overage/demand,
the worst case is related to a MIP model, with 3.8%
for period 4. This ratio for A-DPP is less than 1% and
for U-DPP is 2.5%.

CONCLUSION

In this paper, a multi-objective HPP model has been
developed and implemented under uncertainty. The
model has two levels: Product type and product family.
A type consists of several families with different set-
up costs. It was assumed that all demand values
have a normal probability distribution for which their
means and variances for types are known, in advance,
for all periods during the planning horizon and are
available for families at the beginning of each period
of disaggregation.

Using chance-constrained goal programming as a
method of solving the multi-objective APP for the first
level of HPP, three formulations were developed for
the APP model, for which a service level constraint
was taken into account to prevent the production
plan having an undesirable number of backorders. It
should be noted that other model variants for goal
programming could also be applied, which is a matter
for further research.

To disaggregate the higher level results, a modi-
fied set-up cost was proposed to develop the objective
function for the DPP model, i.e., the new cost function
of the original set-up cost and the expected shortage
cost for each family. The backorder cost in the model
can be interpreted as the management priority factor
for each family.

The results of our implementation were com-
pared with some alternative formulations of APP
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solved by goal programming and mixed-integer pro-
gramming. Finally, to investigate the impact of the
proposed modification to DPP, the results of two
adjusted and unadjusted DPP models were compared
with each other. The results demonstrate a real-
istic performance of the HPP approach as a tool
for production planning problems and, also, con-
firm the superior performance of the proposed DPP
model.
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APPENDIX A

For the variance of type demand, it is assumed that the
coefficient of variation (¢ = o/u) has been increased by
time as follows:

Cit =

24t

— g, Al
70#t ( )

where c;; is the variation coefficient of type demand 3
in period ¢ and g, is the demand mean of type ¢ in

period ¢.
Also the family demand mean is calculated as
follows:
Kij = Aijthi, (A2)
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(A3)

S =1,
J

where p;; is the mean of family demand j in the
product type ¢ and A;; is the proportion of family
demand 7 to the total demand of its type 1.

Finally, the demand variance for each family may
be calculated as follows:
(A4)

Oij = Cij-Hij)

= o 2
Cz]“cz/ E /\ija
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which are obtained in regard to the following equations:

2_2 2
J

Hi = E Hij,
J

a;
c; = —.
3

Mi

APPENDIX B

A typical computer output of the programs is shown in
Tables B1 to B4.

Table B1. A sample of output for APP-a resulted from preemptive GP.

The Results Related to the First Level of HPP
Solved by Preemptive GP
Aggregate Production Plan Over a 4-Month Planning Horizon
Type | Period | Demand Demand Planned Safety Cumulat. Cumulat.
Name Mean Standard | Production Stock Ext. Inv. Sho. Inv.
Deviation (a=0.95) | (a =0.50) | (a = 0.50)
PT1 1 5000.00 214.29 5352.46 352.46 352.46 0.00
PT1 2 4000.00 228.57 4162.88 162.88 515.33 0.00
PT1 3 6000.00 428.57 6337.86 357.86 873.20 0.00
PT1 4 4000.00 342.86 4166.27 166.27 1039.47 0.00
PT2 1 6000.00 257.14 6422.95 422.95 422.95 0.00
PT2 2 5000.00 285.71 5209.29 209.29 632.24 0.00
PT2 3 4000.00 321.43 4691.92 191.92 824.16 0.00
PT2 4 4000.00 342.86 4174.47 174.47 998.63 0.00
Table B2. Required workforce time for APP-a solution.
Anticipated Resource Utilization Over the Planning Horizon
Period Available Required Available Required Total
Reg. Hours Reg. Hours Over. Hours Over. Hours Reg.
1 700.00 700.00 200.00 156.39 856.39
2 700.00 679.00 200.00 0.00 676.75
3 700.00 700.00 200.00 170.38 870.38
4 700.00 625.00 200.00 0.00 625.35
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Table B3. Statistical results after 20 iterations of adjusted-DPP for APP-a.

Statistical Results are of HPP for All Families

Average After 20.00 Simulation Runs

APP:a
DPP:A
Period | Total Real | Total No. Cost of | Total No. [ Cost of | Total Cost
Demand of Short. Overage Overage Invent.
1 11045.14 -53.34 11.63 785.59 268.80 280.42
2 9048.94 -74.89 19.10 1132.19 392.21 411.34
3 10577.03 -108.56 27.29 1638.33 546.53 573.80
4 8067.50 -195.20 49.96 2000.08 694.39 744.35

Table B4. A sample of adjusted-DPP output for APP-a related to random generator with seed no. equal to 20.

Prediction Results of Family
Option Seed = 20
Family’s Demand Demand Planned* Service | Expected Real Actual
Name Mean Stan. Dev. | Production Level Shortage | Demand | End. Inv.
Period 1
Type 1 family 1 3000.00 142.64 3218.52 0.94 3.88 2801.65 416.87
Type 1 family 2 2000.00 95.09 2134.94 0.92 3.34 1933.70 181.24
Type 2 family 1 1200.00 88.74 1358.68 0.99 0.19 1148.22 210.46
Type 2 family 2 1800.00 100.11 1938.67 0.92 3.79 1785.52 153.15
Type 2 family 3 3000.00 166.85 3126.60 0.78 21.56 3056.73 69.87
Period 2
Type 1 family 1 2400.00 152.15 2325.21 0.99 0.65 2801.65 533.65
Type 1 family 2 1600.00 101.43 1838.67 1.00 0.00 1550.61 469.30
Type 2 family 1 1000.00 74.16 1061.74 1.00 0.00 942.47 329.73
Type 2 family 2 1500.00 111.24 1539.54 0.96 1.88 1483.91 208.78
Type 2 family 3 2500.00 185.39 2609.01 0.83 16.51 2563.04 115.84
Period 3
Type 1 family 1 3600.00 285.27 4035.31 1.00 0.35 3203.31 1358.65
Type 1 family2 2400.00 190.18 2321.55 0.97 0.00 2307.39 483.46
Type 2 family 1 900.00 83.43 927.82 1.00 0.00 835.28 422.27
Type 2 family 2 1350.00 125.14 1396.17 0.89 0.96 1331.89 273.05
Type 2 family 3 2250.00 208.57 2368.93 0.87 13.60 2320.92 163.86
‘ Period 4
Type 1 family 1 2400.00 228.22 1040.52 1.00 0.02 2082.65 343.52
Type 1 family 2 1600.00 152.15 3126.75 1.00 0.00 1525.91 2084.30
Type 2 family 1 800.00 88.99 802.74 1.00 0.00 730.96 494.04
Type 2 family 2 1200.00 133.49 1249.93 0.99 0.34 1180.69 342.26
Type 2 family 3 2000.00 222.48 2122.81 0.90 10.38 2075.64 211.02

*. indicates optimal solution.






