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Research Note

Using Multivariate Score Functions
in Source Separation: Application

to Post Non-Linear Mixtures

M. Babaie-Zadeh!?, C. Jutten! and K. Nayebi*

In this paper, Joint Score Function (JSF) and Marginal Score Function (MSF) are first defined.
It is then pointed out that their difference (SFD) can be treated as the stochastic gradient of
mutual information and, hence, can be used in minimizing the mutual information with gradient-
based methods. An estimator for SFD is then presented, based on nonlinear regression by means
of spline smoothing. It is shown that SFD can be used to obtain a new non parametric algorithm
for source separation in Post Non-Linear (PNL) mixtures. The method is very general and can
be extended to convolutive mixtures, which is currently being studied.

INTRODUCTION

Blind Source Separation (BSS) or Independent Com-
ponent Analysis (ICA) is a basic problem in signal
processing, which has been intensively considered dur-
ing the last decade. The goal of BSS is to separate
the mixture of a number of independent signals when
there is neither information about the source signals
nor about the mixing process (hence the term Blind).
This problem arises in many different applications, for
example, in removing the effects of blinking from the
brain EEG signal [1], in separating artifacts from the
ECG signal [2], or in enhancing noisy speech signals to
improve the quality of speech recognition systems [3].
The problem was first introduced by J. Hérault and
C. Jutten [4] for linear mixtures and research has been
continued by many others [5-16].

In the linear case, the mixture is assumed to be
of the form:

X = As, (1)

where s = (s1,...,sn5)7 is the vector of unobserved
source signals, which are assumed to be zero mean
and independent signals, x = (x1,...,2zx)7 is the
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observation vector and A is the unknown mixing
matrix. Note that in Equation 1, the number of sensors
is assumed to be equal to the number of sources. To
find the original sources, from observation vector x
only and without any other prior knowledge regarding
the mixture or the source signals (except the source
independence), one must estimate a matrix B, such
that:

y = Bx = (BA)s, (2)

has mutually independent components.

In fact, in this linear case, it has been shown [5]
that if matrix A is nonsingular and the sources are
zero mean independent signals with, at most, one
Gaussian source, the components of y are independent
if, and only if, BA = DP, where P and D denote a
permutation and full rank diagonal matrix, respectively
(i.e., the sources are recovered up to a scale and a
permutation indeterminacy). This property is a direct
consequence of the Darmois-Skitovic theorem [17-19].
Therefore, it is said that the linear mixtures are
separable and B is called a separating matrix.

One generalization to this problem concerns
separation of nonlinear mixtures, in which observa-
tions are a nonlinear transform of the unobserved
sources: x = F(s). For separating the sources,
one must estimate an inverse function G such that
y = H(s) = G[F(s)] would be an estimate of the
sources. Unfortunately, it can be seen that, in general,
nonlinear mixtures are not separable [14,20], i.e., the
independence of the components of y does not insure
that y; = fi(Ss(:)), where o() is a permutation.
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However, among the nonlinear systems, there is a
special important class, called Post Non-Linear (PNL)

mixture [21,14], which is separable.
type of mixture, where the observat
e;, satisfying:

Figure 1 shows this

ons are the signals

N
ei:fi(zaijsj) , t=1,...,N. (3)
j=1

As can be seen in Figure 1, thisjmodel corresponds
to the case where the mixing itself is linear, while the
sensors introduce nonlinear distortipns. Also, it must

be noted that the model has been 1
where the number of sensors is equa

estricted to a case
1 to the number of

sources and there is no (additive) npise in the system.
To separate these mixtures, one must first com-

pensate for the nonlinearities by

functions ¢;, and

then separate the resulting (linear) mixture. For PNL

mixtures, it has been shown [14]

that under mild

conditions (mainly, differentiability and invertibility of
fi's) the output signals (y;’s) are independent if, and
only if, the functions g¢; o f; are linear and B is the

separating matrix (i.e.,, BA = DP
are a permutation and a full rank
respectively).

, where P and D
diagonal matrix,

Separating algorithms for PNL mixtures were
first presented by. Taleb et al. [10,21-23] and have

since been studied by some other
see [24,25], chapter 6 of [26], chaj
chapter 17 of {28]). In almost all

researchers (e.g.,
ter 4 of [27] and
of these methods,

the separation criterion is the mutual information of

the outputs (see next section). In|
parameters of separator systems 3
minimize I(y). One key relation iy
is the multiplicative Relation 1, w
following equation:

px(x)
|det B}’

pyly) =

and, hence:

H(y) = H(x) + In|det B|,

where H denotes Shannon entropy.

convolutive mixtures, where the c
mixing matrix are linear filters inste
is not a multiplicative relation like
hence, there is no simple equation

other words, the
aire determined to
1 these algorithms
hich leads to the

(4)

(5)

However, for
omponents of the
ad of scalars, there
Equation 1 and,
as in Equations 4

and 5. As a result, it is extremely difficult to generalize

1
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Figure 1. Mixing-separating system.
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these methods to the convolutive case and therefore, is
an important drawback to previously known methods.
As far as recorded, no such mixture has yet been
addressed in the literature.

In this paper, like previous methods, mutual
information of outputs has been used as the separation
criterion. However, instead of working with entropies,
mutual information is dealt with directly. To do
this, two functions called Joint Score Function (JSF)
and Marginal Score Function (MSF) are first defined.
Then, it is shown that their difference, Score Function
Difference (SFD), can be seen as the gradient of mutual
information. Having this result, this gradient can be
dealt with directly to minimize the mutual information
of the outputs. However, for using SFD, it must
first be estimated from the data and, hence, some
parts of the paper have been devoted to developing
an estimator for SFD. As the multiplicative Relation 1
has not been used in these developments, the method is
very general and can be extended for separating other
forms of mixtures. Currently, work is being carried out
in continuing its generalization to include convolutive
PNL mixtures.

This paper is organized as follows. First, the
concept of multivariate score functions are introduced,
then the mutual information and its gradient are
presented. This gradient is then used for developing
estimation equations and the new non-parametric al-
gorithm for separating PNL mixtures. Finally, a few
experiments are provided.

JOINT SCORE FUNCTIONS

Here, the concepts of Joint Score Function (JSF),
Marginal Score Function (MSF) and Score Function
Difference (SFD) are introduced. First, the following
definition is recalled from the statistics theory.

Definition 1 (Score Function)

The score function of the scalar random variable z is
the log derivative of its density, i.e.:

_d _ pa(x)
Yo () = E‘x‘lnpw(x) = pe(2)’ (6)

where p,(z) denotes the Probability Density Function
(PDF) of z.

Now, let x = (z1,...,2n5)7 be an N-dimensional
random vector. In this paper, two different forms of
score functions are defined.

Definition 2 (MSF)

Marginal Score Function (MSF) of x is a vector
containing the score functions of its components, i.e.:

Y (x) = (Pr(z1),..., ¥n(an)’, (7)
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where the ith component of ¥, (x) is:

Gile) = Sl (), ®

and pg,(z;) denotes the PDF of the random variable
Zi.
Definition 3 (JSF)

Joint Score Function (JSF) of x is the vector function
Px(x), such that its sth component is:

8
o TPX(X)
i =_—1In = 25
where px(x) is the joint PDF of the random vector x.
Note that the simple score function (Equation 6)
for scalar random variable is a particular case of

Equation 8 or 9. Clearly, for scalar random variables,
MSF and JSF are equal.

Definition 4 (SFD)

Score Function Difference (SFD) of x is the difference
between its JSF and MSF, i.e.:

Bx(X) = ¢ (x) — P (x). (10)

The following theorem relates the SFD of a
random vector to the independence of its components.

(9)

Theorem 1

The components of a random vector x are statistically
independent if, and only if, its SFD is zero, i.e., if, and
only if:

Px(X) = Py (x). (11)

Proof

Here, the theorem is only proven for the two-
dimensional case. Its generalization to higher dimen-
sions is obvious.

If the components of x are independent, then
Equation 11 is evident. Conversely, suppose that
Equation 11 holds, then it can be proven that the
components of x are independent. From Equation 11,
the following is obtained:

0 0
ém—llnpx(:zl,xg) = a—xllnpxl(xl). (12)

Integrating both sides of this equation, with respect to
x1, results in:

Inpx(21,22) = Inpa, (21) + In g(x2)

= px(T1,22) = P, (21)g(22). (13)

Integrating both sides of this equation, with respect to
z1, from —o00 to +o00, provides:

q(22) = pay,(w2), (14)

which.proves the theorem.
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MUTUAL INFORMATION AND ITS
GRADIENT

By definition, the components of a random vector x =

(x1,...,75)7T are independent if, and only if:
N
(%) = [] P (2. (15)
=1

A usual measure of statistical dependence be-
tween the components of x is the mutual information
I(x) [29], which is nothing but the Kullback-Leibler

divergence between py(x) and Hf\il e, (20), Le

I(x)=D (px(X) | Hmiﬂ%))

:/px(x)ln %dn (16)

It is well known that I(x) is always nonnegative
and vanishes if, and only if, the z;’s are independent.
Thus, for separable mixtures, I(y), which is an in-
dependence criterion for the estimated sources, can
be used as a criterion for estimating the separating
structure parameters. In other words, for separating
the sources, the separating system parameters must
be obtained, such that the mutual information of the
outputs reaches its minimum (zero). This can be
done with a gradient-based algorithm, which requires
computation of the mutual information variation when
its argument has changed by a small random vector A.

Now, the following theorem [30] is introduced:

Theorem 2

Let A be a ‘small’ random vector, with the same
dimension as x. Then:

I(x+A) - I(x)=E {ATﬂx(x)}
+ higher order terms in A, (17)
where 3, denotes the SFD of x.

Note that for any differentiable multivariate func-
tion f:

fx+A) - f(x) = AT(Vf(x))
+ higher order terms in A, (18)
where Vf(x) is the gradient of f. A comparison
between Equations 17 and 18 shows that SFD can be

called the stochastic gradient of the mutual informa-
tion.
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ESTIMATING EQUATIONS
Conditional Mean

Let z and y be two joint random va
problem of estimating the condition
linear regression curve [31]) g(z) = |
joint observed samples (z1,1), (z
is considered.
(Equation 26) and functions g; (Eq
these functions are nonlinear, a pro
regression is encountered.

The problem of smooth curve
estimating a ‘smooth enough’ functi
from the data points (z1,y1), (22
This can be done by minimizing the

N
A = () + 1 —A)/(g”

This is required for

riables. Here, the
al mean (or non-
£ {y|z} from their
.ay2)a s (CCT,?JT)
estimating SFD
uation 36). Since
blem of nonlinear

fitting consists in
on y = g(x), only

3y2)’ MR | (xT7yT)'
expression:

2
z)) dz,  (19)

where 0 < A < 1 is the smoothing parameter; the
greater A, the better fitting to data, and the smaller

A, the smoother function. It can b
solution of this problem is a cubic

order polynomial between two successive z;’s
This spline is called smoothing spline

spline toolbox, the function ‘csaps
calculate the smoothing spline).

e proved that the
spline, i.e., a 3rd
[32,33].
(In MATLAB’s
can be used to

It can be seen, heuristically, that in the curve

ﬁtting problem, the best value whic
to g(x)

h can be assigned

is E {y|x}. Hence, for estimating the regression

curve, one can use the smoothing spline which fits on
the data (other nonlinear regressors dould also be used,

but are not optimal with respect to
defined in Expression 19). In fac

the cost function
t, this is a well-

known and widely used method in statistics theory [34].

Figure 2 shows a sample case, in

which = and y

are two independent random variables with uniform

distribution on (-1,
them being observed.

Kernel Estimators for JSF and

Kernel estimators are well-known f

1), having 100Q joint samples of

MSF

r estimating the

PDF of a random variable [35]. These estimators can

also be used for estimating score fun

Let z1,...,z7 be T observed s
random variable z. A kernel K,
which is symmetric around zero an

ctions.

amples of a scalar
z) is a function
1 integrates to 1.

Thus, any symmetric probability density function (for

example, a Gaussian distribution)
function. One also defines a smo
0. called the bandwidth, which is
variance o2 of the kernel.
of x is:

pelx) = (x —x¢).

can be a kernel
pthing parameter
derived from the

Then, the estimated PDF

(20)
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Figure 2. Calculating conditional mean by means of
curve fitting: a) A = 0.99, b) A = 0.8.

Increasing o implies increasing the degree of
smoothness of the estimated PDF: If it is too small,
the PDF estimate is very noisy; if it is too large, one
obtains a rough estimate of the shape of the kernel.
Moreover, if K,(z) is differentiable, a kernel estimator
for the score function of z will be [36]:

_ Y Ky(z—a)
ZtT:l Koz — xt)‘

This method is easily applicable to the N-
dimensional case, provided that one has a sufficient
number of samples. In fact, due to the curse of dimen-
sionality, this is generally impossible over dimensions 4
or 5 [35]. Let K(x) be an N-variate PDF, for example,
the multivariate Gaussian:

1 Ty—1
exp{ —x' 2
(27)N/2 (det £)/2 p{2

(21)

K(x) = x| -

Then, the estimated PDF of x from the observed data

set X1, ..., x7 will be:
T
Pu(x) = Z (x — %) (23)
and the ith component of JSF is:
: s Px(X) _ Tim Gr(x - xi)
¢i(x) = = : (24)
px(x) Zt:l (X - Xt)

Estimating SFD

In (37}, an efficient SFD estimator has been proposed
for separating convolutive mixtures. However, this
estimator does not lead to satisfactory results in PNL
mixtures.
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SEFD can also be estimated by:
Bx) = (x) — P(x), (25)

where ¢(x) and 9 (x) are kernel estimates of JSF and
MSF, respectively. Unfortunately, like the previous
method, this method does not lead to good results in
PNL mixtures.

In this section, another SFD estimate is proposed
which leads to a good performance in separating PNL
mixtures. The estimate is based on the following
theorem.

Theorem 3

Let o(x) = (o1(x),...,on(x))T and ¥(x) =
(1(z1),...,¢¥n(zn))T be the JSF and MSF of the
random vector x, respectively. Then:

Yi(z) = E{pi(x) | zi = z}. (26)
Proof

Without loss of generality, let + = 1, then:

E{p1(x) | z1 = x}

/ e1(X)p(ze,...,an | 21)dee - -daw
T2, TN

dro - d
p(x) prlay) RN

:/ a2 P(X)  p(x)

1 0
B pi(z1) 0z / plx)des -+ don
1 0
= o) a1
= 1(z1), (27)

which proves the theorem.

Remember that z;’s are independent if, and only
if, ; = 1;. Then, the above theorem claims that if the
components of x are statistically dependent, then ¢, is
not equal to ¢;, while it is equal to its mean. In other
words, statistical dependence introduces fluctuations in
JSF around its constant mean.

As an example, let 1 = s; and 22 = so + ks1 be
two mixtures of two independent random variables s;
and sz with uniform PDFs on [-0.5,0.5] and consider
their JSF and MSF. When & = 0, z; and z2 are
independent and ¢; = 4;. When k varies, ¥; remains
unchanged (because it does not depend on k), but
1 changes. Figure 3 shows the plot of the kernel
estimates of ; and 1 versus z;, for k£ = 0.5. From this
figure, it can easily be seen that introducing statistical
dependencies results in variations of ¢; around its
mean, as expected following Theorem 3.
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T3
Figure 3. Kernel estimates of 1 and ¢ for two
dependent variables.

The above paragraph shows that SFD (5;) is, in
fact, a measure of the variations of ¢; around its mean.
These variations are due to the statistical dependence
of the other components of x.

Hence, to estimate (3;, a kernel estimate of ¢,
is first computed, then a smooth enough curve (a
smoothing spline) is fitted on the data set (@, ¢;) for
estimating ;. Finally, by subtracting o, from its
smoothed version, one obtains an estimate of j3;.

Estimating Equations for the Separating
System

To achieve source separation, the mutual information
I(y) must be minimized. Hence, the gradients of
I, with respect to the system parameters, B and
g;’s, must be determined. Consider now some small
perturbations in these parameters of the form:

B—-B=B+A-B=(I+A)B, (28)

gi — §i = gi + € 0gi, (29)

where A is a small matrix, €;’s are small functions,
and I denotes the identity matrix. Since g;(e,} = i,
Equation 29 becomes:

T; = 1‘¢+€i(zi) =x; + 6y, (30)
where &; £ €;(z;).
Now, from Theorem 2, the following theorem is
derived.
Theorem 4
The variation of I(y), with respect to the variations A
and e, is:

IF)-Iy) =E{B,(y)" - Ay}

+ E{B,(y)" - B 6} + Higher order terms,
(31)
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where 3 denotes the SFD of y.

The proof results from direct
discarded here.

After simple calculations, the fi
of Equation 31 becomes:

Z Z AGE{B:i(y)y;}-

Hence, the relative (or natural) gradi
respect to B is:

Vel =E{B,(y)y’}.

It is easy to prove that this leads to t

calculation and is

rst right-side term

(32)

ent [7,13] of I with

(33)

he same equations

as shown for linear instantaneous mixtures [21], i.e.:

(Vel);; = {;E {¥i(y)ys}

if{ # j

ifi=j

(34)

Defining a(y) £ B”3,(y), the second right-side

term of Equation 31 becomes:
E{s"BTB,(y)}
= E{67a(y)}
= Z E{ei(zi)ai(y)}

= ZE{q(a:i)E {aily) | z:}}

N Z,/_oo &(2)E{aiy) | z: =

z} ps, (z)dz.
(35)

Hence, the gradient of I, with respect to the function

g:(z), via the weighting function py,
as:

hi(x) £ (Vo I)(z) = E{ou(y) | 2

THE ALGORITHM

For separating post nonlinear mixt
descent algorithm has been used.
the SFD of the outputs is computed

z) can be defined

=z} (36)

ures, the steepest
In each iteration,
using the method

presented previously. Then, the following iterations are

used:
B=(I-xVel)B,
T = — pohi(z,),

where VgI and h;(x) are computed

(37)
(38)

using Equation 33

(or Equation 34) and Equation 36, respectively. u; and
w2 are two small positive constants and, in Equation 36,

M. Babaie-Zadeh, C. Jutten and K. Nayebi

the conditional mean is computed using smoothing
splines.

However, there are a few indeterminacies that
need more attention. The first indeterminacies are
the mean and variance of z;’s. To cancel these
indeterminacies, xz;’s are normalized at each iteration
so that their means and variances are equal to zeros
and ones, respectively. This prevents the algorithm
from diverging.

The second indeterminacy is the output variance.
If this indeterminacy is not considered, then matrix
B can converge to zero matrix, generating the trivial
solution y = 0. To prevent this situation, one can
normalize the output variance at each iteration. It is
also possible to normalize the output by replacing the
main diagonal of VI by diag(sZ, —1,...,02, —1), as
proposed by. Taleb and Jutten [10]. (Note that, as can
be seen from Equation 34, the main diagonal of VgI
is zero.) This will cause the algorithm to generate unit
variance outputs.

The convergence is achieved after about 100
iterations. However, the performance (output SNR
or crosstalk) depends on the sample size. Moreover,
the values of g;(z;(n)) are computed independently
for different values of n, without any attention to the
smoothness of the function g;. This will result in fluc-
tuating (and, thus, neither continuous nor invertible)
functions g;’s. This is in contradiction to the main
assumptions on the functions f;’s (and, hence, ¢;’s)
i.e., continuity and invertibility [14]. For solving this
problem, smoothing splines are used in each iteration
for estimating the functions g;’s (although, it results
in slower convergence). The smoothing parameter
(A) (see (19)) must be chosen near 1 (for example
A = 0.9999), for achieving a good estimation of the
inverses of f;’s.

Figure 4 gives the resulting separation algo-
rithm.

EXPERIMENTS

In this section, some computer simulations are pre-
sented for a PNL mixture of two sources. The
independent sources are sine and triangle waveforms,
with an irrational frequency ratio. Figure 5a shows the
joint distribution of the sources and points out their
independence. The sources are mixed with the mixing
matrix:

1 0.5
A:(o.5 1 > (39)
The sensor nonlinearities are:
1
filz) = E(z + ac3),
3
falz) = % + tanh 3z, (40)
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o [nitialization:

1. B=1]
2. x=¢e
e Loop:

1. Compute outputs by y = Bx.

2. Estimate 8y (y) (SFD of y).

3. For + = 1,...,N, estimate hi(z:),
using Equation 36 and smoothing
splines.

4. For: = 1,..., N, modify z; by z; =
zi — pzhi(zi).

5. Fort=1,...,N, do a smoothing pro-
cess on z;, using a smoothing spline.

6. Fori=1,..., N, normalize z; by z; =

i1
'_“xl

0’:‘

7. Normalize B by:

Oz,

Gzn
8. Estimate D = VglI, using Equa-
tion 33.
9. Replace the main diagonal of D by
diag(e?, — 1,...,02, —1).
10. Modify B by B = (I — 41 D)B.

¢ Repeat until convergence

Figure 4. The separation algorithm for PNL mixtures.

and, as can be seen in Figure 5b, they generate highly
nonlinear mixtures. The observation signals are shown
in Figure 6.

A 1000-point size data sample is used. The
algorithm step sizes, u; and ps, are equal to 0.3.
Gaussian kernels, with zero mean and ¢ = 0.4, are
used for estimation of the JSF. Smoothing splines are
used for estimating SFD and h;(z;), with smoothing
paragneters (A) equal to 0.9 and 0.1, respectively.
Finally the smoothing spline parameter for g;’s is A =
0.9999.

The separation results can be viewed in Figures 7
to 10. Figure 7a represents the joint distribution of
{(z1,2z2) and shows that the sensor nonlinearities have
been compensated. Figure 7b shows the joint distri-
bution of outputs and points out their independence.
The compensated functions g; o f; and g, o fo are
sketched in Figure 8. The output signals can be viewed
in Figure 9, which are good estimates of the sources.
Finally, Figure 10 shows the output Signal to Noise
Ratios (SNRs), defined by (assuming no permutation):
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Figure 6. Observed signals.

E {32
SNR(yi, si) = 10log;, f(s_@és.;z_‘})?}’ = {1’2}’(41)

In the second experiment, the mixture of three
independent identically distributed (iid) signals are
considered with uniform distribution. The mixing

madtrix is:
1 03 03
A= 03 1 03 ]. (42)
03 03 1

The first two sensor nonlinearities are as Equation 40
and for the third nonlinearity f3;(z) = f2(z). For
separating this mixture, a data block of 1000 samples
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2
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-2 -1 0 1 2
Ty
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Figure 7. a) Joint distribution of (z1,/z2) shows that the

nonlinearities have been compensated;

b) Joint

distribution of outputs points out their independence.

T
=]
—

-2 -1 0 1 2
wy ’
(b)
1 /‘ 1
§ or ’
-2t 1
P X 0 1 2
wy
Figure 8. Compensated functions: a) g1 o fi
and b) g2 0 fa.
is used. The parameters are g; = p; = 0.2 and

Gaussian kernels were used with ¢ =

0.2 for estimating

JSF. The smoothing spline parameters were A = 0.4
for estimating MSF, A = 0.1 for estimating h;’s and

A = 0.9999 for smoothing g;’s.
output SNR versus the iterations.
A similar experiment has been

Figure 11 shows the

performed with a

mixture of four sources. The algorithm still works, but

is very time consuming. In fact, the

estimation of the

multivariate score functions (4-D) becomes tricky and

requires a large sample size. Howe
between 18 dB to 22 dB after 150 ite

ver, one achieves
crations.

M. Babaie-Zadeh,

C. Jutten and K. N@yebi

150

300

0 50 100 150 200 250 300
Figure 9. Estimated sources.
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Figure 10. Output SNRs versus iteration for the first

experiment.

25 T T T T

201

151

10

0 . : . .

0 100 200

Figure 11. Output SNRs versus

three random sources.

iteration for separating
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These experiments indicate the separation ability
of the algorithm, even for hard nonlinear mixtures.

CONCLUSION

In this paper, multivariate score functions have been
introduced, i.e., JSF and MSF. Then, it could be seen
that their difference (SFD) is the stochastic gradient of
the mutual information, which can be used to design
gradient based methods for minimizing the mutual
information. Also, an estimator is proposed for SFD
by using smoothing splines. After deriving the esti-
mating equations and putting all of it together, a new
separation algorithm is developed for PNL mixtures.
These experiments show the quality of the proposed
method.

The main advantage of this new method is its
generality. In fact, the multiplicative Relations 1
and 4 are not relied upon. Such relations do not
exist in convolutive cases, where the components of
the mixing matrix are linear filters instead of some
scalars. Therefore, this new method can be generalized
to convolutive mixtures, as well as other types of
mixtures. Currently, these generalizations are being
studied by the authors.

In fact, the main drawback of the method is that
it requires estimation of multivariate PDF: it demands
a large enough sample size, growing very rapidly with
the dimension, i.e., with the source number. Thus
practically, the method is tractable for a small number
of sources, up to three or four.
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