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In this paper, set-membership identification is used to derive a simple algorithm which is a sign

version of the normalized

least mean square algorithm. Convergence analysis is carried out.

With some simulation examples, the performance of the algorithm, in the cases of slow and fast

variations of a parameter
ellipsoid algorithm. These
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is compared with the modified Dasgupta-Huang optimal bounding
examples show the performance of the proposed algorithm.

theory of SM identification is used to present a method
for automatic adjustment of step-size to improve the
convergence rate and reduce steady-state parameter
estimation errors. The result is a simple algorithm in
the form of sign NLMS. There will be also a review of
the fundamentals of OBE algorithms [7]. Then the
main idea is introduced, where the structure of the
algorithm is described. In each iteration, an estimate
of the parameter and a simple spheroid are obtained
with its center at the estimate of parameter. Under
natural conditions, similar to other OBE algorithms,
only a small percentage of the data is used to update
the estimates. Convergence analysis is, then, presented
and by utilizing suitable simulations, the performance
of the proposed algorithm is compared with that of
the well-known Dasgupta-Huang Optimal Bounding
Ellipsoid (DHOBE) algorithm [7].

SIMPLE STRUCTURE OF OBE
ALGORITHM

OBE algorithms are used to identify a model of the
general form:

yn:WTXn+vn7 (1)

in which WT = [w), - ,w,] is the unknown pa-
rameter vector, {v,} is a disturbance, error, or input
sequence and X, is a measurable sequence of m-
vectors. It is assumed that for each n, v, is bounded in
magnitude by v, i.e.:

v2 < 4%, for all n. (2)
Equations 1 and 2 yield:

(yn — WTX,)2 <42, for all n. (3)
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Let S, be a subset of R™ defined by:

2
S, = {W: (yn —WTXn> <~ We R’"}.
(4)

From a geometrical point of view, S, is a convex
polytope [12]. Thus, with each measured set (y,, X,),
Equations 1 and 2 together yield a convex polytope
in the parameter space. At any instant, n, the
intersection of the sequence of polytopes Sy,---,8,
must be considered. It must contain the model
parameter W and so must, also, any ellipsoid which
bounds it. OBE algorithms starts with a sufficiently
large ellipsoid which covers all possible values of W.
After (y1,X1) is acquired, an ellipsoid is found which
bounds the intersection of the initial ellipsoid and ;.
Each algorithm uses a specific optimization criteria
and a particular method to find this ellipsoid, which
is denoted by Fi, and optimizes it according to its
criteria. By the same token, a sequence of optimal
bounding ellipsoids E, can then be obtained. The
estimate for W at the mth instant is then defined to
be the center of E,. Suppose that E,_;, at instant
n — 1, is given by:

Ena={W :(W-W, )P L (W-W,_1)<n?_,},
(5)

for some positive definite matrix P,_; and a nonzero
scalar 1,_1. Observing (y.,X,), an ellipsoid that
bounds E,_1 N S, is given by:

Eo={W: (W -W)TP7 (W - W,) <2},

(6)
where:
Prl=(1-A)P Y + A X XT, (7)
or, equivalently, (using matrix inversion lemma)
T
P, = 1 [an AP Xn X Py ]7
1-2, 1= + A XTP, 1 X, (8)
en:yn_XIWn—lv (9)
/\nPn—l Xn
Wy =W,_ e 10
T T AMXT P X, (10)
M =(1 = A)mi + A
An(1 = A, )e?

1=+ MXIP, X,

and A, is some scalar in [0,1) [7].
As stated earlier, each OBE algorithm uses a spe-
cific criterion to find optimal value for X, in renewing
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ellipsoids. Minimizing 72 det [P,],n2 trace [P,] and
n2 are three examples. Dasgupta and Huang chose
the last one, because 72 is a bound on the Lyapunov
function used in the minimization at time n. Hence,
the convergence of the Lyapunov function is used to
prove the convergence of the algorithm. With this idea,
the best value of A, is used in the set [0,a) where a
is optional. In the next section, the above structure
(Equations 7 to 11) is utilized to design a modified
NLMS algorithm.

NLMS recursion can be abtained with step-size u.
ie.

pXn

Wn - Wn_ T L3
e uxTx, ¢

(12)
from Equation 10, simply by setting P,_; = pJ and
An = 1—1; = cte. It is also instructive to note that
NLMS can be regarded as the exact solution to a
minimization problem, using criterion H*. However.
using H* norm in the design of robust algorithms
has some disadvantages. For example, minimizing H>
norm may be regarded as minimizing the maximum
energy gain from all disturbances to the error and it
is obvious that “energy” is not a momentary quantity.
It means that when H° norm criterion is used, it is
conceivable that in some iterations the estimator does
not perform properly, but the overall maximum energy
gain is minimized. A suitable solution to overcome this
problem is variable step-size u., instead of u. In the
next section, it is aimed to find a recursive equation
for i, using SM identification.

MODIFIED NLMS ALGORITHM

The basic idea in order to derive the Modified NLMS
{(MNLMS) algorithm, is to replace P, in Equation 8
by a diagonal matrix u,I > P, (where A > B mecans
A — B is non negative definite) and use an expanded
set:

En={W " (W = W)T(W = W,) <},
(13)
which includes E,,. i.e.:
E,€E,. (14)

To meet this need, suppose at time n — 1, P,_;
is replaced by p,_3I. Therefore, from Equation 7,
non-negative definiteness of X, X! and A, > 0, the
following is obtained:

Pl =(1=2)pp 2 T+ A X XD > (1= M),y 1

hence,

Pn S (1 - )‘n)_l,u’n—11~ (16)
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Comparing Equations 6, 13 and 16,
E, and p, will be:

En:{w S A (W —Wa)

1-A,

={w un_ln%(W_W")T(W_W")Sl}’

a proper choice for

T(W W) <l )

(17)
_ Mn—
Hn = —‘“‘—1 — /\n7 (18)
where:
An(1=X,)e?
2: 1_/\n 9 /\n 2 _ njCn .
% =( Mo+ Any™ =55 o1 KT X (1)

2
From Equation 17, minimizing 24— with respect to

An, there is a right step towards
algorithm. However, from Equation

convergene of the
19, with definition:

2
Ané€s

n
(A =
fa(An) -
2
_ 2 Y
=t

Differentiating with respect to A, a

1- )"n + )\n,un—lszn.

(20)

nd finding the root

of the resultant expression, the following is obtained:

llenfl =~
llenll =7+ Yoa1 XT X,

Ay =

n

d?f

a

Under the condition, ||le,|| > 7,

and A minimizes f,(\,). It is ng

that for the case ||en|| < v, AL =0
Hence:

len|l—> lle

Ar = { TenT=r v XX n

0, llen

Substituting Equation 21 in Equati
’Ylfbn—lX;{Xn

2
lleall =7 + vpn1 X7 X (77”"

2
n,= 1
m(“enﬂ —’7)2)
ni~1

Also, using p,_1I instead of P, _;
Recursion 10 leads to (after some r

)‘:Lﬂn-—l Xn

leall > 7-

nQudin, = A% >0
t difficult to show
minimizes f,(A,).

1> (21)
I <
on 19:
-
llenll > v
llenll <
(22)
and A, = A} in

hutine algebra):

W, = Wi
TN A A

n

Wn—l,
T\ Wy + H)%H)T_JXH sign(e

- €n
T_Xn

n

llenll < v
n)s el > 7623)
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where sign (e,) = ﬁ This is the foundation of
the algorithm propounded here. As one can see,
parameters -y, Mn, Or i, do not have any direct role
in executing the algorithm, which is similar to a sign
version of the NLMS algorithm.

Remark 1

In replacing P, by p.I, the volume of ellipsoid con-
taining W is expanded. Hence, the ambiguity in the
parameter increases. It is the penalty that must be
paid for the simplicity of the algorithm.

Remark 2
The recursive form of Equations 18 and 22 has an
important role in the proposed approach. At first
glance, Recursion 22 confirms that 52 is nonincreasing.
In the next section, further discussion is presented
about 12 i,

Remark 3

In the algorithm proposed, W,, is not refreshed (i.e.,
Wpi1 = W,) when |le,s|] £ v, while in DHOBE,
refreshing ceases when ||e,||? + n2_; < ~%. Hence,
it seems that the latter uses the measurements more
efficiently. This occurs for the same reason explained
in Remark 1.

Remark 4

In general, in OBE algorithms, the checking procedure
for the presence of acceptable innovation in the data
requires O(m?) operations per sample, while in the
proposed algorithm, only O(m) operations are needed.
The comparison holds for overall operations also.

CONVERGENCE ANALYSIS

With the aid of a useful theorem, the convergence
properties of the algorithm are established in this
section. Define:

¢ =n2pin. (24)

From the definition of E, (Equation 13) it is found
that:

The following theorem shows convergence of the
algorithm.

Theorem 1

If W € E,, then (2 is a nonincreasing function of n
(hence E,, has a nonincreasing volume). Also, for all
n, (% is nonnegative.

Proof

For |len|| <7, ¢2 = ¢%2_, and the consequence is trivial.
For ||len}| > 7, using Equation 21 in Equation 18, it is
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found that:

_ llenl| =7 + 'Ylin—ng;Xn

TXTX (26)

L

Multiplying the Left Hand Side (LHS) of Equation 22
with the LHS of Equation 26 and the Right Hand
Side (RHS) with the RHS of Equation 26 and using
Equation 24 leads to:

2 __ 2 e _7)2
G =C1 — TXTX, (27)

which is a decreasing function of m. Hence, it is
maximized when [le,]] = ~(ie,? = ¢2_,) and
minimized for sup||e,||. But:

lleall = IXT (W — War) + vnll.
Therefore;
leall < NXT(W = Wa )l + [[onl.
Because W € E,,:
X3 (W = W)l
= (XT(W = Wo)(W = Wo_1)TX,)H?
< G (XTI X)2
Hence:
lleall < Gaat (X7 Xn)H2 + | |vn]|
<Gt (XL X ) 247,

Using |len|| = (oo1(XT X,)1/? + 7 in the Recursion 27
leads to:

(Gt (XT X2 4y = 7)?

2 _ 2
C‘n._ n—1 " XZ;Xn

=0,

and the proof is complete. Theorem 1 expresses that
with any (o and W, satisfying:

||W - WOH < COa

the algorithm does not diverge. Of course, this is true
when W is time invariant and inequality [|v,|| < v is
valid.

The choice of a proper bounding level, «, for noise,
is critical. Over-bounding only increases the estimation
error, but under-bounding is riskier as it can cause
divergence. The value of (2 at each time instant helps
in discovering this situation. When (2 goes negative,
either an error in the maximum level of noise or a
variation in the true parameter W has occured and
proper values must be chosen for (, and 7. These
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will be considered in other papers. From Theorem 1
it is obvious that in order to find an upper bound for
[|[W — W,_1||, the following is obtained: .

Jim [len] € [0,7], (28)
lleall = | X2 (W — Wa_1) + vnl|.

Suppose at n = ng, the sequence {v,}° chooses
those values in the set [0,~] that yields:

llenll < -

Hence, for all n > ny:

<n = Cnoy Wn = Wnov

and:
lleall = IXT (W = Wng) +val| <,
Because ||v,]] < 7,
| X7 (W = Wao )| < 2. (29)

In addition, suppose there exist M, ay,as > 0, so that
for every ng:

no+M
Mol < > X XT < Masl. (30)

n=ng

From Equation 29:

no+M
(W — WnO)T< > XnX§> (W —W,,) < 4M~2.
(31)

n=ng

Therefore:

no+M —1
(W — W )(W —W,)T < 4M72< > ang) .

n=ng

Hence, for all n > ng

||W—Wn||2 S4’y2/a1. (32)

SIMULATION EXAMPLES

In practice, adaptive filters are used in time-varying
environments. It is, thus, important to investigate the
performance of these algorithms, allowing the system-
model parameters to vary with time. In case of time-
varying systems, it is important to ensure that the
time-varying parameters remain inside the bounding
ellipsoid E,. In this section, with suitable simulation
examples, the proposed algorithm is compared with
the well-known DHOBE (with the rescue procedure
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considered in [13]). The tracking properties of these
two algorithms are studied for an ARX(1, 1) model:

Yn = QYn—1 + bty + vp.

The nominal values for the parameters are a = —0.5

and b = 1. The sequence v,, and u

noise with uniform distribution in

. is pseudorandom
[-1,1]. For the

DHOBE algorithm, o = 0.2, 3 = 100 are chosen (see

previous section). Obviously, the

maximum level of

noise will be ¥ = 1. The parameters were varied as

follows.

Case 1: Slow Variation in the Parameter

Vector

The parameters a and b were varied by one per-
cent for every 10 samples, starting from first sam-
ple and the output data, {d,}, were generated for

n = 1,2,---,1000. The parame
the centers of the OBE, are plotte
parameter in Figure 1.

er estimates, i.e.,
d against the true

Case 2: Jump in the MA Parameter at n = 500

b was changed by 100 percent at
sample and a was kept constant at i
all times. The parameter estimates
the true parameter in Figure 2.
comparison in this case, consider:

W = [a,b]T,

(for simplicity, the time—-dependenc
not shown) and:

fa(n) =

(W - Wn)TP'n_l(W - Wn)

the five-hundredth
ts nominal value at
are plotted against
To have a better

eof W, a and b is

n?

where P, and 72 are defined in E

b

juations 8 and 11,

respectively. When W € E,,, the above fraction is less

than one. Also consider:

_ T _
) = =L L= )

which is less than one, when W € E,, in the proposed
algorithm. These two fractions are plotted against each

other in Figure 3 for Case 2. It i
n = 500 there are great jumps in
However, the level of f,,(n) is, ol
fa(n) for most of the time.

CONCLUSION

A simple form of a recursive SM pa

s observed that at

fa(n) and fm(n).

bviously, less than

rameter estimation

algorithm has been proposed and its convergence anal-

ysis is carried out. Simulation res
tracking performance of this algori

ults show that the
thm is comparable

to that of the modified DHOBE algorithm.
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