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Applicat

ion of the Transmission Line

Matrix Method to the Shielding
Effectiveness Analysis of Metallic Enclosures
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. Barkeshli*, F. Ndagijimana? and J. Dansou?

In this paper, the Transmission Line Matrix (TLM) method is used for the electromagnetic

characterization of the Sh

elding Effectiveness (SE) of rectangular enclosures with apertures of

arbitrary shape. Applying suitable Hanning windows in the time domain drastically reduces the
number of time steps required to model the coupling behavior of resonant enclosures. Comparison
of the numerical results with available measured data shows that the method is an efficient and
accurate technique to evaluate the shielding effectiveness of metallic shields in the time domain

and over a wide frequency|
tool for the evaluation of
assemblies.

INTRODUCTION

Electromagnetic shielding is frequently used to either
reduce emission or improve the immunity of electronic
equipment to interference. The ability of an enclosure
to perform this task is characterized by its Shielding

Effectiveness (SE), which is defined
field in the presence of the enclosu

as the ratio of the
re to that in its

absence. It is an important parameter that affects the

electromagnetic compatibility of equ
of a metal enclosure is determined ma
shape and the shape of its apertures

Stringent EMC regulatory requi
efficient analysis of shielding effectiv
tant in the development of new high {
EMI/EMC analyses typically involve
of frequency. This creates the imm
developing numerical models that

accurate over a wide frequency band|

Shielding effectiveness can be ¢

ipments. The SE
inly by its general

rements make the
eness very impor-
requency circuits.
a very wide band
lense challenge of
emain reasonably

alculated by clas-

sical analytical techniques or by numerical simulation.

Analytical formulations provide a fal

ster mean of esti-

1. Department of Electrical Engineering, Sharif University

of Technology, Tehran, I.R. Iran.

. Corresponding Author, Department
neering, Shartf University of Techn
Iran.

2. LEMO/IMEP - ENSERG/UJF, 23 r

257, 38016, Grenoble, Cedex 1, Fran

*

of Electrical Engi-
plogy, Tehran, I.R.

ue des Martyrs, BP

ce.

range. The proposed method can be used as an intermediate design
the effects of various aperture shapes on the effectiveness of shield

mating SE. However, since these methods are based on
simplifying assumptions, they cannot provide sufficient
accuracy to meet the design specifications when the
shielding structure is geometrically complex. A number
of computational methods have been proposed for the
solution of shielding problems, including the TLM
method [1], the Finite-Difference Time-Domain (FD-
TD) method [2], the Method of Moments (MoM) [3]
and the Finite Element Method (FEM) [4].

In this paper, an efficient method is presented
for the analysis of shielding effectiveness in high fre-
quency communication circuits. It is based on the
Transmission Line Matrix (TLM) method. Since
the formulation is in the time domain, wide band
effects are easily and accurately modeled. Comparison
of the results obtained from the proposed numerical
method with those obtained from measurements, show
that the TLM method gives more accurate results
than other methods reported in the literature. The
computational aspects for increased efliciency are also
considered.

The fundamentals of the TLM method, as well
as its advantages and limitations, are briefly discussed
in the next section. Then, the configuration of
the problem and the results of TLM simulation are
demonstrated. The emphasis will be on important
aspects that have been considered in the TLM analysis.
The effects of various aperture shapes on the shielding
effectiveness of the rectangular enclosures are presented
in the last section.



Transmission Line Matrix Method

TLM METHOD

Transmission Line Matrix (TLM) method is a time
domain differential method, based on modeling fields
by analogy to voltages and currents in a network of
transmission lines. The basic computational cell of the
TLM, representing propagation in a block of space, is
the node, which consists of six interconnected lines.
Figure 1 depicts the most commonly used Symmetrical
Condensed Node (SCN) introduced by Johns [5]. The
stubs in this node take into account different material
properties as well as the non-cubic blocks of space. A
non-cubic cell is used in a graded mesh. The time-
step used in the calculations is related to the absolute
dimensions of the node and also to the ratio of three
dimensions of each node. At each time-step, twelve
pulses, V', are incident at the ports of each node and
are scattered according to the theory of transmission
lines to produce twelve reflected pulses:

VT =[SV, (1)

"where [S], the TLM scattering matrix, is a 18 x 18
matrix. The reflected pulses at time-step k& become
the new incident pulses at adjacent cells at time-step
k + 1. At each time-step, all field components may
be obtained at each node directly from the voltage
pulses. The TLM method offers complete time-domain
information over the entire problem region and is
suitable for finding the transient time response. Results
in the frequency domain may be obtained by simply
taking the Fourier transform of the results in the time-
domain. The TLM is a local method which, therefore,
makes it very simple to solve inhomogeneous problems
or problems with complex structures.
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Figure 1. A symmetrical condensed node.
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Figure 2. A typical enclosure configuration.

In some problems (such as the SE of an enclosure),
the approach to steady-state may be slow and require
many time-steps. Successful simulations, therefore,
hinge on controlling demands on computational re-
sources, while maintaining reasonable accuracy.

DEFINITION OF THE PROBLEM

Figure 2 shows a typical metallic enclosure with a
rectangular aperture of dimension w X [ illuminated
by a plane wave. All sides are assumed perfectly
conducting with a thickness, ¢. The observation point is
located at a distance, p, away from the aperture inside
the enclosure and on a line normal to the aperture
and passing through the center of the enclosure. The
thickness, t, the side lengths, w and [, and the distance,
p are variables in different simulations. The enclosure is
excited by a plane wave of unit amplitude £, =1 V/m.

The shielding effectiveness, SE, is defined as the
ratio of E,, at the observation point in the presence of
the enclosure, to that in its absence:

SE = 20log ?O, (2)

xl

where E.¢ and E,, are the values of E, in the absence
of the enclosure and in its presence, respectively.

NUMERICAL RESULTS

Consider the metallic enclosure shown in Figure 2. The
internal dimensions of enclosures are assumed to be
a = 120 mm and b = d = 300 mm. This enclosure
has been studied in the literature [4,6,7]. In addition
to the enclosure, the free space around the enclosure
must be modeled. The free space region is kept as small
as possible to minimize the size of the computational
region. For all simulations, a free space volume of
120 mmx 300 mmx100 mm is placed in front of the
aperture. A simple absorbing boundary condition is
applied in the free space region. At least four nodes
were found necessary to accurately predict the effect of
aperture width.

As a first example, consider a 5 mmx100 mm
aperture. A uniform mesh was used, resulting in a
TLM cell size of Al = 2.5 mm. Hence, the time step is
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Figure 3. The simulated region including a quarter of the enclosure.
set at:
Al
At = 9. = 4.167ps, (3)
.C

where ¢ = 3x10%m/s is the speed of light. The selected
cell size Al < (A/10) implies that the dispersion error
is negligible up to 12 GHz. However, for illustrative
purposes, the results are reported only up to 1 GHz.

To minimize processing requirements, the sym-
metry shown in Figure 2 can be used to advantage.
Perfectly electric and magnetic conducting walls are
placed at z a/2 and y b/2 symmetry planes,
respectively. Thus, only a quarter of the structure
needs to be solved, as shown in Figure 3, and the
necessary memory and processing time required will
be reduced by a factor of four. The total size of the
simulated region is, thus, 60 mmx150 mmx400 mm
with an overall number of 24 x60x 160 nodes.

The incident wave is assumed to be a 200 ps
Gaussian pulse and the time-domain output at the
observation point is extracted by the TLM method.
In order to reduce the undesired reflections from the
absorbing boundary, the plane of excitation is placed
very close to the aperture (1.5 Al away before the
aperture), as shown in Figure 3.

Taking the Fourier transform of the output and
the excitation, the spectral behavior of the shielding
effectiveness can be calculated from Equation 2. First,
a simple rectangular window is applied to the time-
domain response of the enclosure and|aperture with the
duration of 77 = 833 ns. The time-domain response of
the TLM for an enclosure of thickness t = 2.5 mm
is depicted in Figure 4. The shielding effectiveness
for 200,000 and 500,000 iterations i shown in Figure
5. These results show errors in low frequency range
as well as an ambiguity in the spectral values of
SE.

The numerical complication in the analysis is
amplified by the presence of the respnant response of
the enclosure. This is due to aliasing effects in the
Fourier transform, which is caused by the high sidelobe
levels in the Fourier transform of the rectangular
truncation window. The results shown in Figure 5
are the convolution of the Fourier |transform of the
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Figure 4. Time-domain output in the SE analysis of the
square aperture.

rectangular window with the Fourier transform of the
response shown in Figure 4.

The time domain output takes a lot of time to
decay near the resonant frequency, especially for small
apertures. Hence, usually a large number of time-steps
is necessary for obtaining accurate results. The error
and ambiguity in SE can be removed only with a large
number of time-steps (more than 500,000 steps in the
current case).

In order to reduce the aliasing effects, a Hanning
window was applied to the time domain output, in
order to reduce the number of time-steps required in
the TLM method. The Hanning window considered is
given by:

W(t) =0.540.5cos(nt/T), -T<t<T, (4)
The width of the window, T', will be inversely propor-
tional to the aperture size. In the simulations presented
here, the computations were limited to 20,000 time
steps (92 minutes of run-time) when a Hanning window
was utilized. Without the Hanning window, however,
at least 500,000 iterations (or 38 hours of run-time)
were needed to give an acceptable result, as shown
in Figure 5b. Thus, a factor of 25 improvement in
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Figure 5. The SE of the square aperture obtained from
the truncated output for various number of iterations
(thickness t = 2.5 mm).

speed was achieved while the accuracy of the results
was retained.

Figure 6 shows the calculated results for an
aperture of width w = 5 mm and length ! =100
mm at an observation point located at the center of
the enclosure (p = 150 mm) for two different wall
thicknesses, t = 0 and ¢t = 2.5 mm. Two hundred
thousand time-steps were used in these simulations and
the width of the Hanning window was chosen to be the
same as that of the rectangular window. That is:

Ty = 200,000, At = 833ns. (5)

The negative value of SE at the resonant fre-
quency of the enclosure clearly implies that the field is
enhanced near the resonance. For a closed rectangular
metallic cavity, the resonant frequency is given by:

4 m 2 n
fom S e

)2 (6)
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Figure 6. The SE at the center of the enclosure
calculated using the Hanning window (w =5 mm, [ =100
mm).

where ¢ is the speed of light in free space. The
dominant resonant frequency in this case is f, = 707.1
MHz. In the presence of the aperture, however, the
resonant frequency shifts to 702.2 MHz for ¢t = 0 and
to 703.7 MHz for t = 2.5 mm.

The above problem has been solved using the
finite element method. A comparison of the re-
sults obtained from the finite element method [4],
the analytical formulation of Robinson {7] and the
TLM method is given in Figure 7 for t = 1.5
mm. The results of the TLM method for t = 1.5
mm was obtained by an interpolation of the two
curves shown in Figure 6. It is observed that the
TLM result is in better agreement with the analytical
formulation of Robinson, in this case.  However,
this agreement should be interpreted with caution.
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Figure 7. The SE at the enclosure center (w = 5 mm,
[ =100 mm, ¢ = 1.5 mm).
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Figure 8. The SE at a point close to the aperture: p = 30
mm (w =5 mm, { = 100 mm, ¢{ = 2.5 mm).
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Figure 9. The SE at the center of the enclosure with a 30
mm X 200 mm aperture.

order modes exist, the method gives more accurate
results.

The shielding effectiveness of the rectangular
enclosure under consideration with a larger aperture
of size 30 mm x 200 mm has been measured and
reported in [7]. The wall thickness was t = 1.5
mm. The measurements were made by placing a
sensor inside the enclosure and, also, by observing
the emission from a radiating circuit within the en-
closure. The field source was a network analyzer
connected via an amplifier to a log periodic or bilog
antenna. Figure 9 shows a comparison of the mea-
surements with the numerical data as well as the
finite element method [4] and Robinson’s formulation
[7]. It is observed that, in this case, the TLM
method gives a better agreement with the measure-
ments.

In the above TLM simulation, a non-uniform
graded mesh was used to set the minimum cell size
equal to 1.5 mm at the enclosure wall, without in-
creasing the overall number of nodes. Because of the
greater aperture size (in comparison with the previous
example), a greater damping factor was observed in
the time domain output. Thus, a narrower Hanning
window was used (7" = 80 ns), leading to a reduction
in processing time.

EFFECTS OF APERTURE SHAPES

The shape of the enclosure aperture has a direct effect
on shielding effectiveness. Here, the effects of apertures
of different shapes on the SE of the same enclosure are
compared.

All apertures have the same surface area. The
first aperture is a rectangle of size 30 mm x 120 mm,
the second is a 60 mm X 60 mm square aperture,
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Figure 10. The SE at the enclosure center for apertures
of area S = 3600 mm?.

while the last is a circular aperture of radius 33.85 mm.
The wall thickness is assumed to be zero in all three
cases. A uniformm mesh of cell size Al = 2.5 mm
was used in the calculations. The computations were
limited to 20,000 time steps. The run-time for each
simulation was about 92 minutes on a Pentium II 450
MHz processor. _

Figure 10 gives a comparison of the shielding ef-
fectiveness at the center of the enclosure (p = 150 mm)
for the three apertures. The same comparison is shown
in Figure 11 for other observation points (p = 30 mm
and p = 270 mm). These results show that a circular
aperture and a square aperture of the same surface
area have basically the same shielding effectiveness.
Also, it can be seen that the SE of a circular or
square aperture is better than the SE of a rectangular
aperture.

CONCLUDING REMARKS

The TLM method was used for the analysis of the
shielding effectiveness of a metallic enclosure with
rectangular and circular apertures. It was shown
that the electromagnetic SE characterization using the
TLM method, is very efficient over a wide frequency
range.

Applying a simple Hanning window in the time-
domain made it possible to drastically reduce the
calculation time, especially in the presence of small
apertures, while maintaining the desired accuracy. The
proposed method can be used as an intermediate
design tool for the evaluation of the effects of various
aperture shapes on the effectiveness of shielded assem-
blies.
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Figure 11. The SE of three apertures of the same surface
area (a) p = 30 mm (b) p = 270 mm.
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APPENDIX
Robinson Formulation

Consider the enclosure as a short circuited waveguide.
Assuming that only the dominant TE;; mode can
propagate in the waveguide, the structure shown in
Figure 2 can be modeled as the equivalent circuit of
Figure Al. The short circuited waveguide and the
aperture are represented by transmission lines. For
the T'Eg; mode, the guide impedance and the guide
propagation constant are given by:

Z, = Zo/ /1= (A2b)2, Zo = 37790, (A1)
kg = ko/ /1= (AJ2b)2, ko =2/, (A2)

and for the aperture, the characteristic impedance
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Figure A1l. The equivalent circuit of Figure 2.

and the propagation constant of a coplanar strip
transmission line of total width a and separation w is
used. That is:

K(ke)
K&’

[

ke = we/a, k. =+1-k2 (A3)

Zys = 120w

where K is the complete elliptic integral of the first
kind and the effective width, w., is given by:

5t 4rw
e =w— —(14+1n—). A4
We = W 471_( +1In ; ) (A4)
The equivalent circuit of Figure Al can be used
to find the shielding effectiveness [6,7].





