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In this paper, the performa
Modeling) techniques for s
show that EAM has a sug
considerable modeling unc

nce of EAM (Estimation After Modeling) and EBM (Estimation Before
erodynamic parameter identification are compared. The results clearly
erior performance over EBM, but both techniques fail when there is
ertainty. Given this shortcoming, a two-step procedure is used that is

a combination of EAM and EBM for estimating the aerodynamic parameters. Simulation results

show that this new techn

ique outperforms EAM when modeling uncertainties are considered.

This technique will be applied to the problem of identifying the aerodynamic parameters of an
anti-tank missile and its performance is compared with both EAM and EBM approaches.

INTRODUCTION

The aerodynamic model and its accuracy have a critical
role in the guidance and control design of the aircraft,

helicopter and missile. Parameters
usually obtained by numerical meth
tunnel test data. Another technique
system identification methods and
data for estimating the aerodynamig

Note that wind tunnel tests a

of this model are
ods or from wind
is based on using
actual flight test
parameters [1-3].
re usually carried

out under restricted conditions and simulating all
possible flight conditions is quite difficult under these

circumstances. Hence, using actual

flight test data is

the preferred approach for identifying the aerodynamic

parameters. Moreover, actual flight
used to validate parameters that are
wind tunnel experiments.

There are several techniques f
aerodynamic parameters [1-19]. B
techniques can be divided into tw
mation Before Modeling (EBM) and
Modeling (EAM). In EAM, the aerod
moments are modeled as functions
and some unknown parameters. Ng
procedure is used to estimate thes
EBM, the aerodynamic forces and

test data can be
measured through

or identifying the
Jasically all these
o classes of Esti-
Estimation After
ynamic forces and
of the state vector
>xt, an estimation
e parameters. In
moments are as-

sumed unknown and in the first step these unknowns
are estimated through an estimation algorithm. In the
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second step, a parameterized model is fitted to the
estimated forces and moments. When modeling errors
are present, EAM does not perform very well. In this
paper, a strategy, called Mixed EAM-EBM (MEE) is
proposed to solve the modeling error problem of EAM.

This paper is organized as follows. In the next
section, EAM and EBM strategies are compared and
it is shown that EAM is superior to EBM. Then, the
effect of modeling error is considered and a remedy
for EAM under modeling errors is presented. Also, an
appropriate estimation algorithm that can be used in
EAM, EBM, or MEE is presented. Moreover, a simple
example is presented in which, EBM, EAM and MEE
methods are described. Finally, simulation results for
applying EAM, EBM, and MEE to an anti-tank missile -
is presented and the superior performance of mixed
EAM-EBM is clearly illustrated.

AERODYNAMIC IDENTIFICATION
METHODS

Formulation

Missile equations of motion can be written in a general
form as follows:

X =f(X.F). (1)

L]
Here, X denotes the state vector that includes the mis-
sile position, velocity, angular velocity and orientation
and F denotes the forces and moments acting on the
missile. Generally, F' can be written as:

F=F,+Fp, (2)
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where F, is the aerodynamic forces and moments and
Fr is the forces and moments due to thrust vector.
Aerodynamic forces and moments are a function of
missile velocity, angular velocity, orientation and aero-
dynamic parameters ©; hence, F, can be denoted as:

E,=F,(X,0). @)

There are many techniques for identifying the
aerodynamic parameters ©. An effective family of
identification techniques, for this purpose is called
nonlinear smoothing [6,7,9,13,17,18]. This family can
be divided into two classes as follows:

1. Augment the unknown parameters © to the state
vector and estimate © alongside with other compo-
nents of the state vector. Then © is assumed to be
a slowly varying Markov process and the augmented
equations are:

X = f(X,F.(X,0) + Fy),

e

=0. (4)

This class is usually called Estimation After Model-
ing (EAM).

2. Augment F to the state vector and estimate F
alongside with other components of the state vector.
Here, F is assumed to be a Markov process and the
augmented equations are:

F=—aF+¢, (5)

where 1/a is the time constant and ¢ is the driving
process noise. After estimating F', the parameter ©
is estimated using Equation 3 by regression methods.

This class is usually called Estimation Before Modeling
(EBM).

Comparison of EAM and EBM

The block diagrams of these two techniques are shown
in Figures 1 and 2.

As is clear, EBM is an open loop estimation
procedure. So for example, error in estimating angle
of attack does not affect the error in estimating aero-
dynamic forces and moments. However, EAM does
not have this shortcoming and simulation results also
confirm the superior performance of EAM compared to
EBM.

Also note that in EBM, aerodynamic forces and
moments are considered as Markov processes during
the estimation process. It can be shown that process
noise in this method is correlated with states [16] and
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Figure 1. Estimation before modeling.
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Figure 2. Estimation after modeling.

hence, the non-correlation assumption between states,
process noise and measurement noise used in almost
all identification methods is violated. (Idan [16] used
another formulation to avoid this problem. In that
formulation, it is assumed that angular velocity vector
and linear acceleration of C.G. are measured. It can be
shown that if all of these vectors cannot be measured,
Idan formulation cannot be used.)

Note that the computational burden of EAM is
much higher than EBM since there are more states to
estimate in EAM compared to EBM.

Although both EAM and EBM require the use of
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nonlinear algorithms for aerodynamic parameter esti-
mation, the model used in EAM can be more nonlinear
compared to EBM and this can cause a convergence
problem. Additionally, if the used agrodynamic model
is changed during the identification|process, the first
phase of EBM that consists of estimating F remains
unchanged, but this is not the case in EAM.

Identification Algorithms

In the literature, many algorithms are used to estimate
aerodynamic parameters using flight test data. Some
of these algorithms are as follows: |Output error [3],

equation error [1,3], equation decoupling [14], nonlinear
smoothing identification (like extended Kalman filter-

ing) [6,7,9,13,17,18], maximum liklih
and smoothing based identification

three algorithms are used extensively.

ood, [1,8,10-12,15]
16,19]. The later

i

In the nonlinear smoothing identification method,

parameters are modeled as Markov
augmented to state variable vector.
lem of parameter identification bec
smoothing or filtering in on-line app

processes and are
Hence, the prob-
omes a nonlinear
lications problem.

These algorithms are generally extended from the

linear state estimation theory.
In Smoothing based Identifi

ration algorithm,

since parameter vector © is considered constant, the

procedure is divided into two stages.
states are estimated and smoothed 4
parameters are updated such that
J is minimized. State estimation

In the first stage,
ind in the second,

a cost function
or smoothing) is

performed via backward-forward filtering. Update of

the parameters in the second stage

s performed with

an optimization algorithm. Here, finding the gradient

of the cost function J with respe
is a critical task. .In ML, this t

by computing the sensitivity matrix [10].

ct to parameters
ask is performed
But in

smoothing based identification algorithm, the gradient

is computed efficiently using Lagrang

re multipliers dur-

ing the smoothing procedure. When the parameters are
updated, the smoothing algorithm is performed once

again. This procedure is repeated
parameters are very small. Based
ML estimation can be considered

until changes in
on this overview,
as a member of

smoothing based identification class, if process noise

is also included.

Note that all these algorithms
EAM strategy but only those whicl
nonlinear smoothing algorithm can
EBM strategy.

an be used in the
h are classified as
be used with the

UNMODELING EFFECTS AND NEW

METHOD

It is clear that aerodynamic param
based on system dynamic and aerody

eter estimation is
namic models. In
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the real world, these models may be inaccurate. In
dynamic models, assumptions are as follows.

Product moments of inertia are assumed zero,
since the missile is assumed cruciform.

The thrust curve is known.

A linear aerodynamic model or a deterministic
nonlinear aerodynamic model is usually assumed. If
this model is not accurate, estimated parameters devi-
ate from true values.

(u,v,w) are linear velocity in body axis coordi-
nate. If wind is absent, angle of attack and sideslip
will be:

azmrﬂ%yﬁsz%%. (6)

If wind flows, angle of attack and sideslip become:

w—w v—v
o =tan"!}(——2), B’ = tan"!( ). (7)
U — Uy U = Uy
Since,
Unyy Vagy Wayp, UV, W << U, (8)

the above equations can be approximated as:

INw_w’w ww
o ——m—=a - —,
U — Uy U
v—0 v
ﬂ/zu—uw:ﬂ_jw' )
w

Note that even a linear approximation to aerody-
namic force C, is modeled as:

Cl = Coad + Cuq.q+ Cis, .bc. (10)

This model differs from the linear approximation given
as:

C,=Chaa+C..q+ Cys, .6 assumed model,

(11)

and hence, an unmodeled dynamics is produced.
Every manufactured subsystem of a missile has its
tolerance. For example, misalignment of motor nozzles
can produce a new force and moment around C.G. of
the missile. These forces and moments usually differ
from one missile to another in actual flight.
Therefore, it is clear that unmodeled dynamics are
always present and the estimation procedure should be
capable of dealing with these modeling errors.

Mixed EBM and EAM

It was pointed out previously, that the EAM method
usually results in more accurate estimations compared
to EBM. However, EAM will run into trouble'if there
is unmodeled dynamics. This is because in this
technique usually an extended kalman filter algorithm



Missile Aerodynamic Identification

is used and the unmodeled dynamics is treated as
white Gaussian noise. This assumption is usually not
accurate and this is the reason for the poor performance
of Kalman filtering [20-23] when modeling uncertainty
is present [20-23].

Here, a new technique is suggested. Let now
rewrite £, as the sum of two components denoted by
F, and F, as follows:

F,=F(X,0)+F,. (12)

Here, F, is a simple preliminary model for aero-
dynamic forces and moments and F, denotes the rest
of aerodynamic forces and moments which are not
modeled in F;.

Next, © and £, are modeled as Markov process
and are augmented to the state vector, for which an
estimation procedure is used to estimate © and F,
-alongside the state vector X.

In estimation phase, external forces and moments
fit themselves to a preliminary modeled section and
a model-free section (Markov processes). Since this
procedure, unlike EBM, is not a completely open
loop and uses an approximate aerodynamic model, it
inherits many advantages of EAM. On the other hand,
the model-free section is like EBM.

After the estimation procedure is completed, if a
relation among estimated unmodeled forces, moments,
state variables and inputs were found, a complementary
model will be obtained and will be augmented to the
preliminary aerodynamic model section. Repeating the
above procedure with the improved model will result in
more accurate estimated parameters, due to improved
performance of EAM compared to EBM.

This procedure can be repeated until the process
F, is whitened. Note that this technique is similar
to Proportional Integral (PI) [24] or Proportional
Fading-Integral (PFI) Kalman filtering [25]. As is
well known, in PI algorithm, an integral model is
augmented. Integral section allows for the accurate
estimation of disturbances caused by unknown inputs
and plant perturbations. Moreover, PFI is a more
robust generalization of PI algorithm.

IDENTIFICATION ALGORITHM

Extended Kalman filtering have been used as a pa-
rameter Estimator. In many papers, EKF is used to
identify aerodynamic parameters using flight test data.
In a comparison [7] with nonlinear recursive prediction
error method and ML, it is shown that EKF is superior.

Major smoothing algorithms based on Kalman
Filtering (KF) are Modified Bryson Frazier (MBF) [26]
and Rauch, Tung and Stribel (RTS) [26]. Here, the
Square Root (SR) algorithm is used for implementation
of KF. Numerical difficulties that appear in othor
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implementations are not seen in SRKF [27]. Square
root algorithms can be divided into two different
categories: Covariance SRKF and information SRKF.
Since covariance of backward filtering at ¢ = ¢ty must
be P(ty) = oo [28], ISRKF algorithm is superior in
this regard, since A(ty) = P~(ty) = 0. Also, when
the initial conditions are not well-known, using the
information matrix algorithm usually results in a better
performance.

Frazier smoothing algorithm based on ISRKF is
shown in Figure 3. The following notes should be
considered:

1. The conventional estimate of R (if measurement
noise is white Gaussian) using the N most recent
residuals, is given by:

N
N 1 T
R=5— ;ﬂ(yl U )W — 1), (13)
where
L&
Un = > v, (14)

Robust versions of Equation 7 (with respect to out-
liers and the assumption that v; are white Gaussian
noise) can be found in [29,30].

2. It can be shown that extended Kalman filtering as a
parameter estimator fails (with a probability of one)

H = g5 iaﬁ— Q=a" )
b (k) = S;b R (k); +k):s;1 X+ (k)

Time update:

Ny 0
vk +1)| =~ YL ot )
TN N R—I/Z 0
{ o2 5‘31] = QR({S”I Flg s:1 F—l])
m p . B P .

Measurement update:

] - or([o7])
o] -en( [, 52,])

ISRF:

T T 1 T o— 1 .
Xs_(Sfp Sfp pr Sb ) (S bf+ S )
where

QR : QR decomposition

Sf and S are square root of forward and

backward covariance matirx

Figure 3. Square root extended Kalman smoothing.
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to converge to the true values of the parameters in the following model that describes the single degree
a system whose state noise covariance is unknown. of freedom equation of motion of a sled:

3. Optimal estimation of Q is a difficult task. It has .

been shown that under special conditions, it is pos- V =(Fr(t) + K;V*Cy)/m, K4=1/2"p"S,.

sible to optimally estimate @ adaptively [31]. This (15)
technique is named Residual Correlation Method

(RCM). The most important restrictions in this Fp(t) is the thrust and Cj is the drag coefficient that
method are: is assumed to be constant with a value of -0.25. For
a) The system must be LTT. simulation purpose, it is assumed that', Fr = 350 N,
b) In order to find a unique solution, the number n}zl = 10kg a1'1d Ka = 00239 Tge vzlom;y er)ﬁle }/lfo;

of unknown components in Q must be less than these values is shown in Figure 4a. Acceleration of sle

vl is measured in discrete times (75 = 0.1 sec), therefore,
n*m (number of states multiplied by number of 15 measur (T )

inputs).
. Velocity profile
RCM cannot be used in our case because the model 600
is not LTI But tuning @ parameters based on -
whiteness of residuals is the essential idea that is 500
used in all @ estimation methods 400
4. Note that, using simulation results, it is known 2
that whitening the residuals increases the estimation £ 3007
accuracy. The relationship between @ and residuals > 200!
cannot be derived analytically, but several different
empirical relationships are proposed [32]. A small 100
Q derives residuals unwhite. large Q makes (a)
residuals white but parameter ¢stimates degrade 0 1 2 3 4 s 5
from their real values. Hence, small Q must be used sec

at first, then, @ is gradually increased such that all
residuals are whitened. However, changes made to
individual elements of @) are based on engineering
experience. For example, assume the first three
elements of the state vector are the components
of the velocity vector (uw,v,w).| Therefore, Q2

-0.1

-0.2

(process noise component in dv/dt equation) affects ) bt odlodbbpibiiddobesStndtt Skt
the ay accelerometer residuals and Q33 (process -0.3 ™ MEE: 24 DAM:03
noise component in dw/dt equation) affects the
a, accelerometer residuals. These facts help in
tuning @ components. Otherwise, choosing the -0-4 ) |
components of  without these physical insights is ;
usually a very difficult task. ooz Sm 3 4 4 55

The tuning of process noise dovariance of these
unknown forces and moments (Qp) is critical. If 028 EBM,EAM and MEE (25% loss in thrust)
covariance matrix p is too large, the model- o ) ) )
free section will be overestimated and estimated 03 N O MEE: 16%
parameters deviate from true values. On the other
hand, if covariance Qp matrix is too small, the 04 EAM: 28%
model-free section will be underestimated. -

Hence, at first, tune @ elements to obtain © o5
maximum whiteness of residuals. If residuals remain -
un-white, increase Qp, until white residuals are 06
obtained.

-0.7 ()

A SIMPLE EXAMPLE

In this section, a simple example| is presented for Figure 4. Comparison of EBM, EAM and MEE
identifying the drag coefficient of a sled. Consider performance.
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the measurement can be modeled as follows:
Yn = (Fr(tn) + K3V (tn)**Cyq)/m + v(tn). (16)

In simulation it is assumed that E[v%(t,)] =
25 m?/sect. Cy is identified using three different
strategies, namely EBM, EAM and MEE and later
the results are compared. Relative error between
estimated Cy and true C4 is computed using the
following equation:

Cm — Cy

Relative error = | C
¢

l (17)

where C, is the mean value of Cy(t) in steady-state
region and C; is the true value.

EBM

In this method, the following model is used for estima-
tion:

V=F/m+w, F=ws yn=F(tn)/m.
(18)

After estimation of state variables, the drag coefficient
from the following relation must be extracted:

F(t) = Ca(t)™u(t) + Fr(), (19)
where u(t) is:
u(t)y = K52 (20)

Recursive output error method is used for identifying
C4. Results are shown in Figure 4b.

EAM

In EAM method, a preliminary aerodynamic model
shown below is assumed:

F, = K;V*(,. (21)

Therefore, the following model is used for the estima-
tion phase:

V =(Fr(t) + K;‘V2*C’d)/m + wq,

.
Cd = W2,

Yn = (Fr(ta) + K3V (ta)* Ca(tn))/m. (22)

Estimation results are shown in Figure 4b. Please
note that since velocity V' and drag Coefficient Cjy
directly affect the measurement %,, the accuracy of
estimating Cy and V is increased here. In these cases,
EAM performs much better compared to EBM and
this is basically another interpretation of closed loop
characteristics of EAM.
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MEE

The above methods have good accuracy when there
is no unmodeling error. For evaluating the effect
of modeling errors, 25% loss in the thrust force was
assumed. This unmodeling error is encountered in real
world, since the real thrust force is always different
from nominal thrust. Note that during the estimation
phase, the nominal value for the thrust force can be
used. Results of EBM and EAM methods are shown
in Figure 4c. In MEE method, any unmodeled forces
acting on sled is modeled as markov process, like EBM
method. Therefore, the following model is used for
estimation:

V = (Fr(t) +K;V2*Cd + F)/m 4wy,

Cyq = wq, F = ws;. (23)

Results are shown in Figure 4c. If unmodeling
does not occur, F becomes zero and MEE behaves like
EAM (Figure 4b). Figures 4b and ¢ show that MEE
method is more robust than EAM and EBM methods
when unmodeling errors are presented. Accuracy of
MEE in both cases is very good. In a complicated
case, when unmodeling is due to aerodynamic model
inaccuracy, a new relation between F' and other state
variables can be found and this new model can be
added to the preliminary aerodynamic model.

Note that in practice, there are only measure-
ments and tuning the parameters of process noise is
difficult. In this example, the noise parameters based
on minimizing the mean square of the residual sequence
were tuned. This method works very well.

SIMULATION

ISRKF has been used for aerodynamic parameter
estimation of an Anti-Tank Guided Missile. This
ATGM has automatic command to Line Of Sight
(LOS) guidance and is tracked with an IR tracker
at the launch sight. The tracker measures ¥ and Z
deviation of missile with respect to LOS in inertial
coordinate. Control commands are sent to the missile
via a connecting wire. A pulse width modulated
actuator is used for applying aerodynamic forces and
moments to guide the missile to LOS. A two-degree
of freedom gyroscope measures roll and yaw angles.
Two additional 3-axis accelerometers are mounted at
fore and aft of the missile. This helps to measure a
function of angular accelerations. Although pitch angle
and angular rates are not measured, but our results
show that pitch angle and other state variables can be
estimated accurately.

An on-board high shock resistant data acquisition
system is designed to record all events and outputs.
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After flight, the saved data is dowr
puter. This method is very cost effe
telemetry and also there will be no in
radio transmission and missile in
Moreover, range-independent high
recorded and there is essentially no li
of channels that can be recorded.
The flight motor of the missile
sec and after that, the missile coasts
During the first phase, nozzle outpu
the wings.

nloaded to a com-
ctive compared to
terference between
ternal electronics.
quality signals are
mit on the number

burns for about 2
toward the target.
t jet flows through

By assuming time-varying coefficients,

the aerodynamic parameter changes can be tracked

during motor burning and coasting
implementation, f and h derivatives
MATLAB® Symbolic Math toolbox.
instruments are not equal. In Figure
algorithms are compared in estimat
and w linear velocities.
variables, EAM is superior to EBM.

In the aerodynamic model a d
added in Y and Z channel with the

C.=Cog+ Caqq+ Cis, .60 +0.

This disturbance equals 20% of C,
compares the results of MEE (Mixed
and EAM when the mentioned disty
These figures show the superior pen
as a parameter estimator. The follow
portant in implementation of MEE j

Since missile is cruciform, the f
hold:

CZO( = Cyﬁ,czﬁe = Cy§T7 C‘ma = C
Cmée = Cn&racmq = Chnr.

Estimation accuracy of C,s. and C,,
than other parameters.

phase. In SRKF
are computed by
Sampling times of
4, EBM and EAM
ing pitch angle, v

Based on other estimated

sturbance term is
following model:

1. (24)

or C,. Figure 5
1| EBM and EAM)
rbance is present.
formance of MEE
ying points are im-
n our application.
ollowing equalities

ngs
(25)

se are much higher

This is because of persistent
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Figure 5. Estimation Error in EBM and EAM.
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excitation of control derivatives by PWM control in-
put.

Since angle of attack of this missile is not very
high, angle of attack derivatives C.o,Cma and C3__
have lower estimation accuracy.

Roll angle is stabilized with phase adjustment
between pulse commands. In the initial flight phase,
the magnitude of input command of roll angle is
high, but after a few seconds, it decreases appreciably.
Therefore, the roll channel is not sufficiently excited
and identification becomes inaccurate. For increasing
the estimation accuracy of aerodynamic roll coeffi-
cients, an exciting scenario must be designed. It should
be noted that Cjs, is estimated much better than Cj,.

In Table 1 accuracy of estimated parameters is
computed by the following equation:

Z

=1

C(k k)|

Relative error = 100,

(26)

where C,(k) is the estimation of C;(k) at kth sample.
Since there is no unmodeling presented in X channel,
performance of MEE is the same as EAM for estimating
Cqo and Cyuac2. But in other parameters, MEE is
superior to EAM. Of course it is obvious that this su-
perior performance is accomplished through increased
computational complexity.

Test of whiteness is performed on backward filter
residuals. Parzen method [31] was used for testing the
whiteness of residual sequences. In this method, a band
is computed based on correlation of residual sequences.
If the number of times that the correlation element lies
outside the specified band is less than 5% of the total,
the residual sequence is declared white. In Table 2,
results of whiteness test are shown for EAM and MEE
methods in the presence of unmodeling errors. Note
that changing the parameters of noise process in EAM
could not whiten the residual sequences.

Estimation algorithm is not sensitive to initial
conditions and does not diverge in any simulated
condition.

An important feature of any estimation algorithm
is measured by its ability in predicting a bound for the
estimation error. In KF, square root of diagonal ele-
ments of covariance of error matrix is a good criterion.

Figure 6 shows the 2¢ Estimated Error Bound
(EEB) and real error between estimated parameters
and true parameters in the simulation. In all esti-
mated parameters, except C,4,Crme and Cyoco, EEB
is greater than real error.

CONCLUSION

In a comparison of EBM and EAM methods in aero-
dynamic identification, it is shown that EAM meth-
ods are superior, due to their closed loop property.
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0.5

-0.5 . . ,

-0.75

Estimation error and EEB of Clp

Figure 6. Comparison of MEE and EAM: True value (o), EAM (dashed), MEE (solid).
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Table 1. Relative error percentage of estimated

parameters in EAM and MEE methods.

Parameters EAM MEE
Cao 6.69 6.80
Cdac2 74.89 69.22
Cra 15.26 9.41
Cse 5.63 1.97

Cip 243.27 71.09
Clsa 13.88 11.65
Cma 33.99 12.64
Cmg 74.96 34.34
Crnse 3.11 0.83

Table 2. Results of whiteness test of r
EAM and MEE methods.

esidual sequences in

Measurements EAM MEE
Alx 1.53 1.52
Aly 72.07 2.95
Alz 57.93 2.73
roll 2.18 2.23
A2y 37.95 3.18
A2z 38.08 2.33
Yaw 8.45 2.30

Velocity 1.68 1.65
Y; 2.98 3.00
Z; 2.77 2.78

Here, the EKF algorithm based q
was used for identifying time vary
parameters.
used when unmodeled dynamics w|
modification was based on combining
The superior performance of the n
illustrated through simulation result

A modification of th

n EAM strategy
ving aerodynamic
is technique was
as present. This
r EAM and EBM.
ew technique was
s for an anti-tank

velocity vector

r's

missile.

NOMENCLATURE

(u,v, w) components of missile

(Uw, Y, Wy) components of wind velocity vector

de elevator angle

ba aileron angle

by rudder angle

Sz reference area

o angle of attack

8 sideslip angle

X state vector

F forces and moments adting on the
missile

€] aerodynamic paramete

w process noise vector

v measurement noise vector

A. Mohammadi and M.A. Massoumnia

vy, v(t;) measurement noise vector at t;
covariance matrix of measurement
noise

p air density

w1, We, W3 process noise

q pitch rate.
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