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Although current knowledge regarding heat transfer
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der is admittedly mature, it should

on flow on a cylin-
be conceded that

not much information is available when the Reynolds

numbers are large. For example, in
numerically solved problems related

1976, Gorla [1]
to heat transfer

in an axisymmetric stagnation flow on a cylinder and
recently, Davey [2] presented an exact solution for the

axisymmetric stagnation flow on an
cylinder.

infinite circular

Although these studies have thoroughly investi-
gated important flow and heat transfer phenomena,

they were limited to low Reynolds n

umbers (Re < 1)

and, thus, provide very little information about the
systematic behavior of such flows at high Reynolds

numbers.
Engineering applications of the

problem of ax-

isymmetric stagnation flow on a cylinder with high

Reynolds numbers are found in many
processes.
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apers on the subject of heat transfer in an axisymmetric stagnation
ilable knowledge is mainly for low Reynolds numbers and not much
me problem at large Reynolds numbers. In this work, the problem of
etric stagnation flow on a cylinder is solved at large Reynolds numbers
ues. Starting from Navier-Stokes equations within a boundary layer
imilarity transformations, the governing equations are obtained in
uations. The inverse of the Reynolds number is introduced as the
his parameter appears in front of the highest-order terms and, as it
order of the governing equations and produces singularities. In this
ded into two regions; rapid changes in the region near wall and slow
. Thus, the flow is found to have dual-layer structure characteristics.
nsion produces uniform values of the relevant quantities.

work can, in principle, be extended to high Reynolds
number flow, the results are not meaningful, because,
at large Reynolds numbers, the governing differential
equations become singular, and reasonable answers
cannot be expected. This is due to multiplication of the
highest-order derivative term in governing equations by
the small perturbation parameter and its singular re-
duction to a lower degree equation as the perturbation
parameter tends to zero.

In recent analysis, Navier-Stokes equations are
used in Cartesian coordinates for the flow on an infinite
circular cylinder combined with a similarity transfor-
mation. The governing equations are then obtained
in the form of differential equations. By introducing
the inverse of the Reynolds number as the perturbation
parameter, perturbation techniques are utilized to solve
this problem. The quantities with rapid changes are
analyzed in the thin region near the wall, the so-called
inner region, and are then matched to the result in the
outer region, avoiding any singularities (see [3]).

A shooting method is used to solve the governing
equations in each region and at the same time, the
matching process is implemented. Uniform solutions
for the temperature field are obtained for isothermal
and uniform heat flux wall conditions for different
values of Reynolds numbers.
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FORMULATION OF PROBLEM

A steady, laminar, incompressible flow at an axisym-
metric stagnation point on an infinite circular cylinder
is considered. A model of the flow with the coordinate
system is shown in Figure 1. The flow is axisymmetric
about the z-axis and also symmetric to the z = 0
plane. The stagnation line is at z = 0 and r = a.
The temperature of the free stream fluid is considered
as T

The equations which have to be solved are the
two-dimensional equations for continuity, momentum
and conservation of energy. Neglecting variable prop-
erty effects and adapting the well-known boundary
layer approximations, it is found that:

ow O
"57 + E(ru) =0,
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r—»oo:uz—A(r—aT),
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For the temperature field there is:
r=a:
i)T =T, {for constant wall temperature,
“)_8_7: = -2 for constant wall heat flux,
dy k

roo00:T - Ty. (3)
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Figure 1. Coordinate system and flow development along
the stagnation line.
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Using the coordinate transformations as:
=Ly
n=(>)
-1
u= _Aa") z f(n)a
w =24 f'(n).Z, (4)

satisfying the continuity equation and substituting into
momentum and energy equations, one would get:

n I ReL+ £ = () =0, 5)
2,2 £2
P:P0—p[A2a —n—+2l/Af’+2A2Z2:|, (6)
n6” + [1 + (Re.Pr)f]¢' =0, (7)
where the nondimensional form:

T-T.

0=_—— "~
T T for constant wall temperature,
T-T.

= % for constant wall heat flux, 8

(@wa/2b) ®

has been used. The boundary conditions are given by:
fH)=f(1)=0 and f'(c0)=1,
f(1) = 1,6(c0) =0 for constant wall temperature,

6'(1) = —1,0(0c0) = 0 for constant wall heat flux.
(9)

PERTURBATION EQUATIONS

Since the Reynolds number is high, its inverse, i.e.,
1/Re, can be used as the perturbation parameter, «.
The governing equations then become:

E(nf/” + f”) + [1 +ff” _ f/2] =0,
end” + (e + Prf)d =0. (10)

In these equations, ¢ appears in front of the highest
order terms, thus, the problem can be categorized
as a “singular perturbation case”. Therefore, as,
¢ — 0, the field must be divided into outer and
inner regions, respectively. Obviously rapid changes
take place at the inner region, i.e., near the wall and
its results should be matched, asymptotically, to the
results obtained in the outer region, in order to get
uniformly valid solutions throughout the field of study.
This solution is valid both very close to the wall and
away from it. This procedure explains the existance
of any unexpected results one may encounter at the
vicinity of the wall using numerical methods. Next,
the governing equations in each of these two regions
are found.



118

Inner Region

Since this is a very thin region near the wall, it is

stretched in order to make the quant
of one. The stretching variables are:
l1-7

g=121 pr =0

X eh’

B(¢) =

ties of the order

o(n).- (11)

By substituting these variables into Equations 10 and
comparing each term with other terms in each equation
and taking the limits, (see [3]), one gets o = 1/2 and

3 = 3/2. The governing equations in
become:

this region then

F'—FF'"+F?_1—¢i(¢(F" +F') =0,

3 —PrF® —e7(£8" + ') =0,
with the boundary conditions as:

F(0) = F'(0) =0,

P(0)=1

®'(0) = —1 for constant wall heat

The following perturbation ex
sumed for the quantities inside the in

F(€,e) = Fo(€) + e T Fi(€) + eFy(€)

B(E,e) = Bo(€) + e ®1(€) + eBa(€

Substituting these expansions into the
tions, collecting the powers of ¢ a
coeflicients equal to zero, it is found t

%

Fy — FoFy + Fy® =1,

3! — PrFyd) =0,

™
o

F/ = FyF!' — F'F| + 2F)F; =

O — B F) — DD, +28), 0, =£F

Fy — FoFj — Fy'Fy + 2F}F,
=P F' + F* + ¢F) + F{,
®} — PrFy®) — Pryd)

= PrF &) + €3 + @1,

(12)

for constant wall temperature,

flux. (13)

pansions are as-
ner region:

+ DEEEN
+- (14)
> governing equa-

nd setting their
hat:

(15)
§Fy + Fy'
otFy  (16)

(17)
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and the corresponding boundary conditions are:
Fy(0) = F1(0) = F2(0) = Fy(0)
= F}(0) = F}(0) = 0,

(0) =1, @1(0) = 22(0) =0,

for constant wall temperature,

9y(0) = -1, ®3(0) = 25(0) =0

for constant wall heat flux. (18)

Equations 15 to 17 along with the boundary
Conditions 18, govern the thin region next to the wall,
which is a correction to the solutions of others. The
thickness of this inner region is, generally, the same
order as the perturbation parameter chosen. Here, as
the Reynolds number gets larger, the corresponding
value of 7, representing the thickness of the inner
region, becomes smaller.

Outer Region

Since the changes in this region are gradual, there
is no need for any transformation and Equations 10
govern this region, which is away from the wall. These
equations, along with the corresponding boundary
conditions, are:

enf" + f)+ 1+ ff" = 7 =0,
end” + (e + Prf)o’ =0,

f(co) =0 for constant wall temperature,
0(c0) =0 for constant wall heat flux. (19)

The following perturbation expansions are assumed for
the quantities away from the wall:

f(me)=fot+efi+efo+O(%),
8(1,) = 0o + €6, + €202 + O(c?). (20)

Substituting these expansions into the above governing
equations, collecting the coeflicients of the powers of ¢
and setting them equal to zero, one obtains:

L+ fofd — £ =0,
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nfo’ + fo + fofi' + fifd — 20 f =0,

b1 =0, (22)

I fofy + A+ B =2 fofi= 7 =0,
g, = 0. (23)

The boundary conditions are:

foloo) =1, fi(00) = f3(00) =0,
90(00) = 01(00) = 92(00) =0. (24)

These equations are to be solved and matched to
the solution of the inner region governing equations.
In this process of matching, the unknown integration
constants are evaluated.

PERTURBATION SOLUTION

In this section the solutions of the perturbation equa-
tions of Systems 15 to 17 along with boundary Condi-
tions 18 and 24 and Systems 21 to 23 are presented.

From the second equation of Systems 21 to 23, it
is readily seen that:

bo(n) = 61(n) = 62(n) =0,

and, therefore, in the outer region:
6(n,e) =0. (25)

Other equations in the above systems are solved numer-
ically. The results are then matched together in order
to achieve a uniformly valid solution throughout the
entire inner and outer regions. This is done by using a
general shooting method [4].

PRESENTATION OF THE RESULTS

System Equations 15 to 17 are three equations and
two unknowns which can be solved numerically. These
equations constitute the inner solutions which are
related to points very close to the cylinder wall. These
values are used as boundary conditions for the outer
region. Then, the first equation in Systems 21 to 23
is solved using a shooting method. In this manner,
the matching process takes place and a uniformly valid
solution throughout the region of interest is obtained.
In this way, corrected values of quantities are obtained
for large values of Reynolds numbers (see [5]).
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Now the heat transfer solution is considered. For
a constant wall temperature case, the local wall heat
flux can be written using Fourier’s law as:

0= ~(37),_,

2, Top). (26)

The local heat transfer coefficient is given by:

Gu 2k
h(z) = ————— = —=26'(1).
() = it =~ 20 () (27)
The local Nusselt number then becomes:
_h(z).z Re,\ ? ,
where:
Az?
Re, = —/—.
e 5 (29)

For a constant wall heat flux case, the local heat
transfer coefficient is given by:

_ G 2 1
h(z) = T 7.~ q .—9(1). (30)
The local Nusselt number becomes:
R62 % 1
Nu, = 2(=22) " - 1
v =2(%7) a(0) (31)

Figures 2 to 4 show the matched (uniformly valid)
values of the variations of temperature, temperature
gradient and velocity profile function, respectively, for
different values of Reynolds numbers. These curves are
the presentation of the intersections of inner and outer
solutions in each case for different values of Reynolds
numbers.

SIGNIFICANCE OF THE RESULTS

In this paper, the systematic behavior of heat transfer
in an axisymmetric stagnation flow at a high Reynolds
number on a cylinder has been investigated. Rapid
changes in the region near the wall and slow changes
away from the wall were considered. Uniform values
of the relevant quantities were produced by use of
inner and outer expansion. This dual structure of
flow permits evaluation of the uniformly valid solution
of temperature and temperature gradient throughout
the field, which is a fundamental contribution. In
this way, unexpected results, due to the singularity
of the governing equations in cases of high Reynolds
numbers, do not occur and the actual results provide a
more complete picture of the manner in which the heat
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Figure 2a. Temperature distribution
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Figure 2b. Temperature distribution
Re in the case of constant heat flux.
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Figure 3. Temperature first derivative for various values
of Re in the case of isothermal wall boundary condition
(Pr = 100).
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Figure 4. velocity distribution for various values of Re.

It can be seen that Equation 5 reduces to the Hiemenz’s
problem:

" + 4" —¢” +1=0, (33)
with boundary conditions:
#(0)=¢'(0) =0, ¢'(o0)=1 (34)

Using Equation 32, for large values of Re the energy
equation can be reduced to the following form, as a
first approximation:

6" + Prod’ =0, (35)
with boundary conditions:
f(0)=1, B(c0)=0

for constant surface temperature case,
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Table 1. Values of Re_%.f"(l) versus Re.

Re~2.5"(1)
Re [2] Present Resuilt
20 1.7577 1.7577
100 1.484185 1.484185
1000 1.31643 1.316427
10000 1.259642
oo 1.232588

Table 2. Values of —Re™%.6' (1) versus Pr.

Pr —Re~3.9'(1) ReZ.6(1)
0.01 0.07598 13:16136
0.1 0.2195 4.55581
0.7 0.4959 2.01645
1.0 0.5704 1.75316
10.0 1.3389 0.74688
100.0 2.98633 0.33486
1000.0 6.25914 0.15316
and:
9'(0) = —Re™ %, 6(c0) =0

for constant surface heat flux case.

The error in deriving Equations 33 and 35 is of the
order Re~ 1. Equation 35 corresponds to the heat
transfer at a two dimensional stagnation flow on a
flat plate. In order to facilitate comparison of the
present results for the skin friction coefficient, as well as
the Nusselt number, with the corresponding results for
the two-dimensional stagnation flow problem, values of
Re~%.f”(1) versus Re are shown in Table 1. Similarly,
values of ~Re~%.6" (1) versus Pr for the constant wall
temperature case and Re?6(1) versus Pr, for Re — o0,
for the case of constant heat flux, are given in Table 2.

NOMENCLATURE

A constant

a radius of cylinder

f velocity profile function

F inner velocity

h local heat transfer coefficient
k thermal conductivity

L cylinder length

g e e N

oo
e}
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Nusselt number (hz/k)
pressure

Prandtl number

heat flux at the wall
coordinate axis
Reynolds number (A4a?/2v)
temperature

r-velocity component
#-velocity component
z-velocity component
coordinate axis

9]
H
5
®
=

TE MO S DS W R

diffusivity and constant
constant

dimensionless coordinate
dimensionless temperature
kinematic viscosity
perturbation parameter
inner region variable
temperature in inner region
dynamic viscosity

fluid density

Indices

1

zeroth-order quantities
first-order quantities
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