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Research Note

Upper Bound Analysis of Cylindrical
Shells Subject to Local Bending Moments

G.H. Rahimi!

In this paper, a limit analysis of cylindrical shells with rectangular attachments well removed from
the ends and subjected to local bending moments is performed. In the analysis, the upper bound
technique is employed to give the minimum upper bound to the plastic imit load for a shell when
it is subjected to local longitudinal and circumferential bending moments over a rectangular area
of the cylindrical shell surface. In the analysis, a two-moment limited interaction yield surface is
used. The results are presented for a range of practical geometrical parameters. An alternative
collapse mechanism for longitudinal bending moment is examined.

INTRODUCTION

It is evident that certain areas of research concerning
pressure vessel analysis have received a good deal more
attention than others of no less importance from the
viewpoint of design integrity and safety. One area
which appears to have lacked intensive study is that
of locally applied loads. Such loading conditions may
arise at nozzles (where they may arise due to reactions
of the piping system), lifting lugs, supports and other
attachments causing local forces and moments. In
practice, the analytical methods, based on the theory of
elasticity, are most frequently used in solving this class
of problems though many procedures are empirical.
Although many elastic formulations have been
obtained, probably the most widely used are the shell
solution provided by Bijlaard [1-4]. Wichman et al. [5]
summarized this work by providing analytical design
curves for cylindrical and spherical shells subjected
to external loads.
be mentioned which deal with the elastic theoretical
and experimental analysis of radial local loads [6,7].
But, for some special conditions of pressure vessels,
for example, nuclear vessels, elasticity solutions are
often inadequate. This is particularly true when
considering the extremely large loads often defined for
emergency and fault conditions. For most of these
conditions, an elastic analysis greatly underestimates
the load carrying capacity of the vessel. Therefore,
for an adequate assessment, an analysis considering
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the plastic behavior of the structure must be per-
formed.

The present work is concerned with the plas-
tic behavior of cylindrical vessels when subjected to
local bending moments. Here, the analytical bases
are concerned with loads being applied over square
or rectangular areas of a cylindrical shell. This is
because the boundaries of such areas are easier to
specify mathematically than, for example, that of a
circular area, for which an analysis would be difficult.
By employing a two-moment limited interaction yield
surface, an upper bound has been found to the local
limit load for a cylindrical shell with a rectangular
attachment.

The introduction of a limit analysis as a comput-
ing tool has provided a powerful technique in many
situations in engineering design. In the limit analysis,
an elastic (or rigid), perfectly-plastic material model
is assumed. The two well-known theorems of limit
analysis, namely, the lower and upper bound theorems,
are used to obtain an estimate of the limit load. The
formal proofs of these theorems are well documented
and can be found in many texts such as Symonds (8]
and Hodge [9]. This paper is not concerned with the
lower bound theorem which is based on equilibrium of
external and internal forces. It uses the upper bound
solution, since the effects of geometry for the present
problem are such that a suitable kinematic pattern of
plastic hinges can be associated with a limit load.

An upper bound analysis for the plastic limit
moment of a cylindrical shell, subjected to a circum-
ferential bending moment through a square attach-
ment, was reported by Kitching et al. [10], along
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Figure 1. Longitudinal moment-notation and hinge pattern.

with the experimental behavior of 12 mild steel shells
subjected to this type of loading. A similar analysis for
cylindrical shells with square attachments subjected to
longitudinal moments has been reported by Kitching
et al. [11], along with experimental behavior of 14
specimens. Both analyses have used a two-moment
limited interaction yield surface.

In this paper, these analyses [10,11] are extended
for rectangular attachments with a modified collapse
mechanism. A simple lower bound analysis for a
cylindrical shell, when it is subjected to the local radial
load through the rectangular attachments, is given in
[12]. Also, an upper bound analysis of cylindrical shells
subjected to local radial load has been presented by the
author in [13].

UPPER BOUND CALCULATION FOR A
CYLINDRICAL SHELL WITH A
RECTANGULAR ATTACHMENT
SUBJECTED TO LONGITUDINAL
BENDING MOMENT

The presented analysis is similar to the analysis of [13]
and is an extension of the work of [11] for rectangular

attachments. It is also based on the assumptions of
the analysis for radial loading of [13], for which the
notation is the same where possible. Figure 1 shows
the deformed shape of a surface of a shell around the
attachment along with relevant hinge pattern. Because
of symmetry about # = 0 and anti-symmetry about z =
0, it is necessary only to consider the internal energy
dissipation of one quarter of the collapse mechanism,
viz Regions 1, 2 and 3 of Figure 1, which are on the
compression side of the attachment. For any point
on the shell, the components of displacement in the
z,0 and z directions are w,v and w, respectively. It
is assumed that throughout the paper v = 0 and v,
w, strains and curvatures are small. Curvatures and
strains and twists at any point of the middle surface
will be given by the following equations:

Ex = U g,

)

1
g = E(v,g +w), 2,9 =10,

1
ko = -(1—2(1),9 —W.99),
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Using og as the yield stress in simple tension, defining
Ny and My as Ny = o¢t and My = ﬂ}f—z, respectively
(where ¢ is the shell thickness), the two-moment limited
yield surface is given by the following relations:

|N9|=N07 |Nx0l:N0/27

IM9| :M01 |M:E9| :M0/27 (2)
N, and M are assumed zero within all regions (but
not at the hinges).

The energy dissipation within any region is given
by:

D, :// N0|Eg|da:ad0+//Z%Iazo[d:cadé?

+//Mo|kg|da:ad0+//2%|k$9|daxad0,
2 3)

where the limits of the integrals are appropriate for the
regions.

The analysis for each of Regions 1, 2 and 3 is now
given separately.

Region 1

It can be shown that v =0 and v = %, hence:

wy :—%(b"rCz—.’L‘). (4)
This gives w; = 0 at the hinge BC. Variable b indicates
the extent of plastic deformation in the z direction. For
circumferential movement in this region, inextensibility
is assumed and this yields €9 = 0, or vy = w, which
gives:

_ 6029
b

vy (b+cy — ). (5)

Substituting Equations 4 and 5 into Equation 1 yields:

co0

Ez:ka::E(?:Oa 519=“'ﬂ2_12)7
_ Bey _ Bcab
ko= b2 =) keo =0

Rotation at the hinge AD is 8+~ = ﬁ+é§—° and rotation

at the hinge BC is ‘?9—;“ =7 = %. The total energy

expended in Region 1 is:

D, c1 2c;  Noé2  bey

Mooz o3 " b T dMea T 2a2 T a0z

(6)
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Region 2
Again, assume v = 0 and:
¢
WQI—%((b‘l'CZ_fL')‘F(Cl—GO)), (7)

which gives continuity with Region 1 at a = c; and
wy = 0 along inclined hinge a = ¢y +cy +b—2z. It can
also be shown that:

_ Beica

2 > ((b+c2 — 2) + (c1 — ab)), (8)

which gives continuity with Region 1 at af = ¢; and
also gives v2 = 0 along inclined hinge EC. Strains and
curvatures are:

(b + 2¢1 + ¢ — a¢9),

_ Bea
F0= ab

for which the bracket is always positive and ¢4 negative
and:

c =__M :_éCICZ k :_50162
= 2ab " a?b T T g%
Rotation at boundary with Region 1 is 2% = £2 and
rotation at boundary with Region 3 is g—’: = &2,
- - . . w ¢ W o
Rotation at inclined boundary is |- 5t 5
28csy
Vb _ .
Total energy dissipation in Region 2 will be:
D2 _ 3b01 3N0b61 ]\/vob2 (9)
MO/BCQ - 4a? 4M0(L 6M0a'
Region 3
Again u = 0 and:
w3=—-&(bﬂ+c1—a9), (10)
b C2
which gives ws = —fe¢y at (x = ¢; and af = ¢;) as

required, and w3 = 0 at {(x = 0,¢ce and af = ¢1,b+ ¢1)
and w3 = 0 at the inclined hinge. Furthermore, one
can construct:

- b
v3 = Perer (c+—:£——a0). (11)
ab co
Thus:
— B¢y b
€z =k =0, 9= Bea (201 + ed —aH),
ab Co
en = Bex _ —Beica _ Ba
z6 — % 3 6 = a2 » z 242 .
Rotation at boundary with attachment is 2% = £

and rotation at boundary with Region 2 is %—": = 3.
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Rotation at inclined hinge is:
(ba_w_cgg) 1 _ B+
or  *adh NGEN: - b ‘

Therefore, total energy dissipation in

D3 _2b 262 N0C162 No

MQﬂCQ _02 + —b—

N()bCl
4M()CL

ber
402’

C1C2
2a?

Energy Balance

Now, equating external work done
energy dissipation for the complete

Region 3 will be:

e2b

2Mya 6Moa

(12)

to total internal
mechanism gives

M3 = 4(D; + Dy + D3) where M is the bending

moment applied to the attachment.
dimensional moment as:

M L
Mp= Mo _a 2 2a o
4M()02 Co b b
2 2
Cl 4bCl 2b
+ =44+ — 4+ —
4a? tet at + 3at
26 2¢ 2b
+ 24 1€2 C2 | C1C2
cy at 3at 2a?

Writing the non-

(13)

and using the non-dimensional geometric parameters:

Cy

Q= R

C2

Equation 13 can be, therefore, rewritten as :

Ml*:(4+oc+z+—3—+2aﬂ>

Q a2
202 2 20
+(1+a0+ T+ 24+ 1)
3 « 3
30 1 1
2___ — —
+7<2+2a+4>'

Parameters a,y and p are given, so t
value of M} is given by %%— =0, or:

4 32 22
ZpR08 4 (2a+—l+4p2+i)92
3 2 3a

[e%
(14)

hat the minimum

—-2(1+1)=0.

a7 (15)

Solution of Equation 15 for various values of «, v and p
gives {2 which, in turn, gives a minimum value of M.
Figures 2a and 2b show the curves of M}* against p for

various values of « and +.
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Figure 2a. Limit axial moment versus p for o = 0.1.
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Figure 2b. Limit axial moment versus p for o = 0.25.

ALTERNATIVE COLLAPSE
MECHANISM-LONGITUDINAL BENDING
MOMENT

An improvement on the results of [11] for an upper
bound for a square attachment is expected if the extent
of the plastic zone in the axial direction (b) is different
from that in the circumferential direction (d). In the
analysis of [11], b and d were equal. An analysis with
b and d as different parameters is now given. Figure 3
shows the hinge pattern along with the appropriate
dimension and notation. The kinematic relations of
Equation 1 are used and plastic limit moment M,
is calculated by considering the shell to be divided
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Figure 2e. Limit axial moment versus p for oo = 2.0.

Figure 2c. Limit axial moment versus p for a = 0.5.
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Figure 2d. Limit axial moment versus p for o

Rotation at the hinge ADis f+a =3+ % and at the

into regions, the collapse mechanism being shown in

Figure 3.
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boundary the following is written:

strains and curvatures are:

(19)

c—ab

b+c—=zx

wy = —ﬂc(

_Bed
2

Ez0

€x =k, =€ =0,

(20)

c—af

b+e—=x

Bc?

Vg =

Beb _Be, .
2ab’ ke = E'z—g(b'i‘ [ x)

kmﬂz_
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Figure 3. Alternative hinge pattern.

Substituting ws and v into Equation 1 gives:
fBc
z — kz - 03 =-—(2 - - )
£ € abd( bc+bd+cd—zd—abb)
Bc? Be? —fBc?
€z = T GZ_Ta kze ::—2
2ab’ - a?d 2a2%b
Rotation at boundary with Region 1 is % = % and
rotation at boundary with Region 3|is ‘Z—;’ = %5
Rotation at inclined boundary is (b%% +
Sw 1 _ 20¢
da@@) VoZ+d: T VB24+d?
Total energy dissipation in Region 2 will be:
D2 b d N()Cd 3¢
=2 2b — —(2b-d
Moge 2T at s T angar® D T gz -9

No bd®>  bdd

2
Moab(bc 3 2

+

3
)

(21)
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Region 3

To be compatible with Region 2 at a common boundary
and to ensure that the moment of a point at the edge
of the attachment is parallel to the longitudinal centre
line of the attachment, one has © = 0 and:

_ _pe

wy = — d( +—~—a9) (22)
__pe

v3 = — ad(+——a0) (23)

Therefore,

b - _ e

€z =ks =0, eg=-— ad( +———a0)

e, = B¢ _pe b

z8 — 2(1’ 4 a2d> 8 242

Rotation at the boundary with attachment i 1s 39 = %,

rotation at the boundary with Region 2 is £ = 3 and

rotation at the inclined hinge is p—v‘i;“.
Hence, the total energy dissipation in Region 3 is:

Do 2o 24, e (o1 9)
MO,BC - d C 2M0a 3

Nocd ¢ dc

— 24
4Mpa  4a?  4a? (24)

Energy Balance

The expressions in Equations 18, 21 and 24 may now
be used to equate the external work done and the total
energy dissipated in the four quadrants of the cylinder
to get:

Mp =M g2 d b 2 2d 3¢ 3¢
P 4Moe " T b b d d ¢ oat | 4a?
L 2be dbe Sde  cd +4d2 C2d® o

a®  at  3at 242  3at 3abt ath’

(25)

where M and M} are plastic limit moment and non-

dimensional limit moment, respectively. If it is as-
sumed that @ = 2, Oy = ¢, v = £ and p? = &,
Equation 25 becomes:
2 0 Qe 2
— + 20
<3+Q +92+Ql+ + 2)
50, 402 203 03
3440, 4 2422 22 22
ACEE U S 30 Ql)
3 Qs
+2(5 2 - 2. (26)

Since M}(€1,) can never be less than zero, it is
known that its minimum value is finite and must occur
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Table 1. Comparison of two collapse mechaisms results.

Results of Assumed
Mechanism in the
Second Section (a = 1)

Results of the
First Section
and [11} (e = 1)

p| Q1 | 0 My Q M}
0.0 | 2.042 | 1.274 | 10324 | 1.414 | 11.00
0.2 [ 1.759 | 1.192 | 10.85 | 1.337 | 11.08
04| 1319 | 1.061 | 12185 | 1.158 | 1230
0.6 | 0.988 | 0.974 | 13.998 | 0.985 [ 13.00
0.8 [ 0.725 | 1.055 | 16.084 | 0.837 | 16.17
1.0 | 0.568 | 1.016 | 18.163 | 0.724 | 18.70
1.2 | 0534 | 0675 | 21.222 | 0.639 | 22.046
14| 0527 | 0335 | 2652 | 0.563 | 25.00
1.6 | 0.446 | 0409 | 28.534 | 0.509 | 28.07
1.8 | 0217 | 0.384 | 32.998 | 0.458 | 31.747
2.0 | 0.346 | 0.086 | 54.343 | 0.418 | 35.70

at a point (for each certain value of p and v), where
the first partial derivatives vanish:

oM _ 2 1 0 208 03y, o _
o e o2t (4+392 m)“ 0,
oM* O

———l+1 2 2

0, 0 o2

5 8 . 202 20,\ A2
+p ( + - 92_—2"‘—)—"— =0.

3°3 Q2 O 2 (27)
The solving of this system of non-linear equations gives
{1, and Q, for the minimum value of M}. The Newton-
Raphson method is employed to solve the above equa-
tions and to obtain the corresponding minimum M}
for certain values of parameters a(= 1), (= 0.0) and
p(= 0.0 to 2.0). Table 1 shows the results, along with

the corresponding values of M}* and Q taken from [11].

UPPER BOUND CALCULATION FOR A
CYLINDRICAL SHELL WITH A
RECTANGULAR ATTACHMENT
SUBJECTED TO HOOP BENDING
MOMENT

The analysis is similar to the analysis for a cylindrical
shell with a square attachment [10]. The assumptions
of the first section and kinematic relations are again
employed. Figure 4 shows the notations, sign con-
vention, displacement and the deformed shape of the
shell surface around the attachment, together with a
corresponding hinge pattern. Here, with reference to
the analysis of the second section, b and d are made
equal.

Region 1
Since u© = 0:

(b 1y - ah), (28)

w, =

97
b 2¢g
\\
\\
N
]
] o
o :
O Mc A z
4 4 z +
2cq 4 M
ab ,’
/] Fi el 3 B (
6 pi
b 1 2 \"‘Z:
E D /v
_ v
M.
t

Figure 4. Hoop moment-notation and sign conventions.

where (3 is angular rotation of the rectangular pad.
Assuming eg is constant for the Region 1 and making
v1 = 0 at the hinges FC and ED, hence, the following
is obtained:

2
w2 (0ra)-2)-5-F)

and strains and curvatures are:
€9 = €0 = ks = kg9 =0,
Bea ﬂc2
cg=———, ko= ( +c — a0)
o 2a 0= %% “

Rotation at the hinge FCis 4+ = B+'g—§3 and rotation
at the hinge ED is v = %fl
The total energy dissipated in Region 1 will be:

D, MOC2(ﬁ+ Bc?) + Myc 2&

b
b+62
/ / No] -
z=0 JO=c1/a
D1 =1 262 b62

=1+—-—"+-—=+
Mo,BCz + b 4a?

?—%2—|ad0dz +o

Nocico
2M0(1 ’

(30)

Region 2
To be compatible with Region 1 and zero at the inclined
hinge al =c1 +co +b—a:

Wwe = — ﬁz(b+c1+02—:v—a9) (31)
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vy can be constructed from the requirements that v =
0 along the inclined hinge and v = v, at z = c2,
therefore;

[302

vy = — (b+62+cl—x—a0)2
BC2
(b+cz —z)(b+c1 + co— x — ab).
(32)
Strains and curvatures are:
ex =k, =0
_ Pe
€g = %(b + o — ),
_ 2. _
€20 = (c1 —ab),
oy = 22 L2 (b42¢1 4+ co—z—ab),
0= 5 c1t+co—xT—a
_ Be
=6 4(1217(61 af)
Rotation at the boundary with Region 1 is %";1 = %,
and rotation at the boundary with Region 3 is %;—g =
[
2.
Energy dissipation in Region 2|will be:
Dy =4MBc
(b+c1)/a b+ci+co—ab
+/ / Nolegldzdadf + - - -,
8=ci/a T=cqy
D 5Nob? b?
2 g4 20 —. (33)
MQﬁCQ 24M0a 8a?
Region 3

To be compatible with Region 2 at a common boundary
with the rigid attachment and to give ws = 0 at the
inclined hinge af = % (z — c3) requires:

wgz—&(@—$+02). (34)
b C1
A suitable expression for vz, giving v3 = 0 at the

boundary with attachment, at the inclined hinge and
at the junction with Region 2, is:

v3 25(1052 (ac_lzﬂ_x_’_cz)?
S e omrra) 69

G.H. Rahimi

Strains and curvatures are :

() (G- 3)

o= 20) 1 ),

Rotation at the boundary with attachment is %—";1 =

%, rotation at the boundary with Region 2 is

%‘3 = %2, and rotation at the inclined hinge AB is

Lf—cc—f—\/b2 +ci.

The total energy dissipation in Region 3 will be:

M,
D3 M001 + ﬂ— + Mobgﬁ% + — 01862
b bCl

b4ca ci/a
/ / Nolegldbadz
0=ci(z—cz)/ab

=+ )

ab@

/cl/a /02-}-261

c1/a 62+;fs
+/ / —Nolego|dfadx

6=0 C2_+_aba

2cy

b+ca  per(btx—cz)/2ab
+ / / MQIk()ld@ddI + -
0=

ci{x—cz)/ab

D3 _2& 2_b bes C1C2
MoBc; b ¢ 48a%  24a2

Noclcg
24M0a

Nobcl
6Moa’

(36)

The total energy dissipated in the four quadrants of the
cylinder may now be equated with external work done
and gives:

13cic

M 202 261 2b
- = + - —
C1 6at

5b2 b2 n 13bC;g C1C2 2b61
6at  8a2  48a2  24a?  3at’

(37)

Using the non-dimensional geometric parameters:

2
b _a c s €]

) y vy PR}
c1 Co a at
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Figure 5a. Limit hoop moment versus p for o = 0.1.
it is obtained that:

M::(5+£5+%+2Q)+p2(£+§%2+?32)

0 130 1
2 —— ——— ———
Y ( FRRTY +'24a)' (38)

The parameter (2 is a variable and may be adjusted to
give a minimum for M by solving the cubic equation

661)\;12: =0, or:
5p? 72) 3 20%a 1342
e (5 )
a( 3 + 4 + 3 + e +2a )0}
_2(1+a)=0. (39)

The solution of Equation 39 for various values of o,
and p gives €2, which, substituting in Equation 38,
gives a minimum value of M. Figures 5 illustrates
the curves of M against p for various values of v and
a.

DISCUSSION OF RESULTS

In Figures 2 and 5 the upper bound to the non-
dimensional limit longitudinal moment and circum-
ferential moment for an open ended cylindrical shell
are plotted, respectively, against the parameter p( =
i\/ﬁ) for various values of y(= <) and a(= %)
The results have been computed using Equations 14
and 38. It has been assumed that the cylindrical
shell is long enough for the influence of the ends to
be neglected. The theoretical work indicates that
when the shell is subjected to a local load, only,
as a consequence, a small local region becomes plas-
tic. The position 6 = L’%l in the circumiferential
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Figure 5b. Limit hoop moment versus p for a = 0.25.
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Figure 5c. Limit hoop moment versus p for o = 0.5.
direction (and also z = b + ¢; in the axial direc-

tion) of the boundary, separating the plastic from
the rigid region, is one of the unknowns of the prob-
lem.

The most significant results of the analysis are
outlined as follows:

1. A comparison of Figures 2 and 5 shows that the
two sets of curves illustrate, approximately, the
same behavior. This may be because the same
analysis procedure is employed throughout using
similar hinge patterns for all cases of loading. These
figures suggest that there is a continuous and con-
sistent relationship between applied loads and p.
The figures also indicate that, as the parameter p
becomes bigger, the corresponding limit load gets
bigger in value;
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Figure 5e. Limit hoop moment versus

2. For many practical situations, ~

U

—
[=2]
(=

p for a = 1.0.

to make the third term in the
equations negligible. The result
and M} will still become upper b
dimensional) limit load, but will b
load. Of course, it appears that
neglecting energy dissipation due
the plastic zones, gives results

different from those with v # Q.

p for a = 2.0.

2 is small enough
above mentioned
ing values of M)
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Figure 5g. Limit hoop moment versus p for a = 10.0.

p = 2) but for small values of p (p < 1) they are
approximately coincident. Results of the theoretical
analysis show little influence by 7, so the assumption
is justified. Figures 2 and 5 show that for each fixed
value of a, the change of v has little effect on the
limit load, though as -y rises the limit load increases a
little. The influence of v decreases as p increases and
sometimes the curves are toincident for the range of
~ investigated;

Figures 2 and 5, Equations 14 and 38 and Table 1
indicate that for all cases of loading, as limit
moment increases, the value of € (plastic hinge
length parameter) decreases. This means that for
a fixed combination of v and p, as attachment
size parameter, «, increases, the region of plastic
deformation becomes more localized to an area in
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the vicinity of the attachment. It is also true that
if o and 7 are fixed the plastic zone decreases while
p is increased. Comparison of the present results
and [13] also indicates that for any given geometry,
a radial load gives a greater plastic extent than that
for moment loading;

. Comparison between longitudinal and circumferen-
tial limit moments shows that for the same ge-
ometrical conditions, as p rises, the increase of
circumferential loading moment is slightly less than
the increase of longitudinal moment. This differ-
ence for high values of o becomes more signifi-
cant;

- For high values of o (ie., 2, 4 and 10), in-
crease of p has less effect on the increase of
the limit load. This means that as « rises,
the slope of the curve decreases. The rea-
son is thought to be that when the circumfer-
ential dimension is small, a higher load is re-
quired in order that the surface is deformed plas-
tically;

- Table 1 gives the values of M} for longitudinal
bending moment and corresponding plastic extent
parameters §2; and Q0 when a = 1. A reference to
the solution of the system of Equation 26 indicates
that for values of p up to p = 1.8, the improved
solutions are close to those of [11]. With greater
values of p there is significant divergence. The
divergence of limit load for p greater than 1.8
could be attributed to the unrealistic attachment
size or odd mechanism shape, resulted from such
a value of p. In fact, for a fixed value of a and
t and p = 2,b is four times greater than plastic
length in the axial direction, which is physically
unacceptable;

. Generally, using a 2-moment interaction yield
surface needs some modifications in calculated
limit load. For example, it can be shown that
this yield condition reduced by a scale factor
0.618 is wholly within the true interaction sur-
face for a shell made of material which follows
the Tresca yield criterion [14]. Thus, the true
load for Tresca yield condition is between 0.618
and 1 times the plastic collapse load calculated
using the limited interaction surface. Therefore,
the upper bounds calculated for this approximate
yield surface are also upper bounds for a Tresca
yield surface.  More discussion concerning re-
duction factors required as a result of using 2-
moment interaction yield condition can be found
in [13,15,16];

. It is expected to obtain a better approximation to
the limit load if a more realistic yield condition
is employed, though the analysis becomes more
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complex. Many researchers have employed the
yield surface proposed by Illyushin, based on Von
Mises criteria [16], to obtain an improved limit
load. For example, Foo in [17] has used this yield
surface to obtain the lower bound to the limit
load and torque of cylindrical shells with a single
cutout.

An extension of the present work is to employ the

above mentioned yield surface. Also, a lower bound
analysis of the present case would be informative for
comparison purposes.
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