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Layer Navier-Stokes Solution

of Supersonic Turbulent Flow
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In this research, a 3-D Thin Layer Navier-Stokes (TLNS) code is developed. This code consists

of several numerical algor
turbulence modeling. The
central scheme for viscous

finite volume space discretization.

thms for space and time discretization, together with appropriate
Roe method is used for the discretization of inviscid terms and the
terms. The explicit time marching technique is applied, based on
This code can be employed in the range of laminar and

turbulent flow. It is validated for a supersonic flow with Mach number 3 around a tangent-ogive

with incidence angles of 6°

and a secant-ogive with incidence angles of 10°. The circumferential

pressure distribution is compared with experimental and Euler code results and the results of

TLNS are acceptable. The

cross-sectional Mach number contours are also presented. In addition

to an outer shock, a cross-flow shock wave is captured in the case of a 10° angle of incidence.
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the propagation direction of information in the flow-
field. This direction is related to the sign of the
eigenvalues of Jacobian matrixes. In these methods,
solution of the Reimann problem (one-dimensional
shock tube problem) is implemented to determine
the fluxes of the Euler equations. These methods
capture the shock waves properly and do not need
dissipative terms, but they are more time-consuming.
Gudonov [3], Osher [4] and Roe [5] methods belong
to this category. The solution of 3-D Navier-Stokes
equations for compressible flow is very time-consuming
and problems involving these equations are usually
solved using supercomputers [6,7]. Fortunately, it is
possible to solve some reduced forms of the Navier-
Stokes equations in many situations. In most of these
cases, viscous derivatives in the streamwise direction
are negligible and can be left out of Navier-Stokes
equations. After omitting these terms, the steady
state forms of the resulted equations called Parabolized
Navier-Stokes (PNS) are obtained. Using PNS, the
run-time and necessary memory are reduced but the
application of these equations is limited to supersonic
flow with small streamwise pressure gradient and with-
out streamwise separation [8,9]. Another set of reduced
forms of the Navier-Stokes equations are Thin Layer
Navier-Stokes (TLNS) equations. In this case, time
derivative terms are not dropped out in comparison
with the PNS equations.

In this investigation, a 3-D TLNS code is de-
veloped. The Roe method is used to discretize the
inviscid terms [10] and central differencing for the
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viscous terms. Time derivative terms are discretized
with the Explicit technique. The Baldwin-Lomax
model [11] and Degani-Schiff [12] modifications are
used for turbulence modeling. The algorithm is based
on a finite volume approach. The code is validated
for two test cases. The first is a turbulent supersonic
flow with Mach number 3 on a tangent-ogive cylinder
at an incidence angle of 6°and the second is the same
flow on a secant-ogive with an incidence angle of 10°.
The addition of an implicit technique to the code and
matching it with a PNS code [9] are currently being
carried out and the results will be presented in the near
future.

GOVERNING EQUATIONS

Navier-Stokes equations in Cartesian coordinates, in
the conservative form are:
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The laminar coefficients of viscosity and thermal con-
ductivity, u; and K, are related to the thermody-
namic variables using the kinetic theory. Sutherland’s
formula for viscosity is given by:
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where C; and C; are constants for a given gas. For air
at moderate temperature, C; = 1.458 X107 kg/msk!/?
and C; = 110.4 k. The Prandtl number Pr = ka_u
is often used to determine the coefficient of thermal

conductivity. p; and K; will be defined later in this
paper.
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Equation 1 can be expressed in terms of general-
ized orthogonal curvilinear coordinates system, as:
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in which J is the Jacobian of the transformation.
The thin layer approximation is now applied
to the transformed Navier-Stokes equations. This



Figure 1. Computational volume cell.

approximation allows one to drop out all viscous terms

containing partial derivatives, with r

espect to £ and (,

where 7 is generally perpendicular to walls.

The resulting thin layer equatio
as:
Qt+E§+(F—FU)n+G<=O.
Equation 8 may be expressed in

conservation form given by:
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where E, F', G are the numerical flux¢
sides of the cell (Figure 1).
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COMPUTATION OF CELL VOLUME

To compute the cell volume, the cell
sum of six tetrahedrons.

is considered as a

V = V(1,2,5,8) + V(1,2,8,7) + V**(1,3,8,5)

+ V(1,4,8,7) + V**(1,4,8,6

+V'(1,3,6,8),
(10)
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where the volume of tetrahedrons, having vertices
a, b, c,d, are evaluated from:

Viet(a,b, c,d) =
|Zalys(ze — 24) = Ye(2b — 2a) + yalza — 2)]
- xb[ya(zc - zd) - yC(za - zd) + yd(za, - Zc)]

+ zc[yalzo — 2a) = Yb(2a = 24) + Yalza = 2)]

Zb)]/ﬁ.
(11)
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COMPUTATION OF CELL-FACE
METRICES (NORMALS)

The cell-face normals, having vertices a,b,c,d, are
evaluated as:

nz(a,b,¢,d) =(dysadzer — dycsdzpe) /2

+ (dyacdzad — AYaad2zdc)/2,
ny(a,b, ¢, d) =(dzpadzer — dzepdzp, ) /2

+ (d2gedToq — dxoadzac)/2,
n(a,b,c,d) =(dTpadycr — dTcedyba)/2

+ (dTacdYad — dTaadyac)/2, (12)

in which ds12 = 81 — $2.

NUMERICAL INVISCID FLUXES (ROE
APPROXIMATE RIEMANN SOLVER)

The Roe method is used for the calculation of the
fluxes. So Equation 7 may be condensed to:
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The Jacobian matrix of the flux, f, with respect
to Q, can be denoted by %. The eigenvalues of the
Jacobian matrix are shown by A; and the corresponding
left and right eigenvectors by ¢* and r* [13].

The left eigenvectors matrix is formed by left
eigenvectors as rows and the right eigenvectors matrix
is organized by right eigenvectors as a column.

In the Roe approach, the cell interface, values
of density, velocity and enthalpy {h = [—(v—i%p—] +

(13)
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where m = j or k or | and speed of sound may be
computed by:

Consr/2 = y/{bmirje = (u2 + 02 + w?)} (7 - 1).( |
15

The formula for eigenvalues and eigenvector matrices
are now presented.

Defining the contravariant velocity by U = n u +
nyv + n,w, eigenvalues are determined as:

-
A =U—cy/n2 +nk +n2,

)\2,3,4 — U,

X =T +cy/n2 +n2 +n2.

At each cell face, the positive and negative projections
of the eigenvalues may be defined by:
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the left and right eigenvectors are presented in Table 1.

Defining 7y 4 , = and 0 = (u? +v2+w?)/2,
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Now, the equation for calculating the first order upwind
flux is defined as:

Fmt1/2 = 1/2[f(Qm+1, Nemy1y2) + f(Qum, Noi1/2)]
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VISCOUS TERMS

In this section, the discretization of viscous terms in
the TLNS equations are explained.

Table 1. The left and right eigenvectors of Jacobian matrix.
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Considering Relations 3 and 4, it is
stress tensors should be computed.

Viscous terms in the TLNS equations are ex-

(20)
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3
J/akitd
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The other derivatives (9u/0dz, - - - ) are discretized in the
same way.

+ Uj,k,i+1/2-(

(23)

ALGEBRAIC MODEL OF TURBULENCE

There are many turbulence models to simulate a tur-
bulent boundary layer, but a useful and simple model,
which is examined in many computer assessments and
needs less amount of computer time, has been offered
by Baldwin and Lomax [11]. This is a zeroth model, in
which the effect of turbulence is simulated in terms of
an eddy viscosity coefficient (yi;). Thus, in stress terms
of the laminar Navier-Stokes equations, the molecular
coefficient of viscosity, (i), is replaced by (¢ + i)
In heat flux terms (K/Cp = p/Pr) is replaced by
(1/Pr+pe/Pry).

The Baldwin-Lomax model is patterned after an
algebraic model developed by Cebeci et al. "[14].
This turbulence model is named as a two-layer zeroth
equation model and shows that the turbulent flow is
divided into an inner and an outer region. A different
set of equations is used in each region to determine the
turbulent eddy viscosity, p;. The final value of p, is
defined as:

He = min [(ﬂt)innerv (Ht)outer . (24)
For the inner layer, the Prandtl-Van Driest formula is

used to determine u; (the eddy viscosity coefficient),
which is defined by:

(Kt Jinner = Pl2|Q|7 (25)
where [, the mixing length, is given as:
I =ky[l - exp(—y*/A")], (26)

where k and AT are constant and equal to 0.41 and 26,
respectively, || is the magnitude of the local vorticity
vector and is defined as:

2 2 2
iy (B 2y (2 Gy’ (2

(27)

and:

yt = YPuTe,

Y (28)

where, p., T and p,, are the density, shear stress and
viscosity coefficient at the wall, respectively, and y
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is the normal distance from the wall. In the outer
region, for attached boundary layers, the turbulent
eddy viscosity, (p¢), is defined as:

(/Lt)outer = chppFwakeFKleb(y)v (29)

where K and Ccp are constant and equal to 0.0168
and 1.6, respectively and Fxjep(y) is the Klebanoff
intermittence factor;

-1
Cxie 6
Fiten = [1 +5.5(M) } , (30)
Ymax
and:
ymameax
Fwa e = min. y
k i {kaymaxuzDiﬁ/Fmax (31)

where Cyjep, is the Klebanoff constant and equal to 0.3,
Cwk is the wake constant and equal to 0.25 and:

Upin = (Va2 + 02 +0?) - (Va2 + 0% +u?)

max min

(32)

Frax and yYmax are determined from the following
function:

F(y) = y|Q|[1 — exp(—yT/AT)], (33)

such that the peak value of F(y) between the wall and
the flow field is defined as Fyax and the value of y at
which this occurs is defined as ynax.

TURBULENT MODIFICATION FOR
BALDWIN-LOMAX MODEL

A problem with Baldwin-Lomax model is encountered
when it is applied to treat flow about slender bodies
at incidence [15]. In the separated flow region, it
becomes difficult to determine the correct value of
Finax, which is necessary for evaluation of psouter- In
an attached flow, there is only one maximum for F(y)
in the radial direction and Fi,.x is simply determined.
When separated flow occurs, two maxima for F(y) are
encountered. The first peak occurs in the boundary
layer and a second layer peak exists, due to the presence
of a vortex sheet. If Baldwin-Lomax model is used to
obtain F,,x, the second maximum in F(y) is obtained.
This results in values of p; outer that are too high,
resulting in distortion or a washout of the features in
the computed flow [15]. A modification to Baldwin-
Lomax model has been proposed by Degani and Schiff
and applied by Weinacht et al. [12]. For each axial
station, a maximum value of the scaling length, ymax, is
defined as 1.8 times the value of ¥y, On the windward
ray for non-spinning bodies. A peak in F(y) is defined
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if the value of F(y) drops below 90% of the local
maximum. Where two separate distinct peaks in F(y)
exist, the peak closer to the body is chosen. If the two
peaks in F(y) merge into one abnormally large peak
(or a peak cannot be found at all), the value of F, is
frozen at the value used for the previous roll angle.

EXPLICIT SOLUTION PROCEDURE

In this section, an explicit method is considered and
discussed. The conservative form of the TLNS equa-
tions is discretized in the following form:

Qn+1 e 1 R N "
—AT—Q— + | Ejv1/2.00 — Ej1/2,00
P fr - (F-F, .
+ ((F F )j,k+1/2,l ( )],k—l/2,l>

+ (Gj,k,l+l/2 - éj,k,l—l/Z) =0
(34)

Therefore:
Q"H = Qn— AT{ (Ej+1/2,k,l - Ej_1/2,k,z)n
+((F— AU)j,k+1/2,l _(F_ hv)j,k—1/2,1)n
+ (Gj,k,l+1/2 - éj,k,l—1/2)n}- (35)

The solution of the system of equations with the
above procedure is straightforward and this procedure
is repeated until the flow field is steady, that is, the

residue (R = 3. pit! — pn) decreases less than a
m=i,5,k
desired number.

GRID GENERATION

The grid generation is performed in two steps. In
the first, a few 2-D grids of O type are generated at
different cross-flow planes. In the second step, these
2-D grids are connected to make a 3-D grid. The outer
radius of the grids is obtained using the Taylor-Makcoll
solution around the nose of the ogive to include the
outer shock. A circumferential plane and a cross-flow
plane of a generated grid for a secant-ogive with an
incidence angle of 10° are shown in Figure 2.

RESULTS AND DISCUSSION

Figures 3 to 6 show circumferential pressure distribu-
tion in different axial sections for a supersonic flow
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Figure 2. Axial and circumferential sections of generated
grid for a secant-ogive with incidence angle of 10°.

Euler solution
Experiment
TLNS solution

P/Pe

| i | 1 i
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Figure 3. The comparison of pressure, |a=6, Mach
number = 3 and /D = 1.57.

with Mach number of 3 and Re, = 4.101 x 105/m
past a tangent-ogive. The incidence| angle is 6°. The
numerical results are compared with experiments [16]
and Euler solution results. Because of the cross flow
separation at /D > 3, the accuracy of results in the
leeward region is decreased. As expected, TLNS results
are more exact than Euler results.

Figures 7 to 10 show circumferential pressure

1.0 = Euler solution

a Experiment
a|aN ... TLNS solution

A
a,
—~
2, 0.8 =
= n-88
0.6
] I 1 1 I 1
0 30 60 90 120 150 180
Wind Reoll angle Lee

Figure 4. The comparison of pressure, =6, Mach
number = 3 and z/D = 3.13.

1.2 =
=1 —_ Euler solution
¥s . [ ] Experiment
....... TLNS solution
1.0 u
. o
a8
~
Q.
0.8 =
0.6
1 I i I 1 1
0 30 60 90 120 150 180
Wind Roll angle Lee

Figure 5. The comparison of pressure, =6, Mach
number = 3 and z/D = 4.14.

distribution in different axial sections for a supersonic
flow with Mach number of 3 and Reo, = 4.101 x 10%/m
past a secant-ogive. The incidence angle is 10°. The
numerical results are compared with experiments {16}
and Euler solution results. Due to the higher incidence
angle, the separation zone is bigger in comparison with
the incidence angle of 6°. Also, a supersonic cross-flow
occurred in this case and the interaction of this shock
with the viscous layer creates a complex flow.
In Figure 11, the axial distribution of pressure
at the windward and leeward angle is presented. An
expansion is captured at z/D = 3, in which the ogive
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" N n Experiment
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0.6
I | 1 I I |
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Figure 6. The comparison of pressure, a=6, Mach
number = 3 and z/D = 5.77.

3.0 =
Euler solution [10}
| Experiment [16]
....... TLNS solution
2.0
o
[0
~
a9
1.0 v
r 17 17T T TP rirnrii
0 30 60 90 120 150 180
Windward Roll angle Leeward

Figure 7. The comparison of pressure, a=10, Mach
number = 3 and z/D = 1.56.

section is connected to the cylindrical section. This
phenomenon appeared in experiments also.

In Figure 12, cross-flow tangential velocity con-
tours are shown. A cross-flow separation zone is
captured in the leeward region. The interaction of
this zone with the supersonic cross-flow changes the
usual pressure distribution about secant-ogive at the
incidence angle of 10°(Figure 10). Figure 13 shows this
accelerated supersonic cross-flow.

1.5
Euler solution [10]
n Experiment [16]
....... TLNS solution
1.0 w
o
A,
S~
R,
-..l'll
0.5 u
| LR L B L B
0 30 60 90 120 150 180
Windward Roll angle Leeward

Figure 8. The comparison of pressure, a=6, Mach
Number = 3 and z/D = 3.13.

1.5
Euler solution [10]
| | Experiment [16]
....... TLNS solution
1.0 =
°©
a,
~
a,
0.5 =
r1rrrrrrorrnrrurii
0 30 60 90 120 150 180
Windward Roll angle Leeward

Figure 9. The comparison of pressure, =10, Mach
number = 3 and z/D = 4.14.
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NOMENCLATURE

C speed of sound
E total energy

E F,G inviscid fluxes
E, F,,G, viscous fluxes

fluxesin general curvilinear
coordinates
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Figure 10. The comparison of pressure, =10, Mach
number = 3 and z/D = 5.77.
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Figure 11. Axial distribution of pressure at windward
and leeward angle, & = 10, Mach number = 3.
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T

H
K
Mz, Ty, N,
Qz,qy,q-
Q
P
Pr

T‘I

Klebanoff intermittence factor
wake function

Jacobian of transformation
enthalpy

thermal conductivity
components of surface vector
heat conduction terms
primitive variable matrix
pressure

Prandtl number

right eigen vector

Cross-flow separation zone

lea,

Figure 12. Cross-flow tangential velocity contours,

a = 10, Mach number = 3 and z/D = 5.77.

Cross-flow separation zone

Figure 13. Cross-flow Mach number contours, o = 10,

Mach number = 3 and z/D = 5.77.

T temperature
u,v,w velocities
Vv volume

o Ty coordinates of Cartesian.

Greek Symbols

Q volume of the element

A eigenvalue

I viscosity coefficient

JTh turbulent viscosity coefficient



Supersonic Turbulent Flow

p specific mass
Tij tensor of stresses
£En, (¢ general curvilinear coordinates

¢ left eigenvector.

(fz,y,z) (ﬂx,y,z) (Cz E,z)
J o Ji41/20 J k120 JJit1/2
components of surface vector.

metrices and
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