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Corotational Constitutive Modeling of
Isotropic and Kinematic Hardening Materials

R. Naghdabadi*, S. Sohrabpour’ and A.R. Saidi®

In this paper, a corotationa

constitutive model for rigid plastic isotropic and kinematic hardening

materials obeying von Mises yield criterion is introduced. This constitutive model relates the
corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor.

it is illustrated that use of
yields the same results for
simple shear problem, the
components are studied.
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practice to use incremental or rate con
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analyzed the simple shear problem
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it is a general
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ave numerically
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Jaumann and Zaremba corotational rates in the constitutive model
a given problem. Applying the proposed constitutive model to the
effects of nonlinear isotropic and kinematic hardenings on the stress

strain. They attributed this result to the kinematic
hardening model.

In another attempt, Lee et al. [4] solved the
same problem. They found out that for a simple
shear problem, the corotational Jaumann rate gives an
oscillatory solution for stress which is physically not
acceptable. They attributed the stress oscillation to the
use of the Jaumann rate rather than the Prager-Ziegler
kinematic hardening. Based on the physical aspects
of the kinematics of the simple shear problem, they
proposed a “modified Jaumann rate” which eliminated
the spurious stress oscillation.

Dafalias [5] considered a rigid plastic von Mises
hardening material at large plastic deformations. Uti-
lizing the corotational rate, associated with the body
spin, §2, he introduced a constitutive equation to
suppress the shear oscillation. Dafalias’ constitutive
equation related the objective rate of Cauchy deviatoric
shift stress (back stress) tensor to strain rate tensor,
D. Using his constitutive equation, Dafalias obtained
a monotonically increasing solution for the corotational
rate associated with €2 and an oscillatory solution for
the Jaumann corotational rate in the simple shear
problem.

Metzger and Dubey [6] illustrated an approach
in the special case of principal axes using different
corotational rates and solved the simple shear problem.
They found out that the solution is independent of
the choice of the corotational stress rate used in that
approach. Reinhardt and Dubey [7] introduced a
corotational rate called D-rate and showed that the
strain rate tensor is D-rate of the logarithmic strain
tensor. Using this corotational rate, they proposed
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constitutive equations for hypoelastic and rigid plastic
materials.

According to the principle of material objectiv-
ity or frame indifference, the material behavior is
independent of any reference system [8]. Each of
the spins mentioned above can be used to comstruct
associated corotational tensor rates which are objective
as observed from the reference system rotating with
the corresponding spin. Accordingly, a particular
corotational tensor rate is associated with a specific
spinning reference system. Thus, the constitutive
model, including stress and strain rates, should de-
scribe the material response, independent of the choice
of the corotational rates used in the model.

In this paper, a corotational constitutive model
for rigid plastic kinematic and isotropic hardening ma-
terials, obeying von Mises yield criterion, is introduced.
This constitutive model relates the corotational rate of
the back stress tensor to the same corotational rate of
the logarithmic strain tensor in a basis-free form. Using
this constitutive model for a Prager-Ziegler hardening
material, it is shown that all corotational rates give the
same result for the simple shear problem.

COROTATIONAL CONSTITUTIVE MODEL

Considering a rigid plastic von Mises hardening ma-
terial at large plastic deformations, Dafalias [5] intro-
duced the constitutive equation:

o 25
= —h,D, 1
o =2 (1)

where « is the back stress, h, is the kinematic
hardening coefficient and the superscript (°) represents
any corotational rate. He showed that using the
corotational rate of a, associated with the body spin,
2, yields a monotonically increasing solution for stress.
Using the Jaumann corotational rate of «, associated
with the material spin, W, in the constitutive Equa-
tion 1, yields an oscillatory solution for stress.

The back stress, «, is embedded in the material
as residual stresses, generated due to the heterogeneous
structure of anisotropic crystallities forming the poly-
crystalline material [4]. In particular, the principal
component of ¢, having the largest absolute magni-
tude, produces the major influence on the yield surface
and, hence, on the stress field and is carried in the
lines of material elements oriented in the corresponding
eigenvector direction. Thus, rotation of these lines of
material may be considered to incorporate the major
rotational influence of the back stress generated by the
previous plastic flow.

Large plastic deformation constitutive models
have usually been formulated in terms of the strain rate
tensor, D, and a corotational rate of the stress or the
back stress tensor [4,5,9]. Change of the corotational
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rate used in these models, yields different results for
material behavior that is not acceptable. In order to
satisfy the principle of material frame indifference, the
constitutive model should yield the same result for a
given problem using different corotational rates.

The logarithmic strain introduced by Hencky is
a favored measure of strain in plasticity problems.
In Hill’s work [10], the logarithmic strain measures
are believed to have inherent advantages in certain
constitutive relations in solid mechanics. He has ob-
tained the time rate of change of the logarithmic strain
tensor in the principal axes of stretch. An explicit
closed form relation for the material time derivative
of the logarithmic strain tensor has been introduced by
Naghdabadi et al. {11].

As the experimental results show, the kinematic
hardening coefficient, h,, depends on the history of
the deformation. Thus, it is not a constant during the
plastic deformation [12]. In order to account for the
general case of this dependency, it is assumed that the
back stress tensor is a function of 4 and he. Therefore,
using the corotational rates of the logarithmic strain
tensor, a corotational constitutive model for rigid
plastic isotropic and kinematic hardening materials can
be introduced in general form as:

o’ = f(ha, ha, (I V)°). (2)

Although h, is a fourth order tensor for anisotropic
materials [4,12], it is a scalar for an isotropic material.

A simple form of the proposed model (Equation 2)
can be written in the following form:

o =ho(In V) + holnV, (3)

where h, = %ﬁa for consistency with Equation 1.
This form of constitutive equation can be used for
isotropic materials with a variable kinematic hardening
coeflicient.

According to the assumption that the difference
between the Cauchy deviatoric stress tensor and the
back stress temsor is coaxial with the strain rate
tensor [4,5], the flow rule is defined as:

D=Q.5(S—CY), (4)

where ¢ is a proportionality factor and S represents the
deviatoric Cauchy stress tensor.

Using the von Mises yield criterion stated in the
following form:

f=g(S—a):(S—a)~k2:O, (5)

and Equation 4, the proportionality factor, ¢, is
obtained as:

3D,

2k (©)

é=
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where k is the “size” of the yield surface, the symbol (:)

stands for tensor inner product and
strain rate defined as:

D. is the effective

(7)

Substituting ¢ from Equation 6 intq Equation 4 , the

flow rule can be written as:

S—a=—D.
*~ 3D,

(8)

Also, using a nonlinear isotropic hardening rule, k is

defined as [5]:
k=14 (ks — 1)[1 — exp(—c&)],

where k; and c¢ are the isotropic har
and € is the effective strain and can

€= /Dedt.

In the constitutive Equation 3, a’

(9)

dening coefficients
be determined by:

(10)

represents the

corotational rate of the back stress tensor, defined as:

]

a =a— Ao+ aA,

(11)

where A is a spin tensor which may be substituted with
the material spin, W, the body spin, €, or any other

spin tensor of interest. Substituting
is obtained that:

J

a =a—Wa+ oW,

where o’ is called Jaumann rate (J

A with W spin, it

(12)

rate) of tensor a.

& is the material time derivative of tensor «, which

expresses the time rate of change
quantity as seen by an observer fro
lating frame attached to the mater
this view point, o’ is, in fact, the ti
measured by an observer on the

assumed to have W spin. Thus, & r
rate of change recorded in a fixed ba

of the concerned
m a rigidly trans-
al particle. From
me rate of change
J-frame, which is
epresents the time
ckground, whereas

o is the rate observed from a W-spinning frame.

Obviously, one can use other {

rames which have

different spins. Counsider, for instance, the frame with
Q spin, in which the time rate of change of the back
stress tensor, «, is recorded as follows:

z

a =a- Qo+ afl,

where o’ is defined as Z-rate of t
superscript “Z” stands for Zaremba)

(13)

ensor a [7]. The
, who, for the first

time, used a corotational time derivative of the stress

tensor [13]. o
Green-Mclnnis rate [15].

is also called Green-Naghdi [14] or
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In the proposed constitutive model (Equation 3),

(In V)O stands for the corresponding corotational rate
of the logarithmic strain tensor defined by:

(lnV)" =(nV) —A(In V) + (In V)A. (14)

Substituting A with the material or body spin tensor,
W or €, respectively, the corotational J- or Z-rate of
the logarithmic strain tensor is obtained. It is noted
that the same corotational rate should be used for the
back stress tensor, a, as well as the logarithmic strain
tensor, (In V), in the constitutive model (Equation 3).

KINEMATICS OF THE SIMPLE SHEAR
PROBLEM

As an application of the proposed constitutive model
(Equation 3), consider the simple shear deformation of
a rectangle, shown in Figure 1. The deformation may
be prescribed in terms of motion of a particle initially
at X;, which is currently occupying a position at z;,
such that:

z1 =X1+vX2, 12 =X, (15)

where ~ is the shear displacement.
Let F denote the deformation gradient at a point
in the deforming body with components:

8:ci

Fj=—2
X,

(16)

Since det F > 0, the polar decomposition theorem
states that:

Fij = Vig Ryj = R Uy;, (17)

where U,;; and V;; are the components of the right and
left stretch tensors U and V| respectively. Also, R;; are

Figure 1. Simple shear problem.
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components of the proper orthogonal rotation tensor
R. U and V are symmetric positive-definite tensors
with the same eigenvalues, A;, which are the principal
stretches. Let the set {IN;} be the principal directions
of U. Then, the sets {n;} denoted by:

n; = RN.L', (18)

are the principal directions of V. Accordingly, tensor
V has the following spectral representation:

V:Z/\ini@@ni. (19)

For the given motion (Equation 15), the deformation
gradient has the following components:

Fip=Fy =1,
F12 =,
Fy = 0. (20)

Using the polar decomposition theorem, components of
the left stretch tensor are calculated as follows:

2+~

Vip="21
1
Vig = Vo = L,
C1

2
Vag = =, 21
22 o (21)

where:

C = \/4+’)’2. (22)

Also, the rotation angle associated with the com-
ponents of the orthogonal rotation tensor, R;;, is given
by:

6 = arctan (—v/2). (23)

The principal stretches, A;, and the angle 8 of the
orientation of the principal directions are obtained from
Equation 21 in the following form:

1
AL A = 5(01 +v), (24)

b= %arctan(2/7). (25)

Assuming that F is a continuously differentiable
tensor of time, the velocity gradient L is expressed by:

L=FF !=D+W, (26)

where the strain rate tensor, D, and the material spin
tensor, W, are the symmetric and skew symmetric
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parts of L, respectively. Also, let the body spin tensor,
(2, denote the relative spin between the sets {N,} and
{n;}, so that:

R=QR, (27)

where €2 is also called the rate of body rotation. In
the development of the principal axes method, Hill [10]

has introduced two more spins, o and QE, which are
called the Lagrangian and Eulerian spins. They are
assumed to represent the spins of the sets {N,} and
{n;}, respectively.

. L
N; =0 N,
fl,’ = QEni. (28)

Using the chain rule for partial derivatives of the de-
formation gradient components (Equation 20, together
with Equation 26), the non-zero components of the
strain rate tensor are obtained as:

Dis =Dy = ’.7’/2- (29)

Also, the non-zero components of the material spin
tensor, Wi, and Wy, are calculated as follows:

Using Equations 23 and 27, the non-zero components
of the body spin tensor, Q12 and 2, are obtained in
the form:

2y

Dy = Qo1 = ——.
12 21 it

(31)
Differentiating the components of the rotation associ-
ated with Equation 25, the non-zero components of the
Eulerian spin tensor are calculated as:

,'y

(32)
The tensor logarithm maps symmetric, positive-
definite tensors into symmetric tensors [16]. Let the
logarithmic strain tensor, In V, be defined by:

InV = Zln Ain; ®n,, (33)

1

where ); are the principal stretches. Using the defi-
nition of the logarithmic strain tensor, together with
the principal values of V| Equation 24, the principal
components of the logarithmic strain tensor are as
follows:

ln/\l 0 J (34)

(InV)j; = [ 0 Inh
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Transforming the principal components of the logarith-
mic strain tensor, (In V)}., to the fixed axes, one can

13
obtain:

nV _1 AMInAr+A21n Ay In
InV)u=21 lma=lnd, Aoln

where A\; and Ap are the principal

\1—111 /\2

A1 +A11n As (’35)

values of the left

stretch tensor introduced by Equation 24.

An explicit relation for the material time rate of
change of the logarithmic strain tensor, (InV), has
been derived in the following form [1]:

Vy=D+W-Q° —-v@@-a

+[Q° (V) - (In V)Q”)

)V

. (36)

Using Equation 36, the components of the material

time derivative of the logarithmic
calculated as follows:

strain tensor are

_d [ratder 2a - 2ve
(InVJi; = E 2¢1 ~ 2vey —vcp —|4der |’ (37)
where:
1
e = ln[i(cl +7)]. (38)

In order to study the effect of the choice of the

corotational rates associated with

the material and

body spins, J-rate and Z-rate, respectively, the pro-

posed constitutive model is applied t
problem.

APPLICATION OF JAUMANN

COROTATIONAL RATE

Considering the proposed constitut

b the simple shear

ive model (Equa-

tion 3) with the Jaumann corotational rate, one can

obtain:

J

o =he(In V) + holn 'V,

(39)

where o is the J-rate of the back stress tensor.

Substitution of o’ from Equation 1
yields:

& = ha(ln V)J + heln V + Wa — aW.

2 in Equation 39,

(40)

In order to solve the shear deformation (Equation 15)

with the constitutive Equation 39, t

tational rate of the logarithmic straﬂn tensor, (In'V)

should be calculated. With the he

he Jaumann coro-
J
b

p of Equation 36

and substitution of the spin tensor A with W in

Equation 14, one can obtain:

(nV) =D+W-Q° - V(Q-

+[(Q° -W) (In V)—(In

Q" )V
V)(Q© -W)].
(41)

R. Naghdabadi, S. Sohrabpour and A R. Saidi

Using Equation 41, together with the required tensor
components associated with the shear deformation, it
is found that:

J
(InV);; =
i [yer —2e1(2+7%) 201 +ve1(2+9%)
d [2a+ye2+7Y) e +2a@+9] " 4

Substitution of Equations 30, 35 and 42 in Equation 40,
yield the following set of rate equations:

. ho have .
Gy = —31[701 —2e1(2+7%)] + SLEAS I yog
Cl (5}
=—a92 (43)
. had hoe
Q12 =_3’y[201 + ey (24+92)] + 22—
(&1 C1
+ﬁ0122“0111. (44)

2

It is noted that Equations 43 and 44 are coupled in
¢, which are the components of the time rate of
change of the back stress tensor. If the body is initially
unstressed, Equations 43 and 44 can be written as
follows:

ajy = —ay,
ha h’a €
= @12 + —3[’)’01 — 261(2 + 72)} + —L,
Cl C1 (45)
ha hl e
aly = ann + —5[2a +ver(2+ %)) + 9=l
(&1 C1 (46)
where:
a, _ da11 _ :—l-d
11 d’}’ - 7 11,
a, _ dOtlg _ la
12 — d’)’ - 12,
dhg 1
h,a =5 = ha (47)
dy %

In general, h, is a path dependent parameter. Having
ho as a function of %, it can be substituted into
Equations 45 and 46 and the resulting system of
differential equations can be solved.

In order to compare the results of this paper with
other works, a linear kinematic hardening material with
a constant h, was assumed. For such a material,
solving Equations 45 and 46 for the initial conditions of
an unstressed body, the components of the back stress
tensor, a1, a29 and ags, are obtained for the Jaumann
corotational rate. By substitution of these components
in Equation 8, the normal and shear components of the
Cauchy stress are calculated.
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APPLICATION OF ZAREMBA
COROTATIONAL RATE

Considering the proposed constitutive model (Equa-
tion 3) with the Zaremba corotational rate, the fol-
lowing rate constitutive equation may be obtained:

z zZ s

a =hs(lnV) +h,InV, (48)
where o’ is theZ Z-rate of the back stress tensor.
Substitution of @ from Equation 13 in Equation 48,
yields:

& =ho(InV)’ + ho(In V) + Qa — of. (49)
In order to solve, analytically, the shear deformation
(Equation 15) with the constitutive Equation 48, the
Z-rate of the logarithmic strain tensor, (In V)Z, should
be calculated. With the help of Equation 36 and sub-

stitution of the spin tensor A with € in Equation 14,
it is obtained that:

V) =D+W-2"-v@-a°)v-

+{(Q° - Q) (V) - (V) (Q° - Q).
(50)

Using Equation 50, together with the required tensor
components associated with the shear deformation, it
is found that:

) -4 2 2
(ln V)IZ] — Y Y1 €1 €1 + Y€1

E 2¢1 + 2ve1  —vyep +4e; (51)

Substitution of Equations 31, 35 and 51 in Equation 49,
yields the following set of rate equations:

. haA have 44
an = ——31(701 —dey) + XL —;lan
q C1 ci
= —-dgg, (52)
. haA hoe
dnp ==X 2¢; +2ve; (2+72) +2°24L
&1 C1
. Qgg — @
+2'y——22c2 L (53)
1

It is noted that Equations 52 and 53 are coupled in d;.
If the body is initially unstressed, these equations can
be written as follows:

4 ho h! ve
alll = —al22 = 5012 + ——3-(701—461) + ‘£7
5 4 T (54)
4 he hle
0/12:_—20‘114'—3(201 +4e1) + 22 - (55)
o 1 C1
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where o}, af, and b/ are defined by Equations 47.
According to the previous explanations, h, are con-
sidered constant. Solving Equations 45 and 55, the
components of the back stress tensor, a1, ass and s,
are calculated for the Zaremba corotational rate. By
substituting the back stress components into the flow
rule (Equation 8), the components of the Cauchy stress
tensor are determined.

DISCUSSION AND CONCLUSIONS

The current practice in the constitutive modeling of
rigid plastic materials is based on relating a corota-
tional rate of the back stress tensor to the strain rate
tensor, D. The corotational model presented in the
current study renders a different style for constitutive
modeling of rigid plastic materials. The presented
constitutive model relates the corotational rate of the
back stress tensor to the same corotational rate of the
logarithmic strain tensor.

Based on the proposed constitutive model, the
simple shear problem is solved for an isotropic and
kinematic hardening material. Figures 2 and 3 show
the normal and shear components of the Cauchy
stress for a kinematic hardening material using the
corotational Jaumann and Zaremba rates in the simple
shear problem. The material properties for kinematic
hardening used in this example are b, = 0.1 and k& = 1.
The solution with the same material properties are also
shown, based on different models [3,5].

In order to study the effect of isotropic harden-
ing, the same example has been solved for a nonlin-
ear isotropic hardening material. Knowing that the
isotropic hardening does not affect the normal stress

This work

0.1
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Normal stress component (S11)
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Figure 2. Normal stress component vs shear
displacement for a kinematic hardening material with

ha =0.1,k=1.
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oblem, Figure 4
shear displace-

ment for an isotropic and kinematic hardening material

with properties h, = 0.1, ks = 2.25 and ¢ = 2.57.

Also, the solution with the same mat
shown, based on different models [3,5

It is noted that the model, based
tensor, D, gives an oscillatory solutig
for increasing shear displacement, us
corotational rate of the back stress
solution is not physically acceptable,
constitutive model with the Jaumann
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].
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Figure 4. Shear stress component vs shear displacement
for an isotropic and kinematic hardening material with

ha = 0.1, ks, = 2.25,¢c = 2.57.
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does not give an oscillatory solution. Using the
Zaremba corotational rate, the results are different
from the results obtained by relating the Zaremba rate
of the back stress tensor to D (Dafalias’ model [5]), they
are the same with the solutions obtained by Metzger
and Dubey in the special case of principal axes [6].

It should be noted that the deviation of solutions
presented in [3] and [5] with those predicted by the
proposed constitutive model is merely due to the fact
that (In'V)” # D # (InV)”, in general.

The proposed constitutive model with the
Zaremba corotational rate gives the same results as
those obtained for the Jaumann rate. Thus, the
presented constitutive model yields the same results
independent of the choice of the corotational rates of
the stress tensor.
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