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Stability and Control of Linear Systems
with Multilinear Uncertainty Structure
M. Bozorg!

In this paper, linear systems with uncertain physical parameters are considered. The case

where the characteristic equations of the systems are multilinearly dependent on some uncertain
parameters is studied. A new procedure is proposed for the calculation of stability margins in
the parameter space in general {P-norms. The stability is defined with respect to a desired
region as the location of poles in the complex plane (so-called D-stability). The procedure
is simple and computationally feasible. It requires the numerical solution of a system of
equations in each frequency. The Minimum Distance approach, used in several previous works for
polynomials with linearly-dependent coefficients, is generalized here for the case of polynomials
with multilinearly-dependent coefficients. Based on the above approach for the calculation of
D-stability margins, a method is presented for the design of robust controllers. Robust placement
of the closed-loop poles inside the regions of interest is addressed. The method provides a simple
and computationally-tractable solution for the synthesis of robust controllers for systems with

multilinear uncertainty structure.

INTRODUCTION

A common approach in the analysis and synthesis
of linear systems is to deal with their characteristic
equations. When the parameters of a system are
uncertain, the coefficients of its characteristic equation
(polynomial) are perturbed inside some ranges and
that, in turn, results in the movement of the roots
of the characteristic- equation in the complex plane.
Then, one can study the performance of the uncer-
tain system by investigating the effects of parameter
uncertainties on its characteristic equation. It is well-
known that, to achieve a desired performance, the
roots of the characteristic equation can be placed in an
appropriate region (D) in the complex plane (so-called
D-stabilization).

A fundamental type of problems encountered in
robust control of uncertain systems is the calculation
of maximum allowable perturbations in parameters of
a D-stable system, without losing D-stability. In [1-
3], general !P-norm perturbations are considered and
several algorithms are presented for the case of polyno-
mials with linearly-dependent coefficients. However, in
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most applications, the coeflicients of the characteristic
equation of the system are dependent multilinearly or
nonlinearly [4].

For polynomials with multilinear structure, the
well-known mapping theorem [5] is the most power-
ful available tool for checking robust stability. The
mapping theorem has been used in [6,7] to develop
some algorithms for the calculation of stability margins.
In the analysis context, in [8], it was shown that to
check the stability of interval multilinear polynomials,
it is sufficient to check only a set of manifolds in
the parameter space. The results of [8] and (5]
were used in [9] to present a numerical algorithm
for the calculation of the Hurwitz-stability margin of
multilinear systems. Since the mapping theorem pro-
vides the sufficient condition for stability, the method
of [9] gives conservative results unless the proposed
multiple decomposition of the uncertainty region is
performed. The decomposition proposed in [9], on the
other hand, increases the computational burden of the
method. To the best of the author’s knowledge, a
general algorithm does not exist for the calculation of
general [P-norm margins of multilinear systems in the
literature.

In this paper, a new procedure is presented to
calculate bounds of /P-perturbations in the parameters
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of systems in which the characteristic polynomials
are multilinearly dependent for the preservation of D-
stability. The procedure requires sweeping the contour

of the region and, at each point o
system of equations must be solved.

n the contour, a
The number

of equations depends upon the number of uncertain
parameters of the system, which is limited in real appli-
cations. The minimum distance approach introduced
in [10,11] is generalized here for the dase of multilinear

systems.

Another important problem i

n robust control

is design of robust controllers. The properties of

polynomials have been little used
robust controllers [4]. Pole placem:
techniques widely used for controlle

in the design of
ent is one of the
r design [12]. An

important issue in the pole placement method is the

sensitivity of the closed-loop system

s to the variation

of the parameters of the system. These sensitivities

were taken into account in [13] b
variation of the poles with respect t

y computing the
o the variation of

the parameters. The robust pole placement inside the

circles centered at the nominal clos

been investigated in [14]. In this pa

robust controllers for multilinear sy
an optimization problem. A metho
the robust placement of closed-loop

ed-loop poles has
per, the design of
stems is posed as
d is presented for
poles of uncertain

systems inside the regions of interest. The results of

this paper on D-stability margin ca

in the formulation and the solution

problem. An example is also present
the methods. A preliminary version
presented in [15].

PRELIMINARIES

Consider the polynomial:
Q(a,s) =an(a)s™ + -+ ar(q)s 4
a"l(q> # Oa

where the coefficients a,(q), - ,a1(

lculation are used
1 of the synthesis
ed to demonstrate
of this paper was

- ao(q);

(1)

q),a0(q) are mul-

tilinear functions of the system parameters:

a=[n @& dm], q € R™.

The results of the well-known Zero B
is used in this paper for the calcula
margins.

Theorem 1 [4] (Zero Exclusion)

Suppose a family of invariant-de
(Equation 1) with q € Q, where Q

xclusion Theorem
ion of D-stability

gree polynomials
is an uncertainty

set which is pathwise connected. ILlet D be an open

subset of the complex plane and (
Furthermore, assume that the fami

p be its contour.
ly of polynomials
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has at least one D-stable member. Then, the family of
polynomials is D-stable if, and only if:

0¢ Q(q,u); Vqe Q, Yue Cp.

To check the necessary and sufficient conditions
of Theorem 1 for D-stability, the contour of the region
must be swept. The point v on the contour Cp can be
expressed as a function of a sweeping parameter (, i.e.,
u = u(¢); ¢ € Q. For instance, the contour of the unit
circle can be represented by u = €¢; ¢ € [0,27). The
substitution of v = u({) in Equation 1 results in:

Q(a, () = Qnrla, Q) +Qr(a. <), 2)
where:

Qnr(a,0) = Re[@(a,u())], (3)
and:

Q1(a,¢) =m[Q(a,u(0)). (4)

Define the nominal parameter vector:
U], (5)

at which Q(q,s) is D-stable. The calculation of the
minimal distance of § to the instability region in
the system parameter space will be addressed in the
next section. The weighted [P-distance (norm) of two
arbitrary points q,q’ € R™, is defined by:

m 1/p
bp(a,d') = {Z (|Qk - qLI/'M}k)ﬂ ,

k=0

a=[@ @

(6)

where wy > 0, k=1, - ,m are weights and 1 < p <
oo is a constant. If q represents a perturbed value of the
parameter vector, 6,(q, q) gives the IP-norm magnitude
of perturbation from q to q.

D-STABILITY MARGINS

In the wake of the Minimum Distance approach pre-
sented in [11] for the calculation of D-stability mar-
gins for polynomials with independent and linearly-
dependent coefficients, a relevant approach is taken in
this paper for the multilinear case.

From Theorem 1, it is conferred that the con-
tour of the D-stability region must be swept. At
an arbitrary value of the sweeping parameter, (",
which corresponds to the point u* on the contour, the
minimum distance of the nominal parameter vector q
to the set of parameter vectors q*, at which D-stability
conditions of Theorem 1 fail, can be found by solving
the following optimization problem:

pp(C*) = min 6(a,q"); (7a)
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subject to:
Qr(q",¢") =0, (7b)
Qi(q",¢") =0. (7c)

Several relevant optimization methods have been used
in [16,17] for the case of polynomials with linearly-
dependent coefficients. Here, the more general case of
polynomials with multilinear coefficients is considered.
At each (*, the perturbations 6,(1q, q) must be kept
smaller than the minimum distance p,(¢*), to ensure
D-stability of the perturbed polynomials. Then, the
D-stability margin of the nominal polynomial Q(q, s)
is obtained, sweeping (* in its entire range, i.e.,
ngnpp(C*),C* €.

A necessary condition of Theorem 1 for D-
stability, is the invariance of the degree of the perturbed
polynomials. This means that the perturbation of the
parameters must not result in the nullification of a,.(q).
To satisfy this condition, the perturbations 6],(6,';1)
must be less than the optimal value:

Np = mqin 6,(q,a), (8a)
constrained by:

an(q) = 0. (8b)

The following theorem is next stated.

If the perturbations in the parameters of the
system are smaller than both minima of Equations 7
and 8, considering that is D-stable, all conditions of
Theorem 1 are satisfied and the family of perturbed
polynomials are D-stable. The above discussion is
concluded by the following theorem.

Theorem 2

The family of polynomials:

pP= {Q(q,s),q € B,(q, fp)},

where:

By(@ &) = {d: 6@ <&, (9)

is the IP-hypersolid of parameter uncertainty, D-stable
if, and only if, Q(q, s) is D-stable and £, < ~,, where:

Yp = min{np,ngnpp(c*) = Q}. (10)

Proof

If the conditions of the theorem are satisfied, the
requirements of Theorem 1 for D-stability are satisfied
since:
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1. There exists at least one stable member Q(q, s) in
the family of polynomials;

2. There is not any change in the degree of perturbed
polynomials if the perturbation 6 (q, q) is less than
Mps

3. The perturbed polynomials Q(q, s) do not vanish as
the contour of the region is swept. If {, < v,, where
vp is the minimum distance of q to the set of q* at
which zero exclusion fails (Equations 7b and 7c), the
distance of any point q € B,(q,€) to the nominal
q, is less than D-stability margin ,,.

Therefore, the family of polynomials satisfies the
necessary and sufficient conditions of D-stability. B

In the rest of this section, the optimizations
in Equations 7 and 8 are performed. Optimization
(Equations 7), with two constraints, will be discussed.
Similar steps can be taken to perform the optimization
in Equations 8.

The method of Lagrange multipliers is used to
perform the optimization (Equations 7). The func-
tional:

P
F(q") = [5p(ﬁ, q*)] +AQr(q™, (") + 1Qr(q", ("),
is defined. At the critical points, one has:

oF

= —sgn(q, — —qrlP?
0 gn(q qk) qu, q
+ 2 99r, ¢ +M8Q1(q’i’< ) _o,
gy aq;
k:]"... ’m

Then, with some manipulation of the equations, it is
obtained that:

Ap = \qk - g

‘AaQR . ¢” ) 0Q(q;, ¢
tu "
ogq; aq;,

]1/(P~1)
Sk = sgn(q, — qx)

:%% @?5>+ﬁmm@v,

aq;

At ¢*, corresponding to a point on the contour, the
following system of equations must be solved to obtain
the closest distance to the instability border:

q]tzak_skAk k‘:la""mﬁ
Qr(q",¢") =

Q[(q*vc*):Ov ‘ (11)
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where (m + 2) unknowns are g;; k

=1,---,m and

the Lagrange multipliers A and p. The critical points

gi; kK =1,---,m obtained from the
tions 11 can be substituted in Definiti

system of Equa-
on 6 to obtain the

minimum distance of the nominal parameter vector g

to the instability border:

pp(CT) = n?li‘n 6(aQ, ")

SYNTHESIS OF ROBUST CONTROLLERS

Consider a standard feedback cont

rol system (Fig-

ure 1). The plant transfer function is defined by:

_ NG((L 5)

G(q,s) = Dolas)’

(12)

where Ng(q, s) and Dg(q, 8) are polynomials multilin-

ear in q. The parameters of the plant
are perturbed inside the [P-hyperso

are uncertain and
id (Equation 9),

where q is the nominal value of the parameter vector.

In most applications, the bounds of
the parameters of the system can
priori and the perturbation hypersoli
the design problem. For p = oo,
Equation 9 is a box and for p = 2,
a hypersphere.

The controller is represented by
fixed polynomials, i.e.,
Ne(x, )

C(x,8) = _——Dc(x,s)’

where:

!
Ne(x,s) = Z ces®,
k=0

!
De(x,8) = Z drsk,
k=0

and the controller vector is defined b
X = [Cz"'Cl co di---dy do].

The characteristic polynomial of the ¢
system is given by:

QCL(qvx,S) :Ng(q,S)NC(X,S)

+ DG((L S)Dc(X,S)

perturbations of
be estimated a
1 is predefined for
the hypersolid of
the hypersolid is

r the ratio of two

(13)

(14)

losed-loop control

C(x, s) G

(a,s)

Figure 1. Standard feedback control cg

nfiguration.
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To comply with the definition of the uncertain char-
acteristic polynomial given in Equation 1, noting that
the controller x is fixed, one may write:

Qcr(q,x,8)=Q(q, s)=a(q)s™ +- - -+ai1(q)s+ao(q),

where the coefficients are multilinear in the plant
parameters q. Then, the results of the previous section
can be used for this feedback control system.

For the robust synthesis of the system, the Robust
Pole Assignment (RPA) can be defined as [18]. Given
the uncertain plant model of Equation 12 and a region
D in the complex plane, find a controller C(x, s) such
that all closed-loop poles lie in D for every q €
Bp(av 617)

It is well known that various performances for a
system can be achieved by the placement of the roots
of its characteristic polynomial in appropriate regions.
The results of the previous section on D-stability of
polynomials with linear uncertainty structure, can be
used directly for the solution of the RPA problem
for the feedback configuration described in this sec-
tion.

The main aim in RPA is to ensure that the roots
of the family of characteristic polynomials lie inside
D. However, a set of controllers, rather than a unique
controller, usually satisfies this requirement. Then, to
select a controller among all D-stabilizing controllers,
an additional objective can be introduced [13]. In this
paper, the controller design is posed as the following
optimization problem:

m)in f(x, D), (15a)
subject to:

Qc1(q,x,s) is D-stable, (15b)

& <, (15c¢)

where v, is obtained from Equation 10.

The function f(x, D) can be any convex function
whose optimal value is desired. Several examples for
this function are presented in [13,18]. One of the
common objectives for Equation 15a is f(x,D) =
f(x) = 6,(x,X), where X is the nominal controller
vector. The objective is the distance of the designed
controller to the nominal controller. This distance is
to be minimized.

A necessary condition of Theorem 2 for D-
stability is the existence of at least one D-stable
member in the family of polynomials. Constraint 15b is
added to ensure that the closed-loop system is D-stable
at the nominal values of the parameters q.

When Inequality 15c¢ is satisfied, it is ensured that
the roots of the characteristic polynomials correspond-
ing to all plants with q € B,(q,&,), lie inside D. As
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mentioned in the proof of Theorem 2, this constraint is
imposed to guarantee that the size of the uncertainty
hypersolid (Equation 9) is smaller than D-stability
margin ;.

EXAMPLE

The following feedback control system introduced in [9]
is examined in this paper. The plant transfer function
is given by:

G(q,s) =

6.65% + 13.552 + 15.55 + 20.4
$3 4+ q3s? +3.55+ 2.4

s2+s+1
2+ gas? +4s+qn

b

with the nominal parameter vector:
g=[2 -3 35],

and the weights w; = 1;: =1,2,3.

Calculation of Stability Margin
Assuming the fixed nominal controller:

812

C(x,5)=C(s)= s

i:[l 2 1 1], (16)
it is desired to calculate the Hurwitz-stability margin
of the nominal parameters of the plant. The contour
of the region is the imaginary axis and a point on
the contour can be described by the sweeping function
w(() = j¢; ¢ € [0,00). At each ¢*, the system
of Equation 11 is formed and solved to compute the
minimum distance p,(¢*). In Figure 2, the minimum
distances are plotted for the nominal parameter vector
in a selected range for p = co. The minimum of ps (¢*)
is obtained as 0.640 at (* = 1.92. For this system,

70

60

50

TR

. |
10 / \
/ \ B

1 1.4 1.8 2.2 2.6 3
C‘

Figure 2. Minimum distances for the example.
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considering that the coefficient of the highest order
coefficient of the characteristic equation is unperturbed
(an = 1), np = oo is obtained. Therefore, the Hurwitz-
stability margin is calculated from Theorem 2 as:

Yoo = min{oo, 0.640} = 0.640.

Investing more computational effort, a close value was
obtained in [9] by dividing the uncertainty domain into
smaller regions and applying the results of the mapping
theorem.

In contrast to most of the current methods, which
consider the interval perturbations (p = o0), the
method described in this paper can be used for any
norm. For special cases of p = 1,2, the stability
margins v; = 2.77 and 2 = 0.94 are obtained.

Design of a Robust Controller

For the sample plant, it is assumed that the parameters
are uncertain in the ranges between:

and :

Qmax = [3 -2 4.5] .

Therefore, the uncertainty set is the box B (g, &)
with the size £, = 1. The nominal controller (Equa-
tion 16) does not stabilize the uncertain plant. The
locations of the roots of the characteristic equation,
using this controller, is shown in Figure 3 for five
evenly-spaced points in the ranges of the uncertain
parameters (between Qmin and gmax)-

For this system, Optimization Problem 15 is
defined as follows. Objective 15a is given by f(x,D) =
f(x) = 83(x,X). The controller parameters ¢, and d,
are kept unchanged by assigning small numbers as their

4
\“‘
AN Z
2 /
\\I//,
Im = A
0- - --- —
’ w
A
2 "’\&
] ¢
‘., P W
ll' -
-4 1 L
-6 -4 -2 0
Re

Figure 3. Closed-loop poles with the nominal controller.
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4t ~ 1. - 1
2F J
r ‘4@ h
O. - -enne U - - - .
Im
L \‘&: 4
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4t - . -" - o 7 4
-5 -4 -3 2 -1 0
Re

Figure 4. Closed-loop poles with the optimal controller.

weights. The weights in 62(x,X) are then defined as

[107° 1 107° 1]. The region D
is assumed to be the left-hand plane
the above optimization problem lead
controller:

Xope = [I 2878 1 0.102].

The closed-loop poles of the control

in Equation 15b
The solution of
s to the optimal

system with the

controller Xt and the uncertain parameters (q evenly

spaced in ten intervals) are plotted in
be seen that the controller places all
the left-hand plane and D-stabilizes {

Figure 4. It can
the poles inside
he plant.

DISCUSSION AND CONCLUSION

In this paper, a new method has be
the calculation of D-stability margins

en presented for
in the parameter

space for polynomials with multilinearly-dependent

coefficients.
such as that of [6,9], the method j
more straightforward and computatia
requires sweeping of the contour an
on the contour, it requires the soluti
of Equation 11. The number of eq
on the number of uncertain paramete
In real physical applications, this ny
Then, the computational burden o
contained.

In contrast to previous works [10
calculated by Theorem 2 are not conse
stability conditions are both necessa
This comes from the fact that in
(Equation 7), both real and imagin
characteristic polynomial are constr
ously, while in previous works, the
considered separately to accommoda
optimization.
quire much less computations for ¢

Compared with some existing methods,

resented here is
nally-efficient. It
d, at each point
on of the system
uations depends
rs of the system.
imber is limited.
f the method is

,11], the margins
ervative, since D-
ry and sufficient.
the optimization
ary parts of the
ained simultane-
constrains were
te for analytical

However, the methods of [10,11] re-

he simpler case
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of linear uncertainty structure. The simplicity and
the computational feasibility of the proposed method
provides the grounds for its use in iterative design
algorithms. In this paper, a new method has also
been presented for the design of robust controllers
for multilinear systems. The robust placement of
closed-loop poles in the regions of interest has been
addressed. The method can be used to achieve op-
timal controllers that D-stabilize an uncertain plant
with a multilinear uncertainty structure. Considering
that few methods are available for robust control of
systems with multilinear uncertainty structures, this
work provides feasible tools to deal with such sys-
tems.
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