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Thermomechanical Shocks in Composite
Cylindrical Shells: A Coupled
Thermoelastic Finite Element Analysis

B. Shiari!, M.R. Eslami* and M. Shaker!

In this paper, the coupled dynamic thermoelastic response of multilayer composite cylindrical
shells to thermomechanical shocks is examined in the present article. An explicit and integrated
finite element method is employed to solve the associated coupled thermoelastic equations. The
classical linear thermoelastic theory is considered for the laminated composite shell, based on
the second order shell theory, including normal stress and strain, as well as transverse shear
and rotary inertia. Composite cylindrical shells under thermal and mechanical shock loads are
examined and the effect of thermomechanical coupling, layer stacking sequence and normal stress

are examined.

INTRODUCTION

In aerospace applications, cases of instant thermome-
chanical loading of structures are abundant. It is well
known that under the circumstances where a structure
is exposed to a high rate of thermal loading, the
induced displacement and temperature fields cannot
be analyzed independently. In these cases, the ther-
momechanical coupling exists and must be taken into
account in the analysis. The analytical approaches to
solution of the structural members subjected to such
loading conditions are mathematically complicated and
are limited to the problems of infinite-space and half-
space.

McQuillen and Brull worked out one of the earliest
numerical investigations of coupled thermoelasticity of
thin shells using the traditional Galerkin method [1].
They considered the first order shell theory, based on
the Love assumptions, and essentially ignored normal
stress, transverse shear stress and rotary inertia, but
assumed a nonlinear temperature distribution across
the shell thickness. They concluded that the difference
between the coupled and uncoupled solutions are about
one percent. Li et al. [2] and Eslami and Vahedi [3]
used the Galerkin finite element method and applied
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it to the coupled thermoelasticity of thick cylinders
and spheres. Thin cylindrical shells under thermal
shock are studied by Takazono [4] where the uncoupled
equations of a shell are considered and viscoplasticity
of the shell is discussed. The coupled thermoelastic-
ity of thin cylindrical shells is studied by Eslami et
al. [5], where the first order shell theory, based on
the Love assumption, is used and the proper Galerkin
finite element formulation is presented. Since the
analysis is performed for long thin cylindrical shells,
axial displacement is ignored and only lateral shell
displacement is considered in the analysis. Wang et
al. [6] studied the behavior of multilayered cylinders
subjected to a high rate of thermal heating, consider-
ing thermomechanical coupling, but the inertia effect
neglecting. Since most of the advanced composite
materials show anisotropic behavior, the concept of a
unique thermomechanical coupling term is dispensed
with making classical analytical solutions virtually
impossible. Consequently, the numerical methods turn
out to be the only option. The coupled thermoelasticity
of general shells of the revolution of isotropic and
homogeneous material, based on the Flugge second
order shell theory, is discussed by Eslami et al. [7,8]. In
this paper, the effects of normal stress, transverse shear
stress and rotary inertia are considered. The paper is
mainly based on the classical coupled thermoelasticity
assumption, although the second sound effect, based
on the Lord-Shulman theory, is briefly discussed.

In this paper, a multilayer orthotropic composite
cylindrical shell under thermal and mechanical shocks,
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resulting in a coupled thermoelastic field, is considered.

The full stress-strain relations of the t
theory of elasticity is considered and
ond order shell theory, which is the

hree-dimensional
the Flugge sec-
most complete

compared to other classical second arder theories, is

employed to formulate the coupled th
shells of revolution.

ermoelasticity of

The results are obtained with

formulation, where normal stress is considered and the

effect of normal stress in composite
evaluated. Furthermore, the effect
layer stacking is studied and the resu
for coupled and uncoupled models.

DERIVATIONS

Consider a thin cylindrical shell of
mean radius R with the principal ¢

shell response is
of coupling and
Its are compared

thickness h and
ordinate system

(2.0, z), as shown in Figure 1, where z—coordinate

measures from the shell middle pl

ane. The shell

is assumed to be under thermomechanical loadings,
where the load is assumed to be axisymmetric and

uniformly distributed along the z—axis.

the shell governing equations, one

To write
starts from the

assumption of displacement distribution across the

shell thickness. The basic assump|
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normal stress and strain in shell equations, requires re-
lating the displacement components along the principal

orthogonal curvilinear coordinates of
U, V and W, to the displacement co

the shell, namely
mponents on the

middle plane, as given by the following relations [9]:

U(z,0,2) = ug(x,8) + z1.(,0),

V(z,0,z) = vo(x,0) + z0¢(x, 8),
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Figure 1. Shell coordinates.
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order shell theory are:

€z = U0,z + Z¢I,I7

1 [1 1,
€g = ﬁ——%— ‘E(Uo,o+w0+~¢9,a+2¢z+52 )1,
€, =, + 20,

Yoo = V0,0 + 2P0,z + (uo,0 + 2¥g.0)],

1 [1

1+ 'R
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Yoz = Wo,z + Y + Z'wz,x + 52 ¢z,xa

1 1 1
z [—(wo,a—v0+Rl,/)g + Z¢z,9 + _22¢2,9)]5
1+ %R 2 @)

Yoz =
where €'s are the normal strains and ~;; are the shear
strains. The sign (,) in the subscript indicates partial
derivative. These relations are obtained, based on the
Flugge second order shell theory, where the term z/R
is retained in the equations compared to the unity.

The forces and moments resultants, based on the
second order shell theory, are defined as:

+h P
< N:caA»Na:07 Qz >:/ (O'acvo'z77'a:077-a:z)(1 + —é)dzv

—h
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1 [t
Pg = —/ 0’9Z2d2,
2J-h

+h P
T, =[_h Tzz(l—i—ﬁ)zzdz,

+h P
Te = / 102(1 + 5)2%dz, (3)

—h R

where N;; and M;; are the forces and moments per unit
length of shell, Q; is the transverse shear force and A,
B, S;, P, and T; are just some shell generalized forces
as defined in Equations 3 [9)].

The equations of motions may be obtained using
the Hamilton’s variational principle [9]. For this gen-
eral case, where normal stress and strain are included
in the governing equations, Hamilton principle yields
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the following equilibrium equations:

Nzw+ R, =11ﬁ0+-[212}ma

%’0 + Nyg,z + % = Lo + I2ts,
N, . N
~ g+ Quet %"%—'9 = Ry = N + Iz + 54,
My, . “
Mz,z + 10%,0 - Qz = I?“O + I3wa:a
1;’9 + Myg o — Qo = Ity + I3y,
M S .. oy
~g + Sep = A+ S22 = Do + 2yt + 5 6,
P, T h? Is . Iy~ Iy
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R 8 2 2 4 (4)
where the moments of inertia, I,,, are defined as:
h z
I, = / pZ" V(14 Z)dz n=1,2,..,5. (5)
_n R

Here, ¢, and m, are the components of external forces
and moments acting on the middle plane of the shell.
These forces and moments are related to the external
applied forces ¢ and ¢; as [9]:

mz=§[43(1+§)—q;(1—§)1- (6)

The stress-strain relation for the kth orthotropic layer,
bounded by surfaces at z = hy—1 and z = hy, are given
by:

O —Qu Q12 le 0 0 Q:lﬁ €2
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where [Q.;]x and [3;]« are the stiffness and thermoelas-
tic matrixes, respectively [10].

The lamination constitutive relations are given by
matrix (¢ — 1) in Appendix. Substituting the element
of matrix (¢ — 1) into the motion Equation 4, results
in seven Navier type equations for cylindrical shells,
in terms of the displacement components ug, vo, Wo,
rotations vy, ¥, and the transverse strains ., ¢,.
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ENERGY EQUATION

The thermoelastic coupled heat conduction equation
for the anisotropic media may be derived from the
energy conservation relation, based on the first law of
thermodynamics and the definition of specific entropy
in the form:

ki; Ty —[cooT + Tufijéij] = 0, (8)

where the constants in Equation 8 are defined in the
nomenclature.

One may assume a linear temperature distribu-
tion across the shell thickness as [7,10]:

T(x,6,z,t) = Ty(x,0,t) + zT1(x,0,1), (9)

where T and T are unknown functions to be obtained
through the coupled system of equations. Follow-
ing McQuillen and Brull [1], the traditional Galerkin
method is used to derive two independent heat con-
duction equations of the shell of revolution from Equa-
tion 8, by averaging it across the shell thickness z.
Due to the assumption of linear temperature variation
across the shell thickness, as given by Equation 9, two
unknowns Ty and T) appear in the energy equation.
For multilayer composite cylindrical shells under ax-
isymmetric thermal shock, uniformly distributed along
the z—axis, the energy Equation 8 in terms of the
displacement components, reduces to:

Jery
R+=z
8T

14

Residual =pcT + T, [Bea Uz + +

+ ﬁzzW,z + /8101/,:::] —k

T 1 orT

S i A £ (10)
#3022 R+z90z”

The following two integrals of the energy equation
provide two independent energy equations for two
independent functions, Ty and T3, as follows [1,7]:

/(Residual).(l).dz-——o,
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+ h(hi—hO)Tl-f- [hiTi(t)—'hoToo] =0,
(11)
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2,3,
1=1,2,3,
z i=1,2,3,
 1=1,2,3,
: i=1,23
: i=1,2,3.

The seven equations of motion (Equations 4), written

in terms of the displacement and rota

tion components

and the two energy Equations 11 and 12, constitute

the governing equations for the nine

known functions wg, vg, wo, ¥g, Vs,

dependent un-
¥,, ¢,, Ty and

T:1. The governing equations are solyed by means of
the Galerkin finite element method, using initial and

boundary conditions.

FINITE ELEMENT SOLUTION

Analytical solution of a cylindrical she

I, with thermoe-

lastic equilibrium Equations 4 and the coupled energy
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Equations 11 and 12, is practically not possible [1].
The finite element technique, based on the Galerkin
method, is very efficient in solving coupled thermoe-
lastic problems, including the coupled thermoelasticity
of shells [3,5,7]. This method is used to obtain
the solution of the coupled Equations 4, 11 and 12.
The nodal degrees of a shell under axisymmetric
load and coupled thermoelastic assumption are seven
shell variables: wo, vo, wo, ¥g, ¥z, ¥., ¢, and two
temperature variables: Ty and T;. A linear set of
test functions are adopted to model the dependent
functions [11]. Considering identical shape functions
for all nine degrees of freedom and applying the formal
Galerkin method to the system of seven shell equations
and the two energy Equations 11 and 12 result in the
following finite element equation.

[M]{d} + [CH{d} + [K]{d} = {F}. (13)
The force matrix is divided into two terms, one term
composed of the terms obtained through the weak
formulation of the governing equations and the re-
sulting natural boundary conditions and the second
term, which include the components of external applied
forces and thermal shocks. The process of the weak
formulation and the terms which are selected for
weak formulation in the governing equations are very
important in regard to the resulting natural boundary
conditions. The natural boundary conditions which
are obtained as the result of the weak formulation
should have either a kinematical meaning on the
boundary or add up to make a traction boundary
condition. Therefore, it is essential to set up possible
kinematic and forced shell boundary conditions in
advance and try to obtain them by the weak formu-
lation [11].

The finite element equilibrium Equation 13 may
be solved in the time domain by many techniques,
such as Newmark, Houbolt, Wilson and other time
integration techniques. In this paper, the a-method
is used. According to this method, the equilibrium
equation is transformed into the following form in the
time domain [12].

[M{a}ni1 + (1 +0)[CHv}ntt — a[Cl{v}n
+ (1 + &) [E{d}ns1 - oK]{d}n

= {F(tn+a)}v (14)

where tnyo = (14+Q)tny1 —at, = top +adit, v=d and
a=d. The a—method become the Newmark methods
when o = 0. The displacement and velocity matrices
at time step (n+1) are written, in terms of their values
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at time step n, as:

(@es ={d} + At{0} + 22 (1 - 26)(a).
+ 2,8{a}n+1]) (15)

{v}n+1 = {v}n + AHA = ) {a}n + v{a}n+1,
(16)

where v and 3 are the accuracy and stability param-
eters, respectively. Using Equations 14 to 16, the
unknown matrices {d}n+1, {v}n+1 and {a}ny1 can be
obtained in terms of their values at t,,.

The stability condition of the a-method, similar
to methods such as Newmark, is based on positive
definite matrices. Application of the Galerkin method
to this problem results in nonaxisymmetric stiffness
and damping matrices and, therefore, the resulting
solution must be checked for its convergency. Selection
of the time increment is important and has an absolute
effect on solution convergency.

DISCUSSION AND RESULTS

Consider a multilayer thin cylindrical shell of thickness
h, mean radius R and length L. The material constants
of each individual layer are given in Table 1, where
the definition of terms are given in the Nomenclature.
The indices 1, 2, and n define the directions along
the cylindrical shell axis, circumferential direction and
thickness direction, respectively (see Figure 1). It is
further assumed that the boundary conditions along
the edges £ = 0 and * = L are clamped and zero
initial conditions for displacements and velocities are
considered. The thermal boundary conditions at the
ends z = 0 and z = L are assumed isolated, where the
inside and outside surfaces transfer heat to the ambient
by convection (with convective coefficients of h; and
ho).

As the first example, a thin cylindrical shell of
three orthotropic ‘layers with ply angle stacking of
[90/0/90] under pressure shock may be considered. The
shell length, radius and thickness are assumed to be

L=1 m, R=0.15 m, and h = 0.015 m, respectively.’

Tt is assumed that the inside pressure shock is uniformly

Table 1. Material constants of each individual layer.

Eq Eg2 Ein Giz2
196 GN/m? | 4.83 GN/m? | 4.83 GN/m? |3.44 GN/m?
Gan viz Van k11
3.44 GN/m? 0.05 0.3 180 W/mk
k22 kas agl 22
67 W/mk 67 W/mk [1.3%10761/k|15%10761/k

33 h; ho
15 % 107%1/k [ 10000 W/m? k| 200 W/m? k
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applied by the following equation:
P;(t) = 8 x 105[1 — exp (—1300¢)]. (17)

The inside pressure from Equation 17 reaches to a
sustained maximum value of 8 Mpa within 0.4 msec.
The shell is divided into 200 elements along the x—axis
and time increment is selected as At = 5 x 107° sec.
Shell behavior is studied up to the final time of 1 msec.
Convergence of the finite element model used in this
analysis, depends on the total number of elements, time
increments and the numerical values of the stability
coefficients o and 3 in the a—method algorithm. The
selected values of At and the total number of elements,
along with the values of & and f, are all within the
proper range of convergency.

Figure 2 shows the variation of the radial deflec-
tion of the shell middle plane at shell mid-length versus
time for composite [90/0/90] and isotropic (E = Eq; =
196 Mpa) cylindrical shells. Due to the higher stiff-
ness of the composite shell compared to the assumed
isotropic shell, its lateral deflection is considerably
smaller. The result compares well with the results of
Noor and Burton [13]. Figure 3 is the plot of radial
deflection versus the length of the shell for two different
layer stackings [90/0/90] and [0/90/0]. The shell with
layer stacking {90/0/90] has a higher stiffness and, thus,
its deflection is lower. Although the energy equation
is coupled with the shell thermoelastic equation, the
temperature rise, due to the applied inside pressure,
was found to be negligible and is not shown for this
example. In addition to this result, it was found
that for the assumed non-symmetric stacking sequence
(three-layers composite), circumferential displacement
is non-zero under axisymmetric loading.

The second example is a composite cylindrical
shell with the material properties given in Table 1. The

Radial displacement (mm)

-+ With normal stress
;

0 ] 0 0.1 0.1 0.1

Time (ms)

Figure 2. Radial deflection of cylindrical shell versus
time under inside pressure shock.
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Figure 3. Effect of layer stacking of cyli
under inside pressure shock.

mechanical and thermal boundary ca

ndrical shell

nditions are the

same as in the first example. The shell is assumed to

have three layers with stacking sequen|
is considered to be exposed to an ins
shock given by:

Ti(t) = 2207(1 — e~ 13100y 4 293°K.

The temperature of the inside surface 1
293°K to 2500°K in 1 msec and th
is studied up to 4 sec. This time pe
about 90 times larger than the time
thermal shock to reach its steady-stat
shell is divided into 100 elements alon
time increment is selected as At = 1

ce [90/0/90] and
ide temperature

(18)

ises rapidly from
e shell behavior
riod of study is
required for the
e condition. The
r its length. The
05 sec and the

a—method stability coefficients are selected as oo = 0.5

and 8 = 0.25.

The inside temperature versus time is shown in
Figure 4. The effect of thermo-mechanical coupling is
shown in this figure. The curves in the time period 3 <

Temperature (°K)

[=Uncoupled +Coupled]
1.793 |-
Temperature (°K/
1.293 + 1692 /
1682
793
1672
293 . 3.01  3.03 345 307  3.09
0 1 2 3 4

Time (sec)

Figure 4. Effect of thermomechanical cqupling on the

temperature time history.
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t < 3.09 are zoomed to show more clearly the difference
between the coupled and uncoupled theories. For the
uncoupled theory, the parameter §;; in Equation 8 is
set to zero and the energy equation is independently
solved for Ty and 7;. The results are then used in
Equations 4 to obtain the thermoelastic response of the
shell. It is observed from this figure that the coupled
theory predicts slightly lower temperature distribution
by time. This conclusion is validated by McQuillen
and Brull [1] and is also in agreement with the results
of Eslami et al. [5,7]. It is generally accepted that the
coupled thermoelasticity theory predicts slightly lower
temperature distribution in the structures [14].

In Figure 5 this comparison is shown for the
middle plane radial deflection. It is noticed, that,
while at ¢ = 0.45 msec, the thermal shock reaches
its steady state condition, the lateral deflection is still
increasing. The reason is that the characteristic time
of heat transfer is much larger than the mechanical
characteristic time for stress wave. This behavior is
different when the shell is under pressure shock {7].
In Figures 4 and 5, the values of temperature and
displacement for a coupled condition is less than the
values for an uncoupled condition. This means that the
coupling effect acts like a damper and, thus, it could be
regarded as thermoelastic damping. At the beginning
of the shock, due to the lower values of strains, the
difference between the coupled and uncoupled theories
are negligible but, as time increases, the difference
increases. This difference between the coupled and
uncoupled solutions eventually vanishes for a large
enough time, as expected. When temperature reaches
its steady state condition, the strains reach their
maximum values, while their time rate is decreased
and the effect of mechanical coupling is increased. In
Figures 6 and 7, the time history of axial force and
moment at the inner surface is shown. Although
both temperature and radial displacement are related

Radial displacement (mm)

Radial displacement
0.6
49.5
49
0.4
48.5
2.99 3.01 3.03 3.05 3.07 3.09
Time (ms
0.2
I—Uncoupled 0Coupledl
0
0 1 2 3 4

Time (sec)
Figure 5. Effect of thermomechanical coupling on the
radial displacement time history.
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Axial force (N/m)*1E6

0

4020 [ 5al force (N/m)* 1E6
by -4060

-410
.4l

2 N2.01 2.02 2.03 2.04
Time (sec)

6k

[=Uncoupled + Coupled]
-8 L —r

0 1 2 3 4 -
Time (sec)
Figure 6. Effect of thermomechanical coupling on the
axial force time history.

Axial moment (N-m/m)*1E3

2 I
‘ ~Uncoupled #Coupled

0
Axial moment (N-m/m)*1E3 \

2105
-2 ta005
2085
-4 2075
1 1.02 1,04 1.06 1.08 1.1
-6 L Time (ms) | .
0 1 2 3 4

Time (sec)
Figure 7. Effect of thermomechanical coupling on the
axial moment time history.

to the axial force, due to their signs and magnitude, the
effect of temperature is dominant and the axial force
is negative. The variation of axial force and moment
versus shell length are shown in Figures 8 and 9. As
expected, ply angle will have an important effect on the
response of a heated shell. The results are presented in
Figures 10 and 11 for axial displacement versus length
and axial stress versus thickness.

The effect of normal stress is studied in the next
example. A simply supported cylindrical shell under
uniform inside axisymmetric pressure and thermal
shocks of:

P(t) = 8 % 106(1 _ 6_13100t),
Ti(t) = 2207(1 — e~ 13100%) 4 993°K, (19)

is considered. Pressure reaches its maximum value at
1 msec. Figures 12 and 13 show the time history of
the radial deflection in the middle length of the shell
for two theories; when normal stress is considered (w
is quadratic function of 2) and when normal stress is

-1,680

19

Axial force (N/m)*1E-6 (thousands)

-1,640

-1,660
(\f s J\

I—Uncoupled 4-Coupled]
-1,700 1 T 1

0 0.2 0.4 0.6 0.8 1

Shell length (m/m)

Figure 8. Effect of thermomechanical coupling on the
axial force versus shell length.

Axial moment (N-m/m)*1E3

—~Uncoupled +Coupled

0 1 L i 1
0 0.2 0.4 0.6 0.8 1

Shell length (m/m)

Figure 9. Effect of thermomechanical coupling on the
axial moment versus the shell length.

Axial displacement (m)*1E6

\ t = 0.5 sec

[ ——10/9070] =~ [90/0/90] | ) |

0 0.2 0.4 0.6 0.8 1
Shell length (m/m)

Figure 10. Effect of layer stacking on axial displacement
in coupled theory.
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Axial stress (N/m?2)*1E6

; 74
-10 |
20 F
—[0/90/0} - [90/0/90]
! L . "
-1.5 -1 -0.5 0 0. 1 1.5

Shell thickness (m/m)

Figure 11. Effect of layer stacking on axial stress

distribution through the thickness.

Radial displacement (m/m)

1.2¢
R/h = 30
0.8 |-
0.4}
[=Without normal stress <+ With ndrmal stress|
0 T T T T
0 0 0 0.1 0.1 0.1

Time (ms)

Figure 12. Time history of radial displ

acement at middle

length of shell for two theories (R/h = 30).

Radial displacement (M)*1E-2

i
3k
2+
R/h =10
1
[=Without normal stress + With norfnal stress]
0 T T T T
0 0 0 0.1 0.1 0.1

Time (ms)

Figure 13. Time history of radial displacement at middle

length of shell for two theories (R/h =1

0).
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Axial moment (N.m/m)

0
I ——With normal stress = —Without normal stress
-0.5
; fo/e0/0]
L}
)
1} | |-
[}
[}
' R v 'R
1.5k v \ ! ' kK
'R IR '
' v
'
v ' ! Y ) ;
.2 L . L L L . L
0.01 0.21 0.41 0.61 0.81 0.99
Time (ms)

Figure 14. Time history of axial moment at middle
length of shell for two theories (R/h = 10).

Table 2. Effect of normal stress (cylindrical shells).

Theories w(m) w(m)
(R/H =30) | (R/H = 10)
Theory including oy, 3.1868F — 4 5.0391FE -5
Theory excluding op, 3.1417F — 4 4.6686F — 5
Percent of difference 1.4 7.35

not considered (w is constant across the thickness) for
R/h = 30 and R/h = 10, respectively. Table 2 gives
the radial displacement for the middle length at 4.5
msec. The difference between the two cases is about
1.4% for R/h = 30 and 7.35% for R/h = 10.

In Figure 14, the time history of the axial moment
at the middle length of the shell for R/h = 30 is plotted.
It is observed that the effect of normal stress is to
increase circumferential moment.

CONCLUSIONS

In this paper, a multilayered composite cylindrical
shell under thermal and mechanical shock loads is
considered. The fields of displacement and temperature
are assumed to be coupled through a system of dynamic
thermoelastic equations. The method of solution is
based on the Galerkin finite element. Differences
between the two theories, coupled and uncoupled, are
presented for a thermal shock load. The coupled ther-
moelastic theory predicts lower values for temperature
and displacement components, compared to the uncou-
pled theory. This conclusion is verified for structures
and solution domains other than shells [3,14]. It is
further concluded that the inclusion of normal stress
and strain in the shell governing equations have a
significant effect on the response of a shell under shock
loads. This conclusion was also reached for shells of
isotropic materials {7].
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NOMENCLATURE

Cy specific heat at constant volume

E;; elastic moduli of individual layer

Gij shear moduli of individual layer

h shell thickness

L shell length

kij conduction coefficients

Q5 stiffness matrix

ug,vg,wp  displacement components of the middle
plane

R cylinder mean radius

T, reference temperature

Yz, Pg,1, rotations

5_”‘ thermoelastic tensor

€ strain tensor

05 stress tensor

Vij Poisson’s ratios of individual layer

0 mass density
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