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Reliability Analysis of Dynamic Structures

M. Daghigh*, S. Hengst!, A. Vrouwenvelder? and H. Boonstra!

In this paper, the concepts to compute reliabilities for stationary and ergodic conditions in
the presence of time-invariant, non-ergodic parameters will first be reviewed. Focus will be on
numerical techniques like FORM and numerical integration. The effect of correlation between the
environmental processes within a sea state is studied, as opposed to between sea state correlation
which proves be unimportant. The system reliability of jack-up structures is discussed using a
combination of dynamic simulation of a stick model and the static analysis of a detailed jack-
up model. First, the dynamic time domain simulation, the quasi-static time-domain simulation
and the design wave analysis are applied for different sea-states using a stick structural model.
In the second phase, the concepts of Dynamic Amplification Factors (DAF) and Calibration
Factors (CF) are introduced for extreme responses of a detailed structural model of the jack-up
structure. To utilize the analogical quantities for stick and detailed structural models, the design
wave responses of the detailed structural model are linked with the extreme responses and the

probabilistic models of dynamic effects using a stick structural model.

INTRODUCTION

To ensure a rational design of deep water platforms, the
dynamic response of slender offshore structures to envi-
ronmental loading has received significant attention in
the recent years. In this paper, various aspects includ-
ing linear dynamies, nonlinear hydrodynamic force,
free surface effects, P-6 and P-A effects (second order
effects), complex structural details for a jacking system
and the soil-structure interaction are encountered. In
all these features, the main aim is concentrated on
implied safety levels of jack-up structures in harsh
environmental conditions. Different consequences of
failure may also be a reason to differentiate the safety
levels for jack-up platforms rather than for the fixed
type units.

Studies of the structural behavior of jack-up
platforms have been made by Kjeoy et al. [1], Liu [2]
and Karunakaran [3]. It is recognized that the jack-
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up concept is sensitive to dynamic response effects.
However, the jack-up structures are presently de-
signed for deeper waters and harsher environments,
the dynamic effects changing significantly for different
response quantities. The dynamic amplification factors
of SDOF obtained for a regular sea-state will fail in the
prediction of extreme responses. To solve the problem,
Karunakaran [3] used a Monte Carlo simulation tech-
nique for the long term reliability analysis of a jack-
up structure against foundation failure and overturning
moment.

Regarding structural non-linearity, the state of
stresses in the jack-up components may, in some cases,
result in plastic deformations. For frame structures,
the common system reliability is based on two basic
assumptions. Firstly, the dynamic effects are neglected
in evaluating the response and, secondly, the loads are
assumed to be proportional and attain their maximum
values simultaneously. In the practical designs, the
post failure behavior of a real offshore platform and
the behavior of real structures near collapse can be
very complex and expensive to assess with the dynamic
simulation of the detailed jack-up models.

For the reliability analysis of fixed offshore plat-
forms, a number of methods have been developed
to obtain the system reliability based on the most
dominant mechanisms (see [4-7]). De et al. [6] and
Dalane et al. [8] developed approximate methods in



the case of jacket type platforms for the effect known
as “fixed load pattern” in literature. For dynamically
sensitive structures such as jack-up platforms in deep
water, there is not yet a developed method for the
contribution of dynamic loads in system reliability
analysis (the state-of-the-art by Nikolaidis et al. [5]
and Moan [9]). This paper is aimed at presenting some
ideas for the reliability analysis of dyna
platforms.

STOCHASTIC DYNAMIC AN

The stochastic dynamic analysis of a stick model with
Monte Carlo simulation requires a very large sample
size, depending on the acceptable statistical error.
Importance sampling techniques, based on the random
selection of sea-state variables, have been used for
the reliability analysis of a stick jack-up structural
model (see [3]). Such a procedure of Monte Carlo
simulation is mostly suitable for static problems and
not for stochastic dynamic analysis. | The combined
sampling scheme and dynamic simulation is amenable
and time consuming and is, therefore, recommended
for reliability analysis of a static system. In this
paper, to simplify the task of stoghastic dynamic
analysis, the uncertainties of system|parameters are
assumed less important than the uncertainty of envi-
ronmental variables. The reliability |analysis is thus
carried out by the conditional limit|state functions
on the structural parameters and the uncertainties
of the system variables are treated in a further step
by the assumption of a one by one| relation of ex-
citation and response quantities of the static struc-
tures.

A realistic reliability analysis of the jack-up struc-
ture must account for the variation of load with time
and the uncertainty of the structural resistance. In
the domain of stochastic mechanics, two basic types
of random variables can be distinguished namely, the
time invariant random variables, Z(t) = constant in
time and the time-dependent random|variables, X (t).
Usually, some of the time-dependent random variables
may be kept constant for a short term realization while,
for the long term simulation, these variables are also
time variant (see Figure 1). According to Bjerager et
al. [10], the time dependent stochastic process may be
classified by two sets of environmental |processes, a fast
process X (t) and a slow process Y ().

The slow part of the process represents the in-
tensity of the process, such as the significant wave
height (H,) and spectral peak period| (Tp). The fast
part of the process represents the deviations from the
mean value within the slow process, such as sea surface
elevation at a specific location. Thd fast process is
defined conditionally on the value of the slow process:
X(t) = X(t,Y(t)), eg., the wave motion process,
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Figure 1. Identification of fast, slow, constant process in
time domain analysis.

which is considered for a given value of the significant
wave height.

Further, the slow process is assumed stationary
for the average period (the sea state duration), i.e.
Y'(t) is approximated by a sequence of random vectors
Y1,Y2,9Y3, - ,Yn a8 shown in Figure 1. The stochastic
process Y (t) is given by N pulses with rectangular
pulse duration D = T/N. The problem of com-
bination of N sea states is approximated with the
failure events of conditionally independent short term
responses.

STRUCTURAL MODELS FOR
RELIABILITY ANALYSIS

A jack-up platform system can be split into four sub-
systems, namely the hull, the legs, the leg-hull interface
(jacking system) and the leg-foundation interface. The
reason behind this classification is as follows. The
jack-up structures have been built using a steel frame
hull structure supported by three or four legs. The
way of connecting the deck to the legs by the jacking
system has great influence on the stress distribution
near the deck-leg connection, due to the interaction of
leg inclination and the directional moment distribution.
An accurate model for the connection of the hull
structure to the jacking system can only be obtained
choosing the deck structural model in different eleva-
tions.

For the purpose of this study, two models of jack-
up structures are used:

1. A simplified (stick) 3-D finite element model of the
jack-up structure exposed to the design wave loads
in the static analysis method and to the irregular
sea-states in the stochastic nonlinear dynamic anal-
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Figure 2. The 3-D stick model of the jack-up structure.

ysis methods. The parametric study for a 3-D stick
structural model has been presented for the three-leg
jack-up structure located in the Hutton area of the
North Sea [11]. The finite element representation
of the structural model, with the element numbers,
is presented in Figure 2. The overall leg truss
work is idealized as a string of beam elements with
equivalent stiffness properties. The computer model
adopted here is a three-dimensional space frame
with 59 nodes and 71 elements. The prototype is
a three-leg jack-up rig that is triangular in plane
and rests on spudcans at the base of each leg.

The leg-hull connection may be discretized by
linear springs located at the position of lower and
upper guide levels. The realistic model of the leg-
hull interface is a complicated three-dimensional
structure with clearances in leg-guides, backlash in
the jacking system and several kinds of interactions.
For jack-ups equipped with a fixation system, in lieu
of backlash and guide tolerance, the jacking system
behavior is roughly linear. The fixation system
provides a clamping mechanism in which the model
is represented by a totally rigid connection.

. A detailed 3-D finite element model of the jack-up
structure with the limited number of simulations
in the single design wave method. Using shell
elements for the platform, interface elements for the
jacking system and 3-D beam elements for the jack-
up legs results in a model that accurately represents

most aspects of a jack-up structure [12,13]. The
detailed structural models are characterized by the
type of jacking system and the bracing mode. The
original structure is the K-braced three-legged jack-
up structure with tubular chords connected to the
platform through the fixed type jacking system with
a fixation system. Each chord member has one
rack fitted in the split tubular section. For the
fixed type jacking units with a fixation system, the
initial failure occurs for the chord members below
the lower guide level. To investigate the effect of
the bracing mode, the structural analysis is carried
out with an X-braced configuration. Further, the
structural model is altered in the second design
with a floating type model. As a typical jack-up
design, the floating type jacking system is considered
without the fixation mechanism. The finite element
models of the stick and the detailed models are
shown in Figures 2 and 3.

The finite element model for the prototype model
is constructed from typical spring, beam and plate
elements (see Figure 3). The model contains 1800
nodes connected by 1128 plate elements and 1990 beam
or spring elements. The tubular chords of each leg
(totally 216 elements) are connected with three types
of diagonal, horizontal and inner bracings modeled by
845 tubular elements. Besides structural and reliability
analysis of all detailed leg parts, the effect of the
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Figure 3. The 3-D detailed model with detailed leg, hull
and jacking system.



jacking mechanism and the redundancy of bracing
components can be better identified with the overall
detailed models.

RELIABILITY ANALYSIS FOR A SINGLE
ELEMENT

The dynamic simulation of the detailed structural
model is too complex, therefore, in this study, only
the static design wave responses
this model. A reliability analysis |of the detailed
model is, however, formulated with combined dynamic
simulation of the stick model. Using the stick struc-
tural model, dynamic and quasi-static responses are
found for estimation of dynamic amplification factors
and calibration factors of different short term sea-
states.

Short-Term Reliability

The statistical characteristics of responses are esti-
mated conditionally to the sea-states and the Dynamic
Amplification Factors (DAFs) and Calibration Factors
(CFs) are defined based on the conditional sea-states
for the same response quantities. Mathematically, the
random DAF and CF are written as:

max(64|Hs)

AF|H, = —2X7d17s) 1
DAF| max(6qs|Hs)’ )
Ch|H, = 2xl0e: ) @)

Faw(H|Hs)
in which DAF|H,, CF|H, are random; DAF and CF

are conditioned on the sea-state with a significant
wave height H;. The max (64|H,) and max (64,|H,)
represent the maximum stress component in a certain
short term period (3 hours) for dynamic and quasi-
static analyses responses and &4, is|the design wave
stress response based on the maximum wave height
of the same short term sea-state. For the dynamic
and quasi-static analysis, the Gumbel time variant
distribution can be used and the response quantity of
the design wave analysis can be given for the same stick
structural model.

The term quasi-dynamic is used for the random
response of the detailed model becanse the dynamic
effects of the stick model are assumed to represent
the sensitivity of dynamic effects for the more detailed
structural model. The closed form relation between de-
sign wave responses of the detailed structural model is
combined with the random dynamic amplification fac-
tor and calibration factor of the stick structural model
at the same structural position. For an individual short
term sea state, the conditional failure probability can
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be computed from the following equation:
P(Fyy,.) = P{M < O|H,}
= P{g(0y,64,65) < O0|H.}, (3)
in which:
64 =DAF4 x CF4 x 64(H|H,),
65 = DAFg x CFp x 6p(H|H,), (4)

where DAFA,Cﬁ‘A and 64 are random DAF 4, CF4
and o4 (the dynamic amplification factor, the cali-
bration factor and the design wave response of axial
stress, respectively) conditioned on the sea-state with
a significant wave height H,. Similarly, DAFp,CFg
and 6 are random DAFpg, CFp and op (the dynamic
amplification factor, the calibration factor and the
design wave response of bending stress, respectively)
conditioned on the sea-state with a significant wave
height H;. The design of tubular leg elements is per-
formed according to the Norske Veritas Classification
Notes (DNV-0S 1982, see [14]):

IR =24

Oy

b - -2

OxkE

(R CT

where I.R. indicates the interaction equation, &4 is
the axial stress, §p, and 6p, are bending stresses
associated with two normal axes of a tubular section.
Stresses 0y,05cr and o,xp are the yield stress, the
characteristic compressive stress and the Euler buck-
ling stress, respectively. The limit state function for
buckling of tubular elements is expressed as:

M = g(oy,64,68) = —log(I.R.). (6)

The probabilistic models of dynamic effects are in-
troduced into the static responses of more detailed
structural models. With respect to the structural
characteristics, the physical and geometrical non-
linearities are involved in the response analysis of jack-
up structures. A long term response analysis, which
includes the contribution from all possible sea-states,
has been employed in the present analysis. Implying
the probabilistic distribution of dynamic effects, the
system reliability analysis of the detailed structural
model has been performed with stress analysis of a
complex model in the static state.
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Long-Term Reliability

If the conditional failure probability for an individual
sea-state with significant wave height H, is given by
Equation 3, the probability of failure for an arbitrary
sea-state can be found by the following integration:

P(Fy.) = [ PIM <0|Z = 2, H}f(H,)aH,

:/ P{g(0y,64,68} < 0|Z =2, H}f(H,)dH;,
Y (7)

in which Fj|; is the conditional short term probability
of failure for a given set of system variables Z = 2,64
and 6 p are random axial and bending stresses given by
Equation 4. The long term reliability is now defined in
terms of the failure event of an arbitrary sea-state using
the multiplication law of probability,

P(Fp) =1-{1-P(F,.)}", (8)

where N is the number of sea-states in the long term
period. For a large number of sea- states, the long term
reliability can be formulated by using the independency
of failure events for arbitrary sea-states. The long term
probability of failure can be rewritten by substitution
of Equation 7 in Equation 9 using the Poisson type
distribution for the failure events of the arbitrary sea-
states.

P(Fyp,) = 1 = exp{—N.P(F,.)}. 9

By integration of Equation 8 or 9 for non-ergodic
random variables, the reliability of single elements of
structure are evaluated. Mathematically, the failure
probability can be integrated as follows:

Pwmzjmhmnwm. (10)

For the random design wave responses of G4 4, and
Gp,dw (axial and bending stress in legs), using the
Morison equation for hydrodynamic load calculation,
the closed form solution between static hydrodynamic
load and the axial or bending stress in jack-up legs are
used in the probabilistic analysis. In case of dynamic
simulations, an approximate methodology, based on
the sensitivity of dynamic response with the static
design wave responses, has been introduced in [15].

SOLUTION TECHNIQUES FOR SYSTEM
RELIABILITY

For a jack-up structure, six groups of elements are
distinguished, the chords (¢ = 1), the braces (i = 2),
the jacking pinions (¢ = 3), the shock pads (i =
4), the fixation system (i = 5) and the hull plate

elements (¢ = 6). Z; is the vector of random variables
common to all individual failure events, Zél) is the
set of random variables common to the components
of subgroup ¢ (such as chord elements), and Zé’j) is the
set of random variables belonging to the component
J of subgroup ¢ and no others. Graphically, these
random variables are displayed in Figure 4 where

m = 6 is the number of groups composed of the
same elements and n is the number of elements per
group.

Note that there is no restriction in the choice
to which each random variable belongs and the only
important point is that a set of random variables be-
longing to the component j of subgroup i are mutually
independent to allow a straightforward solution. In
cases where the random variables, Z3, are correlated
with Z; and Z;, the conditional distribution function
of Z3, with respect to the others, has to be found and
linear interpolation may be used for values of z; and z;
between the chosen set.

The general idea behind this methodology is that
the probability of failure of the system of the jack-
up structure is obtained conditional to the failure
probability of the correlated variables.

Suppose that for given random variables of 7; =
21, Zgl) = 2z, the limit state function is defined
conditional to the set of correlated variables. The
conditional probability of failure is then calculated
for the mutually independent random variables. The
conditional probability of failure Pr|Z; = z;, Zél) = 2
is obtained in the FORM routine, since according to
the results of the reliability analysis of single elements,
the FORM approach is quite satisfactory for the com-
ponent analysis. If the components are integrated in
the system, the conditional probability of failure may
also be defined for the system. Mathematically, the
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Figure 4. Random variables for system reliability; m =
no. of groups, n = no. of components for the group.



conditional probability of failure can be written as:

Pf,sys(zlv 22, ZB) = P(fsyslzl,zg)

i=m j=n . -,
T T [Pt 47, 28 < d],
i=1 j=1

for series systems, and:

Pf,sys(zly 22, ZB) = P(fsys|zl,22)

1 n

il

J
= P[‘]ij(zhzét)v Ze(.l]))f

J

I
3

,,
Il
—
Il
-

for parallel systems.

In this formulation,

(12)

0],

1 refers to

the group number with a maximum number of m = 6
and n refers to the number of elements in each group.
Capital letters refer to stochastic variables, while small

letters reflect the deterministic variables.

state function for the whole system is a
the conditional failure probability as p
and Chen [16] and Bjerager et al. [10].
system probability of failure can be
the following limit state function:

gsys(Zla Z27Zsys) :Zsys - Q_l (va

= Zsys -o! (P(fsys|Z1:Z1,22=2

Substituting Equations 11 and 12 into
limit state functions of series and para
be obtained. Such a formulation has t

The limit
Iso calculated by
roposed by Wen
The conditional
determined from

’ys(Z1» 29, Z3))

)

Equation 13, the
llel systems may
een used for the

(13)

system probability analysis of Tension Leg Platforms

in a recent thesis [17]. An alternat
state function defined by Equation 1

ive to the limit
3, is to perform

a series of FORM analysis for component analysis of

t=1,2,---,mand j = 1,2,

,n with deterministic

z; and zp and, then, to evaluate the probability of

failure from the numerical integration.

P(M <0) = P(Fsys)

:7 7[P(fsys,z,,zz)]le(zl)-fzz

21=—00 23=—00

(z2).dz1.sz,
(14)

where the conditional probability of failure can be

calculated by reasonable accuracy
routine. Substitution of Equations

using a FORM
11 and 12 into

Equation 14, the probability of failure of a series system
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is represented by:

[ee] x>

PtRs)= [ f

Z1=—00 Z2==—00

i=m j=n
[ [1 Plgi;(z1, 257, Z89)) SO]]

=1 j=1

Faa(z1) foa(2S )} dz .dz?, (15)

and, similarly, for the parallel system.

falz ).fzg(zgi) ).dzy .dzéi).

System Reliability Analysis, Level 1

The failure events of the undamaged structure are
used in order to estimate the system reliability in
Level 1. An upper bound approximation of the system
probability of failure in Level 1 is defined by the series
system of n components failures which are conditional
to the system parameters Z; and Zj:

n

P(FL,sys,1|21,22) = ZP(F£|11,22)

i=1

—Z{l—{l-

FS|zl,z2)}N}

~ Y {1-exp{—N.P(F§., .,)}}-
i=1 (17)

in which P(Fp sys1)21,2,) 1S the system probability of
failure at Level 1, conditional to (Z; = 2,Z; =
z3). The conditional long term probability of failure
for element (i), P(Fp,,.;) is calculated in terms of
the probability of failuré for an arbitrary sea-state
P(F,).,, 2 ;}, as described in the previous section. Note
that the 1ntegrat10n of failure probability for sea-state
variables (H,) has been carried out in the calculation
of failure events for an arbitrary sea-state. In order
to treat the correlation effects between different safety
margins in terms of Z; and Z, variables, a solution
technique is developed based on the conditional failure
events using uncorrelated random variables. The
system probability of failure is then integrated for all



Reliability Analysis of Dynamic Structures

of the random variables, including Z, time independent
parameters common in a group of elements (chords or
braces, etc.) and random variables, Z;, common for
all elements. The conditions Z; = z; and Z; = 29
are integrated by application of the conditional failure
probabilities in a numerical integration technique and
the long term system probability of failure at Level 1
becomes:

P(FL,sys,l):/ /P(FL,sys,1|z1,zz)le(Zl)fz2(z2)dz2dzl
21 2o

:/ / ZP(lezl,zz)fll(zl)f12dz2(zz)dz1

22 =1

- [ [ S{-a-reE,.a)

2 =1

f21(21) f22(22)d22d21,

P(Fp sys1) z/z / i{l —exp{—-N.P(Fg\Zl’“)}}

%2 4=1

fa1(21) f22(22)d22d2. (18)

While the structural state is changed by the failure of
the first element, the conditional limit state function
of other elements must include the random strength
parameter of the damaged element. For Level 2, the
limit state function of element (¢) in an arbitrary sea-
state (Equation 7) is formulated conditionally on the
random strength of the damaged element:

1 d
P(Fslzl,ZQ/Fsll21122>
= / P{M; <0|My, < 0;H,}f(H,)dH,
Y

:/YP{Q(O';,O'Zl,O,"iA‘dl,&iBldI)
< 0|My, < 0y H,)}f(H.)dH.,. (19)

In Equation 19, the design wave responses are condi-
tional to significant wave height; ¥ =~ (H,):

a-jq|dl = DAFA|d1 x CAjFA]d1 x a-fQ]dl (H|H5)3

&é\dl = DAFBldl X éFgldl X &33|d1 (ﬁlHS), (
20)

where d; is the most important failure element at
Level 1 and DAFj‘lldwCFilldl’ and 6% ,, are random
DAF;HdI,CFj‘”d1 and U;ldl of the dynamic amplifica-
tion factor, the calibration factor and the design wave

response of axial stress with damaged condition of ele-
ment 1, which are all conditional to the sea-state with a
significant wave height H,. Similarly, DAFlB| a1 CFq,
and G, are random DAFp,,, CFj),, and T51a, (the
dynamic amplification factor, the calibration factor
and the design wave response of bending stress with
a damaged condition of element 1) conditional to the
sea-state with a significant wave height H,. The failure
events are conditional to the failure of the damaged
element with the limit state function (Mg, <0).

System Reliability, Higher Levels

For the system reliability at Level 2, the structural
state will be changed from the initial undamaged
state to the damaged state. In conventional system
reliability, the vector of the wave load is modeled as a
constant static load. Similar to the nonlinear pushover
analysis of fixed platforms, a load multiplication factor,
A, is usually increased until the failure of the structure.
For dynamic problems, the load multiplication factor,
), has been taken into account for nodal forces at all
time intervals.

The extension of system reliability to Level (m)
is also treated in a similar manner with the application
of dynamic amplifications of the specified structural
state. For structural state (m), the short term failure
probability of element (i) in an arbitrary sea-state is
conditional to the damaged state of most likely to fail
elements (i = dy,ds - ,dm—1). The failure probability
for an arbitrary sea-state is written as:

d3|dy,d2
FSIZl,Zz ﬂ )

:/YP{MIS OWdl <Ode2|d1<Oﬂ' . ';Hs}f(Hs)st

Fd2 |d1

S|z1,22

P(Fg|zl,z2|Fdl

Slz1,22

:/)/P{g(g;’ 031 ’ 032 I &j‘”dhdzw-’ a.iB|d1,ti2,-~~)
<O|Myg,<O(\Muyja, <o)+ s Hs}f(Ho)dH,

i¢d17d27"' 7dm—1' (21)
In this formula, the design wave responses are con-

ditional to the significant wave height H, and the
damaged conditions of elements (1,2,...,m — 1):

=i — AR 2
O Aldy,dz, - = DAFA|d1,d2,~- X CFajdy da,
~1 ol
X Galdy dy,.. (H|H),
~i — DAR A
0Bldy dz, = PAF B 4, X CFpja; a5,

X %14 dy,.- (H|HS). (22)



In terms of the conditional failure events of the arbi-
trary sea-states given z; and z9, an upper bound for
the system probability of failure is written as:

P(FL,sys,m|21,22) =

[ {1 P( S|z1,22 }N][ {1_
;{[1_{1_ Fsd|12122}N]
i #di,dy, e

where:

PF (dm 1)
5111,22

I —_ 1 dq i2|d1
P(F5121122) - P(FS|Z1,22|FS|21,22 ﬂFE'|z1,z2

d3|d1,d2 d
SIZI 22 m ﬂF

(dm-1)"y _ dm—1ld1,d2, | 1d
P(Fg!zl 212 ) - P(F5|z1,1zz ' ? |FS|121
d3|dy,d
Foimiy (1)
i1 # di,day o dmo1,

m—-lldlde,"'),
S|z1,22 )

29 Slz1,22

(24)

P(Fs|z1,z;) is the probability of failure for undamaged
elements in an arbitrary sea-state for element (i =

m, - ,n) and P(Fg\;, .,; dm-1ld1, day - --

cates the failure event of element (m)
sea-state when the damaged elements
have already failed. By using a

,dm_g) indi-
for an arbitrary
(1,2,---,m—2)

type of Poisson

distribution for the failure events of an arbitrary sea-

state:

n

2

=1

[1 exp{—N.P(F} S|z1 22)}] [1—
exp{=N.P(FS™ )] - [l —exp{-N

S|21 zZ2

P(FL,sys,mlzl,zD2) =

Z#d17d2,'” ml

P(ngl,“)}]}’
(25)

The unconditional probability of failure is obtained

by integration for the space variableg
the detailed model, the design wave
on structural analysis using the mosg
height in 50 years and the load pat
to be constant for other design wav
effect of the wave pattern on system 1

included by using the fragility analysis

uses conditional design wave responses
height. In this article, fragility analy
included in calculating system reliabil

Using independent mechanical
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reliability of the structure is evaluated at different levels
of structural safety. Upper and lower bounds on the
failure probabilities of the detailed structural model
are calculated, based on application of the mean value
of strength parameters and application of minimum
failure events in the parallel systems.

EXAMPLE OF SYSTEM RELIABILITY
ANALYSIS OF A JACK-UP

Static analysis methods are usually carried out for fail-
ure of detailed leg models and the effect of the detailed
models of the hull and jacking system is often neglected
using dynamic simulations. To study the behavior of
jack-up structures with realistic structural models, a
detailed structural model has been developed with a
3-D model for the leg-hull connection. That system
made it possible to accurately measure the number
of different structural behaviors for fixed and floating
jacking systems with or without a fixation system.
Among other models of jacking systems, this unique
numerical model showed that the mechanical behavior
of a jacking system can be accurately studied using the
proposed model. However, in this respect, one should
take into account other uncertain characteristics and
some experimental tests are needed to calibrate the
accuracy of equivalent strength characteristics.

In the evaluation of system reliability, the random
dynamic amplification factors DAF g are used from the
dynamic simulations of the stick models for both elastic
behavior and initial failure state (1). For structural
states (2) and higher, the dynamic amplification factors
have been derived with the results of failure state (1)
from the stick model and the ratio of daf\ and da f()
for the SDOF model is as follows:

_ daf)‘
DAF) = dafe

DAF(y) (26)
In this formula, DAF) indicates the dynamic amplifi-
cation of the stick model for the load factor, DAF(y,
and daf(;) are the dynamic amplification factors of
the stick model and SDOF in the structural state
(1) and dafy is the dynamic amplification factor of
SDOF with implying load factor A (state (2) and
higher). For the aim of simplification, the ratios of
dafy/daf(1) are assumed to be deterministic. Since
dynamic amplification is obtained as the ratio of the
extreme dynamic response to the extreme quasi-static
response, using this assumption, the number of random
variables for each response quantity is decreased to
two stochastic variables defining DAF(y)instead of six
random variables. The CF's are determined by a similar
approach and are assumed as deterministic variables in
system reliability analysis.

For the structural system, a better estimate of
reliability for the whole system may be identified using
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the reliability of a series system with number of failure
elements. To include the post failure behavior of
structural elements, reliability is measured for a series
system where each element in the series system is
modeled by parallel systems with 2 failure elements.
The structural analysis is performed for two states,
the original structure and the modified structural state
with a sequence of structural failure in the most likely
element (A = Ay pp = 2.58). Each pair of failure event
contain the failure elements of the most likely to fail
element (from first analysis) and the failure event of
n-1 elements with the modified state of structure. The
reliability at Level 2 is then measured by the union of
events in the series system with n-1 elements.

In structural analysis of the detailed jack-up,
some states of failure occur for two elements simulta-
neously. Thus, from a deterministic search algorithm,
the failure events for these pairs are equally distributed
and fully correlated. Here, the failure events of both
elements are assumed to have potential collapse and
the one most likely to fail is substituted in the failure
tree analysis.

System reliability of the structure at Level 3 is
defined on the basis of a series system where the
elements are parallel systems, each with three failure
elements. By increasing the load multiplication factor
(A = 268 > Aprum), the second failure element (or
elements) are determined, in which the failure occurs
for two structural elements identified with two previous
fail sequences. While both most likely to fail elements
at Level 1 and Level 2 are in a state of failure, the
failure probabilities are calculated for the remaining
n — 2 elements. Each triple of failure elements at Level
3, contains: a) The failure event of the most likely to
fail element (from first analysis), b) The failure event
of the most likely to fail element (by modified state of
structure at Level 1) and ¢) The failure event of n — 2
elements with the second sequence of structural failure.

The same procedure is applied for system reli-
ability at higher levels. Three cases are considered,
Case K, jack-up with a K-bracing and fixed jacking
system, Case XA, jack-up with a floating jacking
system mounted on relatively weak springs and Case
X B, jack-up with a floating system and 10 times the
stiffness of the jacking pinions in Case X A. The state
of structure has been identified for load factors (A =
2.78,2.88,3.00,3.30,3.60) by which system reliability
may be carried out for Levels 4 to 8. The results of
system reliability for all three cases within different
levels of reliability analysis, are shown in Tables 1 and
2, respectively.

Failure events in the parallel system are calcu-
lated with the assumption of deterministic strength
parameters. For example, in the limit state function
g9(2/1) < 0, the strength characteristics of element 1
are given at the design point of the limit state function

Table 1. System reliability for X-braced type, floating
jacking mechanism without fixation system, Cases X A
and XB,o = 8%yu.

System, Probability Upper
Level of Failure Bound
XA, 0 5.99E-5 -

XA, 1 6.74E-4 ~1.291E-3
XA2 1.666E-4 ~6.665E-4
XB,0 5.998E-5 -

XB,1 2.110E-4 ~4.9.16E-4
XB,2 1.125E-5 ~2.661E-4
XB,3 7.539E-6 ~1.473E-4

Table 2. System reliability for K-braced type, fixed
jacking mechanism with fixation system, Case
K,0 = 8%u.

System, Probability Upper
Level of Failure Bound
K,0 3.255E-5 .
K, 1 1.312E-4 ~3.830E-4
K,2 1.004E-4 ~8.870E-4
K,3 1.432E-5 ~2.450E-5
K.4 1.023E-5 ~1.938E-5
K,5 7.871E-6 ~1.945E-5
K,6 6.889E-6 ~1.918E-5
K,7 6.576E-6 ~1.886E-5

g(1) < 0. With this condition, the correlation of

failure modes is neglected for the ductile structural
behavior and the results correspond to the lower bound
of the system reliability for a parallel system. In
order to obtain the upper bound, the minimums of the
failure probabilities in the parallel system are used in
the calculation of the system reliability of the jack-up
structures. The uncertainties of strength variables are
assumed as 0 = 8%y and 0 = 5.65%pu and the results
of reliability analysis are given in Tables 3 and 4.

The simple upper bound of series system has also
been evaluated for the uncorrelated system events in
the parallel systems given in Tables 2 to 5. As can
be seen, the system reliability in Levels 0 and 1 are
correlated to the failure probabilities obtained from
simple bounds. For Levels 2 and higher, the simple
upper bounds of the system reliability can be narrowed
with the application of the minimum failure events in
the parallel systems as given in Tables 3 and 4.

Finally, the complexity measures and redundancy
factors have been determined for jack-ups with and
without fixation systems. The quantitative ratio of any
first failure probability, P4rF, to the most-likely to fail
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Table 3. System reliability for X-braced type, floating
jacking mechanism without fixation system, the minimum
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For a floating jacking system without a fixation
system (Cases XA and X B), the independency of

failure events in the parallel systems, Cases X A and X B.

System, Probability Probability

Level of Failure of Failure
o = 8%u o= 5.65

XA,0 5.998E-5 5.861E-5
XAl 6.748E-4 6.471E-4
XA,2 2.545E-4 2.447E-4
XB,0 5.998E-5 5.861E-5
XB,1 2.110E-4 1.987E-4
XB,2 7.667E-5 7.458E-5
XB,3 5.170E-5 5.027E-5

Table 4. System reliability for K-braced type, fixed

jacking mechanism with fixation system,

the minimum

failure events in the parallel systems, Case K.

System, Probability Probability
Level of Failure of Failure
o =8%u o = 5.65%pu
K,0 3.255E-5 3.186E-5
K1 1.312E-4 1.036E-4
K,2 2.227E-4 2.122E-4
K,3 7.412E-5 7.509E-5
K4 6.024E-5 5.534E-5
K,5 5.214E-5 4.656E-5
K,6 3.538E-5 3.178E-5
K7 3.327E-5 2.980E-5

member, Pyrrr, is defined as the Complexity Measure
(CM). The system redundancy factors are also defined

as the ratio of the probability of any f
probability of system failure:

rst failure to the

Parr Purr
CM = . RF = 1AFE 27
Pyrum Psys 27
CONCLUSIONS

The application of deterministic variables for strength
parameters has been illustrated for the system reliabil-

ity of a jack-up system. The simple

upper bound of

series system has been evaluated for the uncorrelated

system events in the parallel systems
found that the system reliability in

and it has been
levels zero and

one are bounded with the failure probabilities obtained

from simple bounds. For Levels 2

and higher, the

simple upper bounds of the system reliability can be
narrowed with the application of the minimum failure

events in the parallel systems.

failure events increase with a decrease in the stiffness
of the jacking pinions. This is the reason for the high
complexity measure in Case X A compared to Cases K
and X B (compare the CM values, CM = 11.25 for
Case XA and CM = 3.5 ~ 4 for Cases K and XB).

For jack-ups with a floating jacking system
mounted on relatively weak springs, the redundancy
will be lowered (RF = 2.165 ~ 4) contrary to the
complexity measures as mentioned above. However,
for jack-ups with a more rigid jacking system, the
redundancy factor is found in the range of RF = 4 ~
28, depending on the system reliability method used.
This shows that the application of system reliability at
higher levels is important, since this type of jack-ups
behave in a ductile manner.

The system failure probability may differ consid-
erably from the probability of failure of most likely
to fail element Pprar. For a jack-up with a floating
jacking system without a fixation system, the system
failure probability may be larger than the probability
Ppyray, when the initial failure occurs in the jacking
system (Case XA). When the sequences of failure
are found in the jacking system, the system failure
probability can be as high as 2.5 x 10=* per year.
For sequences of failure in jack-up legs, the failure
probabilities are reduced to below 3.5 x 10~ per year.

For jack-ups with a floating type jacking system
mounted on weak springs (Case XA without the
fixation mechanism), a brittle collapse behavior has
been observed leading to the higher probability of
failure (for example 1.7 x 10~* per year). For this
type of structure, the consequences of failure may be
different from the initial failure, depending on the
actual stiffness of the jacking system. On the other
hand, for jack-ups with more rigid jacking systems,
the inclusion of higher order levels will result in the
reduction of the system probability of failure compared
to the probability of the most likely to fail element
Pyrar. For the parametric study of a stiff floating
jacking system without a fixation system (Case X B),
the failure probabilities in the element level and system
levels were 6 x 1073 and 7.54 x 1076, while for the
jacking system with a fixation system (Case K), the
failure probabilities have been found in the range of
3.3 x 107% to 6.6 x 107° per year.

NOMENCLATURE

CF,,CF, calibration factors for axial stress and

bending stress

DAF,,DAF, dynamic amplification factors, axial

stress and bending stress
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dafy,dafq)

DAF),DAF;,

L.R.
Level (m)
M =g4()

P(fsys|zl,zz)

P(FsyS)
P(FSly,z)

P(F},)

P(Fg},)

P(F.)

P(FL,sys,mlz)

SDOF
Zsy.s

AMLM

dynamic amplification factor for the
load multiplication factor A,

dynamic amplification factor for
structural state (1), SDOF model

dynamic amplification factor for the
load multiplication factor A,

dynamic amplification factor for
structural state (1), stick model

interaction equation for tubular
elements

system reliability based on a series
system of parallel sub-systems with
(m) failure modes should not be
confused with level of reliability
method

safety margin using interaction
equation

conditional system probability of
failure for given system variables z;
and 29

system probability of failure

conditional short term probability of
failure for a given random process y
and system variables 2

conditional probability of failure for
an arbitrary sea-state given system
variables z

conditional long term probability of
failure for a given system variables 2z

conditional probability of failure of
element (i) for an arbitrary sea-state
for a given system variables z

conditional long term probability of
failure of element (i) for a given system
variables z

conditional probability of failure of
damaged element (1) for an arbitrary
sea-state using a given system variables
z

conditional long term probability of
failure of damaged element (1) for a
given system variables z

conditional system long term
probability of failure for a given system
variables z

single degree of freedom

an auxiliary standard normal variable
load multiplication factor

load multiplication factor for failure of
most-likely to fail member

yield stress

OzkE

11

deterministic yield stress of damaged
element 1

the characteristic compressive stress,
given in terms of the Euler buckling
stress and the yield stress of welded
section

the Euler buckling stress

REFERENCES

1.

10.

11.

12.

Kjeoy, H., Boe, N.G. and Hysing, T. “Extreme response
of jack-up platforms”, Proceeding of Second Int. Con-
ference on the Jack-up Drilling Platform or Journal of
Marine Structures, 2(3-5), pp 305-334 (1989).

Liu, P. “Dynamics of elevated jack-up structures”, PhD
Thesis, Technical University Delft, Faculty of Civil
Engineering, The Netherlands (1991).

. Karunakaran, D.N. “Nonlinear dynamic response and

reliability analysis of drag-dominated offshore plat-
forms”, PhD Thesis, Division of Marine Structures,
The University of Trondheim, The Norwegian Institute
of Technology (1993).

Vrouwenvelder, A. et al. “Ultimate limit state reliability
analysis for offshore structures”, TNO Report, Nr. B-
84-563/62.6.0402, The Netherlands (1985).

Nikolaidis, E. and Kapania, R.K. “System reliability
and redundancy of marine structures: A review of the
state of the art”, Journal of Ship Research, 34(1), pp
48-59 (March 1990).

. De, R.S., Karamachandani, A.K. and Cornell, C.A.

“Offshore structural system reliability under changing
load pattern”, Applied Ocean Research, 13(3), pp 145-
159 (1991).

. Karamchandani, A., Dalane, J.I. and Bjerager, P.

“Systems reliability approach to fatigue of structures”,
Journal of Structural Engineering ASCE, 118(3), pp
684-700 (March 1992).

Dalane Jan Inge “System reliability in design and
maintenance of fixed offshore structures”, PhD Thesis,
Division of Marine Structures, The University of Trond-
heim, The Norwegian Institute of Technology (1993).

. Moan, T. “Reliability and risk analysis for design and

operations planning of offshore structures”, Structural
Safety and Reliability ICOSSAR 93, 1, Edited by G.I.
Schueller, M. Shinozuka and J.T.P. Yao, ISBN 90-5410-
377-9, pp 21-43 (1994).

Bjerager, P. et al. “Reliability method for marine struc-
tures under multiple environmental load processes”,
Proceedings of the International Conference on Be-
haviour of Offshore Structures, BOSS, 3, pp 1239-1253
(1988).

Marex (Marine Exploration Limited) Hutton Area,
main study report and addendum, Marex House, UK
(1979).

Daghigh, M. “Design conditions and load analysis of
a three leg jack-up platform”, Second Progress Report



12

13.

14.

on Reliability Analysis of Drag D

ominated Offshore

Platforms, Faculty of Mechanical Engineering and Ma-

rine Technology, Work Group SO(

P, TUDelft, The

Netherlands, Report nr. 94-3-24 (April 1994).
Daghigh, M. “Deterministic and religbility based single

wave analysis methods for jack-up
Progress Report on Reliability Anal
wmated Offshore Platforms, Faculty

structures”, Third
sis of Drag Dom-
»f Mechanical En-

gineering and Marine Technology, Work Group SOCP,

TUDelft, The Netherlands, Report
1994).

nr. 94-3-25 (Oct.

Ellinas, C.P., Supple, W.J. and Walker, A.C. “Buckling
of offshore structures”, A Sate- of-the-Art-Review of the
Buckling of Offshore Structures, Grenada, ISBN 0-246-

1298-6 (1984).

M. Daghigh, S. Hengst, A. Vrouwenvelder and H. Boonstra

15.

16.

17.

Daghigh, M. “Structural system reliability analysis of
jack-up platforms under extreme environmental condi-
tions”, PhD Thesis, Technical University Delft, Faculty
of Mechanical Engineering and Marine Technology, The
Netherlands (1997).

Wen, Y.K. and Chen, H.C. “On fast integration for time
variant structural reliability”, Probabilistic Engineering
Mechanics, 2(3), pp 156-162 (1987).

Hovde, G.O. “Fatigue and overload reliability of off-
shore structural systems, considering the effect of in-
spection and repair”, PhD Thesis, Division of Marine
Structures, The University of Trondheim, The Norwe-
gian Institute of Technology (1995).





