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Research Note

Forced Vibration Analysis of Laminated
Rectangular Plates Using Super Elements

M.T. Ahmadian* and M.S. Zangeneh!

The implementation of new techniques and design of new elements have been an important issues
among finite element researchers. In this regard, a designed super element has been applied to
analyze a series of dynamic problems. Findings indicate that in large structure analysis the same
results as the conventional method can be obtained when applying a few super elements. The
time required for dynamic analysis using a super element is significantly smaller than the regular
finite element. In this paper, the forced vibration of laminated composite rectangular plates is
analyzed. The dynamic response of the plate, using a four-super element, is obtained. In-plane
deformation, as well as bending deformation, is included in the model. The current computational
model is a simple and efficient way to predict the dynamic behavior of the laminated composite

plate.

INTRODUCTION

The development of composite structures has been
governed by the search for a material having a higher
strength to weight ratio, a lower cost of fabrication and
better durability.

Recently, implementation of the finite element
method in the analysis of engineering structures has
been widely used. However, when applying a large
number of elements and nodes in the analysis of large
structures, the method becomes cumbersome.

The application of composite materials is con-
sidered as primary structural components in places
where weight saving is of critical concern. All advanced
structures, such as spacecraft, high-speed aircraft and
naval vessels, need material properties to be designed
in an optimum state.

Most structures, irrespective of their use, will be
subjected to dynamic loads during their operational
life. Increased use of composite laminated plates in
primary structures necessitates the development of
accurate theoretical models to predict their response.

Of all approximate schemes, the finite element
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method is the most widely used approach and has
been applied with much success for the vibration
analysis of plates and composite plates. Reddy et al.
published a series of papers on finite element dynamic
analysis of laminated composite plates [1-2]. Sinha and
Mukhopadhyay [3] have developed an arbitrary shaped,
higher order curved triangular stiffened shell for the
static, free vibration and dynamic response analysis
of plates and shells with non-uniform thickness and
tapered stiffeners. This particular work was a new and
valuable approach for researchers and can be used in
the analysis of a variety of problems. Mukhopadhyay
and Goswami [4] have used the finite element transient
analysis of laminated stiffened shells with laminated
stiffeners for the first time.

One of the advanced techniques recently imple-
mented is the application of the super element method
in structure analysis. Koko and Olson [5-7] and Jiang
and Olson (8] have applied the super element in the
nonlinear dynamic analysis of plates and shells with
and without stiffeners. Vaziri et al. [9] applied the
super finite element method to predict the transient
response of laminated composite plates and cylindrical
shells subjected to a non-penetrating impact by pro-
jectiles.

The conventional finite element method usually
needs very expensive computer runtime to obtain accu-
rate results. Hence, it is unsuitable at the preliminary
design stage, where repeated calculations are often
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necessary. An efficient numerical analysis procedure
that can be used as a design tool is, therefore, needed.
In this paper, the super finite element method, previ-
ously proposed by Olson and Koko (5] and applied to
the free vibration analysis of isotropic plate, has been
extended to the forced vibration analysis of composite
plates. These super elements are capable of producing
sufficiently accurate results using a very coarse mesh of
elements. Development of the dynamic formulation is
briefly outlined as follows.

MODELING

A nine nodes super element is presented in Figure 1.
The z — y Cartesian coordinate system of the plate is
shown in this figure, where { = 2,1 = ¥ and a and b
are the plate length and width, respectively.
Displacement fields of the element are given by [5]:
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Figure 1. The plate super element [5].
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where u,v and w are displacements in the x,y and 2
directions and N*, N¥ and N} are the super element
shape functions in the z,y and z direction, respectively.
Shape functions are listed in Appendix A. Here, L; and
H, are the Lagrange and Hermit polynomials and ¢ and
1; are the first modal shape of the clamped beam and
out of plane bending variable at the corner nodes of
the super element, respectively. wu; and v; represent
the in-plane displacements in the z and y directions.
U310, U11, U12, U13, W14, UL5 and vio, V11, V12, V13, V14, V15
are amplitudes of the sine functions of the model [5].
The total strain energy of a cross-ply symmetric com-
posite plate is expressed as:
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where the extensional stiffness of laminate A;; =

N __
=3 Q%C)(zk —zx—1), bending stiffness of laminate
k=1

Di; = Dji = 3 Z Q(k)(Z,C —z}_,) and Q(@ are kth

transformed reduced stiffness, IV is the number of layers
and 2 is the distance from the kth layer to the mid-
plane of the plate.

The kinetic energy of the plate element can be
expressed as:

o ph b ¢ ) ) . _ 1, .

where T denotes the kinetic energy of the plate, p is
the material density and h is the plate thickness.

The governing equation of motion for the un-
damped forced vibration can be expressed as:

[ml{d} + (kl{q} = {F(D)}, (4)

where [m] and [k] are the assembled mass and stiffness
matrix and {¢} and {g} are the global acceleration and
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Table 1. & comparison for ss — 1 symmetric cross-ply [0°/90° /0°] square plate.

Method| CLPT [1] CLPT [1] FSDT [1) FSDT [1] FSDT [1] | FSDT [1] | ANSYS | Present
Without RI | With RI | Without RI | Without RI | With RI With RI
Mode k=1 k=5/6 k=1 =5/6
1 15.228 15.227 15.192 15.185 15.191 15.183 15.184 15.468
2 22.877 22.873 22.831 22.821 22.827 22.817 22.822 23.46

RI: Rotary Inertia; CLPT: Classical Laminated Plate Theory; k: shear correction factor,

FSDT: First Order Shear Deformation Theory.

displacement, respectively. {F(t)} is the external time
varying forcing function, {F(¢)} = {Fy}sinwt, where
Fy is the force amplitude and w is the external force
frequency.

NUMERICAL EXAMPLES

This method is applied to solve the static, free and
forced vibration of isotropic, orthotropic and laminated
composite plates. In the following examples, a four-
super element is used to analyze the dynamic response
of a series of plates and the results are compared with a
400 conventional element (SHELL63- SHELL93), using
“ANSYS” commercial software.

Free Vibration of a Simply Supported
[0°/90°/0°] Laminated Composite Square Plate

Considering a simply supported laminated composite
plate, a free vibration analysis of ss-1 simply supported
symmetric cross-ply [0°/90°/0°] is presented and the
results are compared with the literature.

The material properties of a laminated composite
plate are as follows:

Material #1 : E1 = 25E2, G12 = G13 = 0.5.E27
G23 = 0.2E2, Vg = 025,

The non-dimensional natural frequency is given as [1]:
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where @ is the non-dimensional natural frequency, w, is
the natural frequency and p is the density of the plate.
Side to thickness ratio is considered as 7 = 100.

Layers are assumed to have the same thickness
and the results are presented in Table 1.

Comparing the findings of ANSYS and the clas-
sical laminated plate theory indicates a 1.6 % error in
the fundamental frequency, with respect to CLPT and
a 1.9 % error, with respect to ANSYS.

Table 2. Comparison between natural frequency
[0°/90° /0° /90° /0°],, simply supported square plate.

Super |CLPT|FSDT
Element| [10] [9] !ANSYS|Present
(9]
Natural
Frequency| 303.116 |303.08 {302.698! 302.8 | 303.101
(Hz)

Free Vibration of Simply Supported
[0°/90°/0°/90°/0°], Laminated Composite
Square Plate

Consider a ten-layer simply supported laminated
square plate with the following sequences [0°/90°/0°/
90°/0°], and a side length of 0.2 m with a thickness of
0.00269 m.

The material is considered to be T300/934 CFRP
with the mechanical properties as:

Material #2: E; = 120 GPa, FE, =7.9 GPa,

Gi12 = 5.5 GPa, p = 1580 kg/m?,

Vio = 0.33.

Vaziri et al. [9] have implemented the principle of
virtual work to solve this problem directly. In the
present study, Hamilton’s principle, along with the
super element, is applied to obtain the stiffness and
mass madtrices.

Comparison between various methods is presented
in Table 2. The results in Table 2 indicate good agree-
ment between the present methods with the analytical
solution.

Static Analysis of Symmetric Laminated
Square Simply Supported Plate Under Point
Force at the Center

Here, a square [0°/90°/0°] symmetric, cross-ply lami-
nated plate is considered. Assume a point force, Fy,
is applied at the center of the plate which is made of
Material # 1.
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Table 3. Non-dimensional static deflection of simply
supported [0°/90°/0°] of square plate under point load at
the center of plate.

Method w
Present 2.0694 (-2.6%)
ANSYS 2.1664 (+1.9%)

CLPT [1] 2.1257

The non-dimensional deflection of the plate center
can be defined as [1]:

. Ep®
w = 'LUW,
where w is the non-dimensional deflection of the plate
and h and a are the plate thickness and side length of
the plate, respectively. In Table 3 the non-dimensional
deflection of the plate at the center using the super
element, ANSYS and Navier’s solution (CLPT) are
presented.

The results indicate that a good agreement can
be obtained using four-super elements, in comparison
with 400 conventional elements and Navier’s solution.

Forced Vibration of Clamped Isotropic Square
Plate

Consider a single layer square isotropic plate with
a point force of Fysinw; at the center. The plate
response under force Fy is calculated in terms of applied
frequency. The main idea was used for simple system
by Thomson [11].

The non-dimensional amplitude of the plate cen-
ter versus the non-dimensional frequency is shown in
Figure 2. Fifty points are implemented to draw the
curve.

In this figure, the non-dimensional parameters are

W= % and @ = < where:
Wy Wn

wq: dynamic response of the plate at the center,

w,:  static deflection of the plate center under point
load Fj at the plate center,

w:  exciting frequency,

wp: fundamental natural frequency

Forced Vibration of Simply Supported
Isotropic Square Plate

Consider a single layer square isotropic plate under
a point load Fpsinwt at the center. The results are
presented in Figure 3. Fifty points are implemented to
draw the curve.

As expected at w = w, or W = 1, resonance occurs
and amplitude tends towards an unlimited value.
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Figure 2. Non-dimensional forced response of square
isotropic clamped plate.
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Figure 3. Non-dimensional forced response of square
isotropic simply supported plate.

Forced Vibration of Simply Supported
Orthotropic Square Plate

Consider a single layer square orthotropic plate with
the following properties:
. Dy
Material #3: —— =0.5 d
aterial # ) an D
where D = Dy + 2Dgs. In the orthotropic plate,
extensional matrix [A] and bending matrix [D] can be
summarized as follows:

E E
Ay =h——r A= h—2272
1 — vigv0) 1 —v12001
E
Agp = hl——Q—— Ags = hG12
— V221
3 E h3 E
Dy = N Dyp = 7= 222
121 — ViaV21 121 — VigV21
h3 Es 3
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The non-dimensional dynamic response of the
plate is shown in Figure 4. Comparison between
ANSYS results and findings using the super element
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Figure 4. Non-dimensional forced response of square
orthotropic simply supported plate.
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Figure 5. Non-dimensional forced response of clamped
orthotropic rectangular plate.

indicate an error of less than 2% at the most frequency
domain. Forty points are implemented to draw the
curve.

Forced Vibration of Clamped Orthotropic
Rectangular Plate under Point Force Fysinwt
at the Center

Consider a clamped single layer orthotropic rectangular
plate with properties of Material # 3 and aspect ratio
1.2($ = 1.2). The non-dimensional dynamic response
of the plate is given in Figure 5. Thirty points are
implemented to draw the curve.

A comparison between a clamped orthotropic
rectangular plate and a clamped orthotropic square
plate indicates that by increasing the aspect ratio of the
plate, the dynamic stiffness of the plate will decrease.

Forced Vibration of Clamped Laminated
Composite Square Plate

Consider a symmetric cross-ply [0°/90°], laminated
composite clamped plate with properties of Mate-
rial # 2. In Figure 6, the dynamic response of the
plate is shown. Fifty points are implemented to draw
the curve.

Results indicate that the general behavior of the
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Figure 6. Non-dimensional forced response of clamped
laminated composite square plate.

laminated composites is similar to the single layer with
the larger bandwidth.

CONCLUSION

Finite element vibration analysis of isotropic, or-
thotropic and symmetric, cross-ply, laminated, com-
posite plates is considered. Free vibration, static and
dynamic analysis of plates are discussed in a non-
dimensional form.

Results indicate that the application of the super
element in the analysis of laminated composite plates
gives the same results in dynamic response with a run-
time of less than one-third in comparison with the
conventional method.

The maximum amplitude response of plates under
static and dynamic load with the same load ampli-
tude can change drastically, depending on the non-
dimensional frequency.

Also, findings indicate that the super element is
a very good tool in the analysis of dynamic problems
with smaller computational time, in comparison to
conventional finite element methods with sufficiently
accurate results.
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APPENDIX A

e The quadratic Lagrange polynomials:

Li(§) =26* -3¢ +1,
Ly(€) = 26* — &,
Ls(€) = 4(€ ~ €2).

e The Hermitian polynomials:

Hi(§) =1-36 +2¢%,
Ha(€) = a(€ — 267 + £%),
Ha(¢) = 3¢% - 2¢6%,

Hy(§) = a(—€" + &%),

e The clamped beam vibration mode:

#(€) = |a(sinh B¢ — sin BE) + (cosh BE — cos BEN/A,
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where (8 = 4.7300407448,
A=a(sinh 0.53—sin 0.58)+(cosh 0.5 —cos 0.53),

_ cos3 — cosh 3
sinh B —sin

The shape function of super element:
Ny = Li(€)La(n), N3 = L2(§)La(n),
N3 = Ly(§)L2(n),  Ng = La(§)La2(n),
N = Ly(€)La(n), Ng = La(§)La(n),
N} = L3(§)L2(n), Ng = Li(§)Ls(n),
Ng = L3(§)Ls(n), Nip = sin(2m€)L1(n),
Ny, = sin(2n€)La(n), Ny = sin(27€)Ls(n),
Ny = sin(4n€)L1(n), Niy = sin(4m€)La(n),
Ny = sin(4m§)Ls(n)

=N} for <9
NYy = Ly(€) sin(2nm),  Niy = La(€) sin(2mn),
Ny, = Ly(€) sin(2mm),  Niy = Li(€) sin(4mn),
Ny, = Lo(€) sin(dnn), Nfs = Ls(&) sin(2m),
Ny = Hi(&)Hi(n), N3’ = Ha(§)Hi(n),
Ny = Hi(§)Ha(n), N = Ha(§)Ha(n),
Ny = H(§)Hi(n), N§' = Ha(§)H(n),
Ny = H3(§)Hz(n), Ng' = Ha(§)Ha(n),
N§ = H3(¢)Hs(n), Nig = Ha(§)Hs(n),
N = Ha(§)Ha(n), Nig = Ha(§)Ha(n),
N = Hy(&)Hs(n), Niy=Hx(§)Hs(n),
N = H1(€)Ha(n), Nis = Hz2()Ha(n),
N = ¢(§)Hi(n), Nig = ¢(§)Ha(n),

N = Ha(€)d(n), N3 = Ha(&)o(n),
Ngi = ¢(§)Ha(n), N3p = o(&)Ha(n),
Ng = Hi(§)¢(n), Naa = Hz(§)e(n),

N35 = ¢(&)o(n)-





