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Heat Convection on Cylinder
at High Prandtl Numbers

A.B. Rahimi!

Natural convection flow on a vertical cylinder is considered here when the Prandtl number is
large. Little work has been done in this field apart from some experimental studies which are for
lower Prandtl numbers. Here, the singular perturbation technique is used to solve this problem.
The method adopted is to split the flow into a thin layer close to the surface of the cylinder,
surrounded by a much thicker layer where the velocity is reduced to zero. It is shown that at
high Prandtl numbers, the velocity boundary layer tends to be somewhat larger due to large
kinematic viscosity relative to thermal diffusivity. The motion of the outer layer, however, seems
to be caused by the drag force exerted by the inner layer, not due to the buoyancy itself.

The basic properties of the flow are evaluated. The heat transfer coefficient is shown to
give good prediction for all ranges of Prandtl numbers.

INTRODUCTION

This paper studies the natural convection flow along
the outer surface of a vertical cylinder when the
Prandtl number (Pr) is large. Materials with high
Prandtl number are frequently encountered in industry.
Natural cooling of industrial oil (Pr = 80000) along the
outer surface of a vertical cylinder in the environment,
after a quenching process, can be a practical example
of this type of flow. Little work has been done in
this field apart from the experiments of Libby [1]
and Fujii et al. [2] and a numerical calculation made
by Fujii and Uehara [3] for the case of Pr = 100.
Another contribution is the investigation of Sparrow
and Gregg [4] regarding this problem at moderate
Prandtl numbers.

Recently, Ames [5] shows that for Pr = 1, the
boundary layer governing equations can be solved in
exact form. Naylor [6] presents the limiting solution
of the problem of natural convection from a vertical
cylinder. There are some high Prandtl number natural
convection studies done by Stewartson and Jones [7]
and, also, Rahimi and Gholamdokht [8], which are
natural convections from a flat plate.

Considering all the above studies, it can be con-
cluded that the solution of natural convection from a
vertical cylinder for high Prandtl numbers has not been
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found. Here, the singular perturbation technique is
used to solve the problem of natural convection from a
vertical cylinder at high Prandtl numbers. The method
adopted is to split the flow into a thin layer close to the
surface of the cylinder (where the temperature varies),
surrounded by a much thicker layer where the velocity
is reduced to zero. The solution is determined in the
inner region, in terms of a parameter, which is roughly
equal to the ratio of the thickness of this layer to the
radius of the cylinder; it is valid up to a vertical height
at which this parameter is about unity. The basic
properties of the flow are evaluated and it is attempted
to reduce the formula for calculating the coefficient
of heat transfer from the outer surface of a vertical
cylinder to fluid of any Prandtl number. The influence
of high ranges of Prandtl number upon heat transfer is
found and shown to be in qualitative agreement with
Libby [1].

PROBLEM FORMULATION

Let cylindrical coordinates (z,r) be taken whose axis is
the vertical center line of the cylinder and whose origin
is at the center of the base of the cylinder. Let (u,v)
be the corresponding velocity components. Neglecting
variable property effects other than buoyancy and
adapting the well-known boundary layer approxima-
tions for steady state conditions, it is obtained that:
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where v is the kinematic viscosity, ¢ is the acceleration
due to gravity, ; is the coefficient of volumetric
expansion, Pr is the Prandtl number and:

9= T__T:”_’ (4)
Tw - Too
where T is the temperature of the fluid and Ty, T,
are the constant temperatures of the surrounding fluid
and cylinder, respectively.
Equation 1 may be eliminated by introducing a
stream function, 1, such that:
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The boundary conditions are: On 7 = a, the surface
of the cylinder, v = v = 0, and 6 = 1. At large radial
distances, u and € tend to zero.

FLOW IN THE INNER TEMPERATURE
LAYER

The problem of natural convection from a vertical flat
plate at large values of Pr discussed by Stewartson
and Jones (7] and Rahimi and Gholamdokht (8], show
that the flow over a flat plate consists of two regions,
namely, a thin temperature region, where buoyancy is
roughly balanced by viscosity and a thick momentum
layer, where the temperature is approximately con-
stant. Thus, in the limit as Pr— oo with Gr finite,
where,

T, — Too)x®
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Gr = Grashof number = Gr = 9B (

the temperature layer becomes vanishingly thin while
the momentum region becomes infinitely thick. This
suggests, in the cylindrical case, that at finite values
of z for sufficiently large Pr the thickness of the
temperature layer will be much smaller than the radius
of the cylinder.

Using the experience in the above studies, the
appropriate variables inside the inner layer in this case
are:
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Here, f(X,Y) represents the reduced stream function
to be found from the subsequent analysis. It should
be noted that X gives the order of magnitude of the
ratio of the thickness of the temperature layer to the
radius of the cylinder. This change of variable is an
adaptation of that used by Sparrow and Gregg [4] in
their discussion of this problem at moderate Prandtl
numbers. From Equation 7 it is readily shown that:
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The variables in Equations 7 and 8 reduce to inner flat
plate variables in the limit as a — oo.

When Equations 7 and 8 are inserted in Equa-
tions 2 and 3, the following equations are obtained:
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The boundary conditions on f,8 at Y = 0 are that:

of
f=%7=0 19

FIRST-TERM SOLUTION OF INNER
REGION EQUATIONS

Equations 9 and 10, along with the corresponding
boundary conditions, govern the flow in the inner
region. These equations are solved using perturbation
techniques. Note X — 0 as Pr — oo, (see Equation 7).
Therefore, X can be a suitable perturbation parameter
since, in this study, one is interested in solving the
problem for high Prandtl numbers.

The perturbation expansions of quantities f and
0 are written as:

fLX)=fo(Y)+ XAHY)+ X2 fo(Y) +
B(Y,X) =60o(Y) + X0,(Y) + X26,(Y) +

Substituting these expansions into Equations 9 and 10
and keeping the first term in expansions above gives:
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with an error of order X, ie. of order (Pr)~1/4.
Equations 11 and 12 are solved using a Runge-Kutta
order of four [9], giving the following results for the
solutions fg, 60y and Figures 1 to 3:

82 fo 390

=0.825, — =0.711 at Y =0,
aYy? aY
and:
f()(Y) =aqg +a1Y, with ag = —0.261, a = 0.511,
and:
fg—0 as Y — oo. (13)
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Figure 1. fo in terms of Y.
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Figure 2. %2 in terms of Y.
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Figure 3. First term of inner temperature.

To summarize, when Pr is large, and the Grashof
number is finite, the inner temperature layer forms a
thin skin (whose thickness varies as (Pr)~'/%) on the
surface of the cylinder. From Equation 13 it can be
shown that the outer surface of this skin moves with
velocity Up(z), where:

2va, (g)1/4

Uo(z) = = 37

(14)

FLOW IN THE OUTER MOMENTUM
LAYER

In the outer momentum layer, where the temperature
is sensibly constant, the cylinder appears to move with
velocity Up(z).

In this section, the flow corresponding to such a
moving cylinder is developed. It will be verified in
later sections that this solution does, in fact, match
the inner solution. Now, the boundary layer due to
a cylinder which moves with constant velocity, has
been determined by Crane [10]. The method used
in [10] suggests the following change of variables when
the radius of the cylinder is much thinner than the
boundary layer:

Upr?
v=veF(n,8), n=—,
vz
4
8= ln(U:;) =2In X + InPr — In(4a,)
=2Iln X 4+ InPr —0.716. (15)

In terms of Equation 15:
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and Equation 2, with 8 = 0, reduces to:
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The boundary conditions are: On the surface of
the moving cylinder, which may be taken to a good
approximation at r = a, i.e. 7= e"7,

oF 19F -8
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It will be assumed that, in the limit as 8 — o
{(which occurs when Pr — oo) the terms in al tend to
zero. Then, for large values of 3, Equation 17 becomes
approximately:

9 82F\ 1 _8*F 1/0F\2

5 (15 ) + 38 5 ~1(5y) =0 (19)
Equation 19 has the property that, if Fp(n) is a
solution, so is Fy(z), where z = n/v and < is any
positive function of 3. Equation 19 then becomes:

d ; d*F, 1 d?Fy  1/dFy\?

T h () =0 @

A standard solution of Equation 20 was calculated
subject to the following conditions:

dFy
— =0 as z— o0,
dz

Fpb—-0 as z—0.

When z is large:

Fo=2D+1)+ Z nD, (21)

where D is a constant to be determined. The first
few terms of Equation 21 and its derivatives provide
starting values (at a sufficiently large value of z) for the
numerical integration of Equation 20 in the direction of
decreazing z (see Table 1). When z is small it is found
that, when D = 0.539,

Fy = Az(Inz + B — 1) + O(2%(In 2)?),

ddﬂ ~ A(lnz + B) + O(z),
z

where A = —30.90, B = 4.61. Now when z is small:

OF 1dFy

__A(lnz+ B)
o 5 dz

+ O(z).
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Table 1. Numerical solution of f; and 6.

logz| Fo -‘!f} %‘;‘1 P dTil %’;l
-12 10.001 227 -30.8 0 20.0 -0.082
-10 |0.009 166 -30.3 0.001 19.5 -0.416
-8 |0.046 107 -28.5 0.006 17.8 -1.49
-6 10.199 54.4 -22.9 0.038 12.8 -3.51
-4 10.659 18.4 -12.5 0.160 4.96 -3.64
-2 1.49 3.36 -3.42 0.343 0.50 -0.85
0 2.30 0.326 -0.422 [0.378| -0.026 -0.003
2 2.77 0.021 -0.030 [0.297| -0.006 0.007
4 2.97 0.001 -0.002 [0.224| -0.0005 0.0006
6 3.04 | 0.0001 -0.0001 [0.184| -0.00003 | 0.00005
8 3.07 | 0.000002 |-0.000004 | 0.167 [-0.000005 | 0.000003

It follows that the first part of Condition 18 will be
satisfied, to within a fractional error of order e~ (i.e.
Pr—1/2) provided that:

1
ﬁ=ﬂ*—lnﬁ*+ﬁ—ln(—§A), (22)
where 3* = _—j"

Thus, a first approximation to the outer velocity
profile is:

u 1 dFo

Uo Y dZ

HIGHER APPROXIMATIONS TO THE
OUTER SOLUTION

The error due to the neglected terms in a%’ in Equa-
tion 17 is readily shown to be of the order (3*)~!

This error may be corrected by expanding F' in
the series:

F=F0(z)+b—1;Fl(z)+... (23)

The equation for Fy is found by substituting Equa-
tion 23 in Equation 17 and equating terms of order
(8*)~!. Then:

d3Fy &2 F F d2F1 F d? Fy ld_F_gﬂ

zdz3+dz2 Od2 V422 2 dz dz
1/dFy\?2

{=Z==2Y)y =0. 24

4( dz ) (24)

The solution of Equation 24 for which:

o= (£5), =0 (%) =0
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is given in Table 1. Note the values:

dF

S =7 =200, Fi(oo) = 0.154.
dz lt=0

Now, at 7 = e~ %:
U 1 C1
—=1=—|A(-f—-Iny+ B) +
i o (- v+ B) 5

It follows that Definition 22 of 3* must be amended to:

B=0" —Ing* +B- 1n(-3A) + Acg
or:

ﬁ:ﬂ*—lnﬂ*+1.89—%. (25)
To summarize, the outer velocity profile is:

Uu _ 1 dFo 1 dF1 1

TR e SO

This formula gives u/Uy to within a few percent when
§* or 3 is greater than 5. This will be roughly true for
X > 0.1 when Pr > 104,

HIGHER APPROXIMATIONS TO THE
INNER SOLUTION

The error in the approximate inner solution (Equa-
tion 13) has two sources, firstly that Equation 13 is a
solution of the truncated Equations 11 and 12, in which
terms of order X have been neglected and, secondly,
that the outer solution {(Equation 26) does not exactly
match the inner solution (Equation 13).

The first source of error may be approximately
corrected by writing:

f=fo+ X,

when Equation 27 is inserted in Equations 9 and 10
and terms of order X equated, it is found that:

8 =65+ X6, (27)

a3 fi dBfo  d?fo

Yt e =0, (28)
P s dio, by dfy . d%6

vz gy Ty gyt gy tY gy =0

(29)

Table 2 gives the solution to Equations 28 and 29 which
satisfies the conditions: On Y = 0:

d
f1:£:91:0,
and at Y = oo,
dfi _ _
d—Y_O’ 8, =0.
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Table 2. Numeria solution of Fy.

a

Y| fo |22 60 |51 |60 | 12|52 62
0

0 0 0 1.0 0 0 0 0

0.25]10.023]0.177(0.822( 0 |[0.01(-0.04|-0.01]-0.07|0.04

0.50(0.084|0.302{0.649; O 0 [-0.05[-0.03]|-0.14]0.08

0.75(0.17110.387|0.485( O [-0.01{-0.01|-0.08{-0.210.12

1.0 [0.275/0.441(0.342| O |[-0.02]0.04 {-0.14|-0.29(0.14

1.25)10.390 | 0.474|0.225|-0.01 (-0.03 | 0.09 {-0.22(-0.38]0.15

1.50({0.511|0.4920.138|-0.02|-0.02{ 0.11 {-0.33{-0.48|0.13

1.75(0.635|0.502|0.078|-0.02|-0.01] 0.12 |-0.46 {-0.59|0.11

2.0 [0.761]0.507]0.041 |-0.02|-0.01| 0.10 [-0.62 [-0.70|0.08

2.25|0.890{0.50910.020|-0.02| 0 |0.07|-0.81(-0.82|0.05

2.50|1.016{0.510|0.009|-0.02| 0 |0.04|-1.04|-0.94/0.03

2.75]11.143(0.510(0.003 {-0.02| 0 [0.02|-1.29]-1.07[0.02

3.0011.271(0.511{0.001{-0.02| 0 |[0.01(-1.57]-1.19(0.01

3.25(11.399(0.511( 0 |-0.02} 0 |0.01(-1.88{-1.32] O

3.50(1.5260.511| 0 |-0.02] O 0 }-2.23{-1.45| 0

MATCHING PROCEDURE OF THE INNER
AND OUTER REGIONS

In this section, the inner temperature region and
outer momentum regions are matched asymptotically,
see Nayfeh [11], in order to get the velocity profile.
Following Van Dyke [12], the inner flow is written in
terms of the outer variable and is equated to the outer
flow written in terms of the inner variable. The first
part is called the inner limit of outer flow and the
second part is called the outer limit of inner flow. The
inner limit of the outer flow Equation 26 is:

UOBF_
= 31 Uy I—B—In(1+XY)]
= Uy 1—%{+O(X2)

when the outer solution is expressed in terms of X,Y.
Now the outer limit of the inner flow is:

U:Uo.

It follows that a correction term of order X/3* must
be added to Equation 27, i.e.:

2 )+

fX,Y) = L

So(Y)+ X fr(Y) +

B(X,Y) =0(Y) + X6,(Y) + %ezm +
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Substituting these expansions into Equations 9 and 10
gives the following equations for f>(Y") and 6>(Y):

{%%,%+02:0

5* i}
S-S+ Beh - 305 4305 =0

where, for Y = oo:

%Zbl —-111Y, 92%0,
dy
and for Y = 0:
d
f2=d—f;=92:0~

Solution to these equations are given in Table 2. From
this integration it is found that:

b = 0.34.

It should be noted that the term in b; is unmatched
in the outer flow. This defect may be corrected by
amending the value of Uy(z) to:

Un(e) = 22 (5) 2 [ + 252, (30)

BOUNDARY LAYER PROPERTIES

In this section, some of the overall properties of the
flow are brought together.

Maximum velocity = Uyp(z)

1/2
_21/@ /
Tz \Pr

Rate at which mass is the entrained/unit length of the
cylinder:

hX
IB*

a1+ +0(X?)

m” = 2rprzF(o0)

[ 1 1
[ 1
= 2mpvz [3.078 + 95?—% . (31)

Heat transfer, in this case expressed in terms of the
Nusselt number, Nu, defined by:

Nu = —2wa<%) i ,
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is most conveniently expressed in terms of the dimen-
sionless number, Nu, defined by:

N = x Nu
" 2na(Gr.Pr)l/4
1 d90 d91 X d02
— - |%0 x® 202 2
vl Tty trar O]
or:
— X
Nu = 0.503 +0.181X ~ 0123 .. (32)

Note that X,3* are defined by Equations 7 and 25
respectively.

DISCUSSION

The most important of the above properties is Equa-
tion 32, for which it should be noted that the term in
X/B8* is negligible for Pr > 10* and X < 1. It follows
that Equation 32 is now sensibly:

Nu = 0.503 + 0.186X + O(X?). (33)

It is interesting to compare Equation 33 with the
numerical calculations of Fujii and Uehara [3], for Pr =
100, whose results, when expressed in the notation of
this paper, give:

Nu = 0.489 + 0.051X — 0.003X 2. (34)

While the agreement between Equations 33 and 34
cannot be expected to be good, Equation 34 indicates
that the error in Equation 33 should be less than one
percent even when X = 1.

The experiments of Libby [1] were performed on
a cylinder of radius 1.85 cm at a vertical height of 7 cm
in the ranges of 10* < Pr < 108, 10* < Pr.Gr < 108.

This gives a range of values of X from 0.1 to 1
and of 3 from 4 to about 12, in which Equation 33 is
valid. Libby’s results show a linear dependence of Nu
on (Gr.Pr)!/4 giving a value of Nu = 0.47.

It is surprising that no curvature effects were
observed in view of the range of values of X. However,
the experimental values for wall temperature gradient
were obtained from the temperature profile. Now,
consideration of Table 1 shows that the average value
of #, in the range 0 < Y < 0.75, which corresponds
roughly to the linear part of the temperature profile, is
about 0.2. It follows that the average effect of curvature
on the temperature profile in this range is, at most,
about 2% (when X = 1). Thus, curvature will have no
sensible effect on values of wall temperature gradient
derived from points on the experimental temperature.

For completeness, the values of f and 6 are shown
in Figures 4 and 5 for X = 0.1 and X = 0.5. These
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Figure 4. Two-term approximation of f.
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Figure 5. Two-term approximation of 6.

are the corrected values of these quantities. Using this
corrected value of f, the composite value of velocity
component, u, is calculated and shown in Figure 6 for
X =01 and X = 0.5. As expected, the maximum
velocity is increased as Pr — oo.

NOMENCLATURE

a radius of cylinder
a1, b constants
A,B,C,D constants

f function

F function

g gravity

Gr Grashof number

A B. Rahimi

0.16

0.12
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Figure 6. Velocity component for Pr = 10*.

Nu Nusselt number

Pr Prandtl number

T temperature

u,v velocity components
Uy outer layer velocity
x,r cylindrical coord

X, Y inner layer variables
z outer layer variable
Greek

o volumetric expansion
I5] outer layer variable
y function

n similarity variable

0 dimensionless temp
v kinematic viscosity
P stream function
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