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A New Method for Predicting the
Amplitude and Frequency of a Highly
Swept Wing Undergoing Rocking Motion

M.R. Soltani*, A. Ebrahimi'! and A.R. Davari!

Wing rock motion can be described as an oscillatory bank angle buildup to a constant amplitude
rocking motion. This phenomenon is realized for delta wings with more than 74 degrees leading
edge sweep angles, where asymmetric vortex shedding occurs before vortex breakdown. For
wings with sweep angles less than 74 degrees, rocking motion occurs if the wing is in a yawed
situation. In this paper, a new and simple method has been presented to predict the amplitude
and frequency of oscillation of delta wings undergoing rocking motion at high angles of attack.
The predicted data are in excellent agreement with those obtained by experimental studies for

wings with sweep angles of 76 and 80 degrees.

INTRODUCTION

The steadily increasing demands on performance ex-
pose present day aerospace vehicles to unsteady flow
fields that generate highly nonlinear aerodynamics.
This phenomenon exhibits significant coupling between
longitudinal and lateral degrees of freedom.

To maintain air superiority, present and future
aircraft will be expected to perform complex controlled
maneuvers at high angles of attack, exceeding their
maximum static lift (post-stall condition). The need to
achieve an advantageous first firing opportunity and,
perhaps, to transit rapidly to a second target, adds
another element of dynamic maneuvering to future
combat aircraft. Post-stall maneuvering is performed
at relatively low forward speed, i.e. subsonic, where
the vehicle trades kinetic energy for potential en-
ergy.

The transition between targets requires high-
speed maneuverability. Therefore, the design of ad-
vanced fighters for both air-to-surface and air-to-air
tactical roles presents a challenge, due to the wide
spectrum of operational requirements. Since differ-
ent configurations have advantages and disadvantages
with respect to different problem areas, future fighter
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aircraft should possess the following performance at-
tributes [1]:

o Efficient cruise capability at subsonic and supersonic
flight;

e Rapid acceleration and deceleration;
o Post-stall pitch pointing capability;

¢ Supermaneuverability, i.e. low speed, high turn rate
and low turning radius;

e Lateral agility.

It is desirable, not only to incorporate the above
qualities in future aircraft design but, also, to find a
low-cost way of improving the maneuvering effective-
ness of current fighters, while retaining the existing
engines. The aerodynamic requirements for each
condition often present conflicting demands. For ex-
ample, the need to rapidly accelerate from subsonic to
supersonic cruise conditions requires highly swept, low
aspect ratio thin wings. However, low level high-speed
penetration missions require high wing loading with
moderate sweep, i.e. conventional trapezoidal wings.
These conflicts in the design of tactical fighters pose
significant engineering and technological challenges;
thus, a compromise should be made between optimum
supersonic cruise and low speed maneuvering.

For supermaneuverable aircraft, flight at a high
angle of attack is an inherent part of both offensive
and defensive maneuvering. Typical modern fighter
aircraft achieve maximum lift at an angle of attack in
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the range of 25-35 degrees. Since conventional wings
achieve their maximum lift at incidence well below
the desired value, advanced delta wing configurations
lend themselves particularly well to the application
of post stall maneuverability without deterioration in
their required supersonic performance. In fact, many
of the present day advanced tactical fighters utilize
highly swept wings with relatively sharp leading edges.
Others use low sweep trapezoidal wing platforms but
combine these with highly swept strakes for advanced
maneuverability at high angles of attack (i.e. F-16
and F-18). However, the most typical wing, repre-
senting the type of flow common to all, is the delta
wing.

The flow structure over a delta wing at moderate
to high angles of attack is different than that of
conventional low sweep wings. For sharp leading edge
delta wings at a zero angle of attack, the flow remains
attached over both surfaces and no lift is generated.
As soon as the angle of attack departs from zero, their
sharp leading edge prevents the approaching flow from
remaining attached to the surface. The separated shear
layer rolls up into two primary vortices, which start at
the apex of the wing and proceed downstream in the
direction of the flow (see Figures 1 and 2).

The onset of the leading edge vortices is dis-
tinguished by the character of the aerodynamic co-
efficients, namely, by the pronounced nonlinearity of
the forces and moments with respect to the angle
of attack. The size and strength of these vortices
increase with an increasing angle of attack and become
a dominant feature of the flow at moderate to high
angles of attack. Depending on the wing sweep angle,
these vortices remain stable through a wide range of
angles of attack (up to an angle of 40 degrees for an
85 degree sweep angle with an aspect ratio of 0.35)
and the flow is characteristically steady. Hence, they
have an important effect on the aerodynamic forces and
moments of delta wings.
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Delta wing vortices contain a great deal of energy
which increases rapidly with the angle of attack. This
energy induces additional velocity on the upper surface
of the wing, reducing the pressure considerably. In
consequence, an additional lift force, known as vortex
lift, is generated, which increases non-linearly with
increasing angle of attack. This lift, which accounts
for about 50 percent of the total lift, can be used to
improve landing capability [1].

Vortex lift is also a leading contributor in gaining
the tactical advantage desired in a combat environ-
ment. The generation of vortex-induced lift results
in an extension of the maneuvering capability of the
fighter aircraft, which, in turn, requires that both lon-
gitudinal and lateral directional stability and control
be maintained in this extended angle of attack range.
The highly swept leading edge of the delta wing also
provides favorable drag characteristics at high speed,
making supersonic flight practical.

However, a limit to the favorable effect induced by
leading edge vortices is reached once the angle of attack
attains values where a sudden and dramatic structural
change in the vortices, known as vortex breakdown,
occurs {Figure 3). Vortex bursting is associated with an
abrupt axial flow deceleration, expansion of the vortex
about a stagnant core and turbulent flow thereafter.
Vortex bursting causes a significant degradation in
aerodynamic performance and is a limiting factor on
aircraft maneuverability.

In symmetrical flow, the position of the break-
down depends on the angle of attack. At high inci-
dence, both vortices burst symmetrically at about the
same chord-wise station above the wing (Figure 3a).
However, aircraft flying in their critical flight phases,
i.e., takeoff, landing and, above all, maneuvering, often
encounter asymmetrical vortex bursting even when
their yaw angle is zero.

Asymmetrical vortex bursting is defined as the
difference in burst location over the wing surface
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Figure 1. Top view of the vortices over a delta wing [1].



Predicting Amplitude and Frequency of Wing Rocking Motion 177

a) Flow visualization results
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Figure 2. End view of the vortices over a delta wing [1].

between leeward and windward sides (Figure 4). This
phenomenon appears to be a strong contributor to the
highly nonlinear lateral-directional stability character-
istics. These phenomena are observed at high angle of
attack and limit the maneuvering performance of the
aircraft, due to the loss of lateral stability. Control of
asymmetrical bursting is, therefore, crucial when flying
at very high angles of attack.

In a yawed situation, the effective sweep of the
windward wing decreases while that of the leeward
wing increases. As a result, the windward vortex
core moves inboard and down close to the surface,
with breakdown occurring much further forward than
for the zero yaw case (Figure 4). In contrast, the
leeward vortex core moves outboard and away from the
surface, with the core breaking down far aft of the zero
yaw case. The strength of the windward and leeward
vortices increases and decreases, respectively, with an
increasing yaw angle.

An unsteady nonlinear aerodynamic phenomenon
experienced by highly swept delta wings at high angles
of attack is known as wing rock. This motion is of
particular interest to fighter aircraft equipped with

highly swept wings useful for maneuvering, as well as
supersonic transport that must operate at high angles
of attack during the takeoff and landing phases [1].

The phenomenon is similar in many aspects to
the limit cycle oscillation in pitch observed on blunt
cylinder-flare bodies at high angles of attack, which is
caused by asymmetric vortex shedding. Thus, the roll
oscillation of a delta wing is self-excited and builds up
to a limit cycle amplitude.

Wing rock creates a time-averaged loss in lift,
which, in addition to the coupling of the longitudinal
and lateral degrees of freedom, is another unwanted
effect. Although there has been considerable research
into the actual breakdown process, not much inves-
tigation appears to have been carried out to prevent
this phenomenon and control the rocking that follows.
Several theoretical models have been proposed to de-
scribe the motion and predict some of the aerodynamic
derivatives [2].

The present investigation offers a new and simple
analytical method for prediction of the amplitude and
frequency of a slender wing undergoing rocking motion
at high angles of attack, using the idea of an oscillating
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which, in addition to the coupling of the longitudinal
and lateral degrees of freedom, is another unwanted
effect. Although there has been considerable research
into the actual breakdown process, not much inves-
tigation appears to have been carried out to prevent
this phenomenon and control the rocking that follows.
Several theoretical models have been proposed to de-
scribe the motion and predict some of the aerodynamic
derivatives [2].

The present investigation offers a new and simple
analytical method for prediction of the amplitude and
frequency of a slender wing undergoing rocking motion
at high angles of attack, using the idea of an oscillating
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Figure 3. Illustration of the vortex bursting [1].

mass and spring. The method uses experimental data
to calculate the aforementioned variables.

THEORETICAL DEVELOPMENTS

Several researchers [2-11] proposed different analytical
methods for predicting the amplitude and frequency of
delta wings undergoing rocking motion at nonzero side
slip angles. These methods will not be reviewed in this
paper. Interested readers are referred to [12] for details.
The remainder of this paper focuses on the idea of an
oscillating mass and spring to develop a method for
predicting these variables for delta wings undergoing
this motion at high angles of attack, when the side slip
angle is zero. The idea is shown in Figure 5, where
the vortices are simulated with two springs. As the
angle of attack increases, the vortices become stronger.
To simulate their strength, the springs are compressed,
such that the compression force is equal to the change
of lift produced by the vortices.

The potential lift that exists at small angles of

attack could be simulated by locating springs at the
center of the wing (not shown in Figure 5). However,
as seen from Figure 3a, at high angles of attack, the
entire flow over the wing is of a vortical type. When
the wing rocks to one side, it causes the corresponding
spring to compress until the resulting compression
force overcomes the rocking force phenomenon, thus,
changing the direction of the rocking motion.

With this idea, one can simulate the rocking
motion with a free oscillation and calculate the cor-
responding natural frequency. The only question is
that how much should the spring constants be to
represent the corresponding potential and vortical lift?
Also, the best place to locate the vortices must be
known.

It has been shown that delta wing vortices are
of a conical shape [13-15]. Using this result, looking
from the top of the delta wing, the vortices look
like a triangle, as shown in Figure 5. The flow
visualization results of Figure 3a verify the validity
of this hypothesis. Therefore, if C} is the breakdown
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to calculate the aforementioned variables.

THEORETICAL DEVELOPMENTS

Several researchers [2-11] proposed different analytical
methods for predicting the amplitude and frequency of
delta wings undergoing rocking motion at nonzero side
slip angles. These methods will not be reviewed in this
paper. Interested readers are referred to [12] for details.
The remainder of this paper focuses on the idea of an
oscillating mass and spring to develop a method for
predicting these variables for delta wings undergoing
this motion at high angles of attack, when the side slip
angle is zero. The idea is shown in Figure 5, where
the vortices are simulated with two springs. As the
angle of attack increases, the vortices become stronger.
To simulate their strength, the springs are compressed,
such that the compression force is equal to the change
of lift produced by the vortices.

The potential lift that exists at small angles of

attack could be simulated by locating springs at the
center of the wing (not shown in Figure 5). However,
as seen from Figure 3a, at high angles of attack, the
entire flow over the wing is of a vortical type. When
the wing rocks to one side, it causes the corresponding
spring to compress until the resulting compression
force overcomes the rocking force phenomenon, thus,
changing the direction of the rocking motion.

With this idea, one can simulate the rocking
motion with a free oscillation and calculate the cor-
responding natural frequency. The only question is
that how much should the spring constants be to
represent the corresponding potential and vortical lift?
Also, the best place to locate the vortices must be
known.

It has been shown that delta wing vortices are
of a conical shape [13-15]. Using this result, looking
from the top of the delta wing, the vortices look
like a triangle, as shown in Figure 5. The flow
visualization results of Figure 3a verify the validity
of this hypothesis. Therefore, if C} is the breakdown
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Figure 4. Asymmetrical vortex bursting [1].

distance and C, the location of the corresponding force
(equivalent spring force), then, one can write:

2

C.‘v: é??.lcg-,, (l)

where n, is a constant that represents the amount of
lift produced aft of the breakdown location. This is
because bursting does not mean full flow separation
over the surface (Figure 3a). It could be viewed as a
dramatic structural change in the vortices. The poten-
tial lift comes from the pressure difference between the
upper and lower surfaces. If C, is the location of the
corresponding potential lift over the wing surface then:

K,Cpsina = 2n,K,C, sin e, (2)

where K, and K, are the spring constants for potential
and vortex lifts, respectively, and n, is the percent of

(6- 2

potential lift available in the vortex force. It should be
noted that the vortex force is the sum of the vortex and
potential lift. From Figure 5:

6,1:! = niiﬁve {3]

where n3 is the ratio of two angles and is a constant.
Now, let:

“Pu Ns. {-—1]
LPJ

Hence:
By =iy 4 By =-Egll 305): (5)

Since total lift is sum of the potential and vortex lifts,
it is assumed that the potential lift is located at 2/3
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distance and C,, the location of the corresponding force
(equivalent spring force), then, one can write:

C’U = gnlcbv (1)

where n, is a constant that represents the amount of
lift produced aft of the breakdown location. This is
because bursting does not mean full flow separation
over the surface (Figure 3a). It could be viewed as a
dramatic structural change in the vortices. The poten-
tial lift comes from the pressure difference between the
upper and lower surfaces. If C, is the location of the
corresponding potential lift over the wing surface then:

K,Cpsina = 2n, K,C, sin o, (2)

where K, and K, are the spring constants for potential
and vortex lifts, respectively, and ny is the percent of

potential lift available in the vortex force. It should be
noted that the vortex force is the sum of the vortex and
potential lift. From Figure 5:

8, = n36,, (3)

where ng is the ratio of two angles and is a constant.
Now, let:

Ly
— = ns. (4)
LP:
Hence:
L,=L,, + Ly =L, (1+mns). (5)

Since total lift is sum of the potential and vortex lifts,
it is assumed that the potential lift is located at 2/3
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Cpna, where ny varies between 0.0 and 1.0.
2L 2L
C,===2¢ = =PLCh. 6
P=37, ™73, (6)

After some algebra:
2 n4nsCy + Co
i — (7
3 1+ns
To calculate the spring constant, rotate the wing to a
new angle of attack, &, and relocate the springs to a

new position (see Figure 5). From this figure it can be
seen that:

L =(2K,C, + K,Cp)sina = CgSs.

C, =

Consequently:
_ 3CLgS
v 4(7110(, -+ nlnng) sino’

(8)

CALCULATION OF THE NATURAL
FREQUENCY ABOUT LONGITUDINAL
AXIS (X AXIS)

From Figure 6, if Fy is the vortical force created by the
model at an angle of attack, a. Then:

Now, the distance from the applied vortical lift to the
wing centerline, dj, must be calculated. From Figure 5:

8, =90 — A — 6, =90 — A — ngb,. (10)

Hence:

dy 6,
c. = tan(6, + —2—)

So:

8y
db = -i—nlC’b tan(&,, + -5) (11)

Now, the equation for the natural frequency of the wing
oscillating about X axis becomes:

(Fi+ K, ddy)dy, cos a— (Fy — K, ¢dp cos o) = — ez ®,

(12)
where the dot symbol denotes differentiation, with
. . 2
respect to time, i.e. ¢ = %% and ¢ = %?.

Now, to get the normal force, multiply the spring
forces by cosa. Then:

2K, ¢d2 cosa = —I,.6. (13)



Predicting Amplitude and Frequency of Wing Rocking Motion 181

Substituting for dy from Equation 11, Equation 13
becomes: '

- 8K, 8,
é+ (5}::037{{’ tan? (0,, + —2—-> cos a) é=0.

(14)
Now, define:
2 8 202, 2 1
wy = —K,n{Cy tan’(n3 + =)0, cos a. (15)
9I,, 2
So Equation 14 becomes:
¢+wig=0. (16)

Equation 16 is a simple second order differential equa-
tion. It has a famous analytical solution as follows:

¢ = Cj coswzt + Co sin wyt. (17)

Subjected to the following boundary condition: at t =
0, = 0, hence, C; = 0. Thus:

¢ = Cy sinw,t. (18)

On the other hand, Cas = pnax = ¢m and Equation 17
becomes:

O = dm Sinw,t. (19)

Note that the created rolling moment can only rotate
the wing by an amount equal to ¢,,. From Figure 6,
one can write:

[(F1 + K,dp sin ¢)d, cos @] cos a

— [(F1 = Kydy sin ¢)d, cos ¢} cosa = —C,§Sbh.
(20)

Simplify, to get:

CigSh

n2p = ———m————.
sin 29 K,d2 cosa

(21)
Now, using Equations 8 and 11, the above equation
reduces to:

tan®(n3 + 3)0, _ 3Cb

= — t , 22
1 mCyCrsin2p & (22)

Substitute the above result into Equation 15 to get:

2 _ _20[@51) 1
* I.. sin2¢

(23)

From Figures 7 and 8 taken from [8] and [16], respec-
tively, it is obvious that |Cy__ | occurs at |@mas| thus:

2Cy,..,.aSh 1

W= _ max
T T : "
I Sin 2dmax
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Figure 7 is constructed from the seventeenth cycles
of the roll angle variation of the wing, used in [8].
Experimental variation of the roll angle versus time
for this wing is also shown in Figure 9. The rolling
moment loop shown in Figure 7 is calculated using the
experimental data of Figure 9. Also, from Figures 7
and 8 one can assume that C; varies linearly with
. Hence, the hysteresis loop in C; variation can be
neglected. Therefore, one can write:

Cr=0C,¢, (24)
or:

Cl max — Cl¢ ¢max, (25>
and:

w? = —szC%. (26)
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Applying the above equation to the wing of [16], one
can easily calculate frequency and period of oscillation.
Substituting the constants into Equation 26, one ob-
tains:

wy = 18.5 rad/sec,

f =2946 HZ,
7= —==0.34 sec.
f

Comparing the results of this simple theory with
the experimental data of [10], one obtains AT =
Tiheoretical — Texperimental = 0.01 sec. This difference is
an indication of the error involved in the present simple
theory using the spring and mass concept. From the
former equations, one can calculate C’lp and Cz,p. The
results are:

IIEI x x

O =~ Jazle @ad (27)
gS p
I,. tanw,t

c anw (28)

T &mqSh coswyt’

Figures 10 and 11 show the variations of C;, and Clpp
with time for the wing of [8]. Thus, one can conclude
that the rocking motion of a delta wing along it’s
longitudinal axis can be approximated as a sinusoidal
motion and the corresponding aerodynamic forces can
be simulated by three springs representing the potential
and vortical forces. When the wing falls into the
rocking motion, it will also oscillate about the Z axis.
Using the same procedure, w, can be predicted too.
The following will show the procedure for cal-
culating the natural frequency along the Z axis. If
Equation 12 is multiplied by sin a to get the horizontal
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force, after some algebra, the following equation will be

obtained:

. 8 K, _

¥+ |-~ =niC? tan®*(n3 + l)OU sina| ¥ =0.

91,, 2
(29)
Define:
8 K, 1. .

w?= [ginfq? tan?(nz + 5) sin a] 6., . (30)
Dividing Equation 15 by Equation 30 to get:

w: oI, 1

AP L 31

w? I, tana’ (31)
or:

2C,gSh
w? = ? (32)

=7 T . sin 29’



Predicting Amplitude and Frequency of Wing Rocking Motion

and:

Cl _ sin 2¢ 1

C., sin2¥tana’ (33)
For small angles, Equation 33 reduces to:

C ¢ 1

C. VUtana’ (34)
or:

Clmax _ ¢max 1

Cnmax B \I/max ta‘n « . (35)

However, it should be noted that as the ratio of %ﬁ
becomes smaller, the accuracy of the presented single
degree of freedom dynamic model increases and vice-
versa. If this ratio for a body is a large number, one
must use three degrees of freedom models.

CALCULATION OF THE OSCILLATION
AMPLITUDE

As mentioned before, at high angles of attack, vortices
over the wing surface burst, degrading the aerodynamic
forces and moments. At the zero angle of roll, i.e.
¢ = 0, the burst position over the left and right sides
of the wing surface is symmetric but when ¢ # 0,
asymmetrical bursting occurs, a phenomenon that
causes roll oscillation shown in Figure 12. From this
figure, using the idea of spring and mass constants and
relating the lift of the wing at various angles of attack
to the area covered by the springs as previously shown,
one can write:

Ly = 5CNTCE, [tan(6y +6,) —tan6,],  (36)
Ly, = %CNquL [tan(8, + 8,) — tané,]. (37)
The distances from the point of application of these

forces to the wing center line are I, and [g respectively,
then, from Figure 9.

C3
I, —lgp= (C_gL_
br

But:

1) Ilr = CigSh. (38)

1gr =%C’N§CER[tan(0p +6,) — tan Hp]

2 9,
SCn tan(8y + =), (39)

substitute for [p into Equation 38 to get:

Cn 6.
C,= 358 [tan(8, + 7)(tan(0,, +8,) -

tan8,)](CE, - C3.), (40)
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Figure 12. Asymmetrical vortex burst simulation.
or:

_ CnCE
€1 =35

[tan(8, + %i)(tan(op +6,) -

tan8,)] (X3 — X3). (41)

Assuming Xr, = — X, then:

Ci, = C;chg [tan(8, + %’)(tan(Bp +6,) -
tan 6,)] (X7 + X3) X, (42)
where:
Xy = %, (43)
and:

Xp=z0+X, Xp=2x0-X.
Then:

¢ 1X}- X} )
Ci, 3X:+X3 ¥

Zo is the initial location of the symmetric burst point
over the wing and is independent of time. X is the
percent of the wing covered by the burst vortices and,
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-of course, is time dependent. Now, since C; = Cy,¢,
then:

_1XE - XG

- . 45
3X2 +x27° (45)

¢

Substitute for X,,, X; and Xr into Equation 45 to get:

3zoX + X3

= , 46
3o =~ dX (46)

Integrate the above equation from ¢ = 0 to ¢ = ¢
for X =0 to X = X,,, the following is obtained:

1 2 z% + X2
¢ ==X + Zz3ln [—0———’"} . (47)
3 370 z3

Note that X is a function of time and could be written
as X = X, sin{wt). Then:

¢ = (¢m sin(wst))’

= [% (e—?zme sin(c;.;;,t))2

2 )

o

z 2 1
9 z3 + (e_?me sin(wbt)) z
+ 3‘]3(2) In

(48)

where z depends on several parameters such as
a, A, Re,ie. z= f(a,A, Re) = const.

Equation 47 is the main result of the present
investigation. However, various parameters are still
needed that must be obtained experimentally or theo-
retically before solving ¢ from Equations 47 or 48.

Table 1 compares the predicted values of ¢ from
Equation 47 with those obtained from experimental
results of [8,16] at various angles of attack. For
all angles of attack tested, the results are in good
agreement, which indicates the accuracy of this simple
method. Equation 47 is the first equation that relates
the oscillation amplitude to the breakdown location
over the wing surface, a phenomenon that occurs at

Table 1. Comparison between present method and
experiments.

o [ %o [Xm | 9o o
(Experiment) | (Present Method)
22* | 1.0 | 0.5 27.2 27.6
25* | 1.0 | 0.33 29.3 29.2
32* | 1.0 | 0.32 22.0 21.3
40** | 0.75 | 0.43 24 23.5
45** | 0.45 | 0.24 12.8 13.2
50** | 0.34 | 0.16 8.5 8.9

*. Experimental data from [8]

**. Experimental data from {11}

M.R. Soltani, A. Ebrahimi and A.R. Davari

high angles of attack. From the above comparison,
it could be concluded that the aerodynamic force of
the vortices over the wing surface (lift force) is directly
related to the wing area covered by these vortices. It
should be noted that the present paper calculates only

Pmax, NOt ©.

CONCLUSION

A simple method has been developed that is capable of
predicting the amplitude and frequency of oscillation
of highly swept delta wings undergoing rocking motion
at high angles of attack. The results are in excellent
agreement with those obtained by experimental studies
for wings with sweep angles of 76 and 80 degrees.
However the methodology needs a few variables that
should be obtained experimentally or theoretically.
Presently these variables are obtained experimentally.
Both amplitude and oscillation frequency depend
on the wing sweep angle, wing angle of attack and
Reynolds number. Wing thickness does not seem to
have a significant effect on the rocking motion. Further
studies into the wing rocking motion are needed to
relate the flow field properties, such as vortex break-
down, vortex position and some other parameters, to
the dynamic rolling moments. In the meantime, the
described simple model, along with some experimental
data, presents a rapid tool for prediction of the maxi-
mum possible wing rock amplitude and frequency.

NOMENCLATURE

K, spring constant for potential lift
K, constant for vortex lift

o angle of attack

Y heading angle

A wing sweep angle

) roll angle

C rolling moment coefficient

C, yawing moment coefficient

o lift coefficient

Cn normal force coefficient

q dynamic pressure

S wing area

b wing span

lp rolling moment

Ly, potential lift for the upper surface
Ly, potential lift for the lower surface
I moment of inertia about X axis
I,, moment of inertia about Z axis

Co wing chord
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Cy breakdown distance from the wing
apex
C, location of the vortical lift force over
the wing
¢y location of the potential lift
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