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Modeling Spatial Variability of
Daily Rainfall in Southwest Iran

B. Saghafian!, M. Tajrishy*, H. Taheri Shahraini’> and N. Jalali'

Rainfall characteristics, which include spatial variability, exert a major influence on runoff
properties. Many techniques have been proposed for determining the spatial distribution of
daily rainfall. One of these techniques is spatial modeling, based on rainfall data measured by
rain-gauge networks. In this study, application of different interpolation methods in the GIS
environment, for estimating the spatial distribution of daily rainfall in the southwest of Iran with
low rain-gauge density, have been compared on a regional scale. The cross validation technigue
was selected as an accuracy index and statistical parameters, such as MAE (Mean Absolute
Error) and MBE (Mean Bias Error), were used for comparing the results of cross validation.
The ranking of MAE and MBE values was used for determining the best interpolation method.
The interpolation methods that were studied for mapping the spatial distribution of daily rainfall
include nearest point, moving average, moving surface, trend surface and kriging. Since the
spatial pattern of daily rainfall is random, the moving average method, with inverse distance
weight function, was determined as the best method for interpolating daily rainfall data in the

region of study.

INTRODUCTION

Meteorological and hydrological studies must be con-
ducted as part of any water resources planning projects.
Determining the runoff quantity from catchments is a
rather complex task, which has become increasingly
important for hydrologists over the last decades. Rain-
fall characteristics, including its spatial distribution,
exert a major influence on runoff properties. The
shape, timing and peak of a stream flow hydrograph
are affected by spatial and temporal variability in
rainfall [1]. The spatial distribution of rainfall is also
important for the design of modern data acquisition
systems and the modeling of rainfall [2].

Many techniques have been proposed for deter-
mining the spatial distribution of rainfall. One of
these techniques is rainfall mapping by satellite-based
data {2]. Rainfall estimates from satellite-based data
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are widely used in global climatological studies because
they cover large areas, specially in regions with no
traditional rainfall observation systems such as ground-
based radar or rain-gauges [3].

Traditional techniques of modeling rainfall spatial
distribution relies on rainfall data measured by rain-
gauges. The importance of the rainfall spatial model
has been acknowledged by Bevan and Hornberger [4],
who stated that accurate portrayal of spatial variation
in rainfall is a prerequisite for accurate simulation of
stream flows. Similar conclusions were drawn earlier
by Dawdy and Bergmann [5] and Wilson et al. [6].
Despite the recognized importance of the model for
describing the spatial distribution of rainfall, little work
has been undertaken on the use of new techniques [7].
Most of the models commonly used for estimation of
spatial distribution of rainfall were developed prior to
the advent of digital computers and the subsequent de-
velopment of hydroinformatic tools, such as Geographic
Information Systems (GIS). Recent developments in
information sources have also enabled assessment of
errors introduced through the use of alternative models
for estimating the spatial variability of rainfall [7].

Several interpolation methods were applied by
Dirks et al. [8] on hourly, daily, monthly and annual
rainfall data from a dense network of 13 rain-gauges
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on Norfolk Island in the South Pacific (area 35 km?).
The results showed that the most computational de-
manding method, i.e. kriging, provided no significant
improvement over much simpler inverse-distance or
Thiessen methods, while the inverse-distance method
was identified as the best method for interpolation
of spatially dense rain-gauge networks for hourly or
greater-times rainfall [8]. Seo [9] compared two pro-
cedures involving two different states of kriging for
estimation of an hourly rainfall amount using hourly
rain-gauge data from the operational network in Tulsa,
Oklahoma. Sen [10] suggested that a Percentage
Weighting (PW) method is more reliable and flexible
than Thiessen polygon procedure for modeling the
spatial distribution of rainfall. Borga and Vizzac-
caro [11] compared kriging and multiquadratic surface
fitting methods for estimating the hourly rainfall of
real storm events. The results showed that kriging
performed better at lower gauge density while, at
higher gauge density, the accuracy of both estima-
tors were similar [11]. Amani and Lebel [12] de-
termined rainfields by interpolation with classic two-
dimensional algorithms such as kriging and moving
average.

Ball et al. [7] estimated the rainfall intensity in
real and artificial storms by Thiessen polygons, inverse-
distance, kriging, polynomial surfaces and spline sur-
face methods in a 112 km? catchment in Australia.
They concluded that spline surface was the most
accurate estimator and Thiessen polygons provided
the worst prediction [7]. Abtew et al. [13] showed
that the kriging method was the appropriate method
for determining the spatial distribution of monthly
rainfall in South Florida, U.S.A. [13]. Kriging, moving
average and spline surface methods were compared
for annual rainfall mapping in the central basin of
Iran. The results of cross validation showed that the
spline surface, followed by the kriging method, was
the most accurate method, while the moving average
method was not appropriate for estimating annual
rainfall [14].

According to the literature, interpolation meth-
ods are widely used for estimating the spatial distri-
bution of annual and monthly rainfall. Yet, there
are a few studies reported on modeling the spatial
distribution of daily rainfall. In this study, application
of different interpolation methods for estimating the
spatial distribution of daily rainfall in the southwest
region of Iran are compared in the GIS environment.
Cross validation technique has been selected as the
accuracy index. The motivation behind this work
has been the need to estimate the spatial distribution
of black rain which occured in the region due to
the burning of Kuwaiti oil wells in 1991. Thus,
the study is conducted on a regional basis covering
several river basins. In the next section, interpolation
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methods implemented within the ILWIS GIS [15] are
described.

ALTERNATIVE INTERPOLATION
METHODS

Several land management activities require the spa-
tially continuous estimation of environmental param-
eters, such as temperature, rainfall and radiation,
etc. which are usually measured locally. Various
interpolation methods have been applied for this pur-
pose [16]. The most common interpolation methods
used for mapping spatial distribution of point rainfall
are nearest point, moving average, moving surface,
trend surface and kriging. These methods are provided
by a large number of GIS software, such as that used
in this study: ILWIS [15]. A brief description of each
of these methods is outlined as follows.

Nearest Point

The nearest point operation is also known as the near-
est neighbor or Thiessen polygon [15]. The Thiessen
method is probably the most common approach in
modeling the spatial distribution of rainfall. This
method was first proposed by Thiessen [17]. The
approach is based on defining the area closer to a given
gauge than any alternate gauge and the assumption
that the best estimate of rainfall on that area is
represented by the point measurement at the closest
gauge. Since the basis of this model is the geometry
of the region and gauge locations, implementation of
Thiessen polygon in a GIS is straightforward [7]. In
context of a raster GIS, the nearest point operation
requires the point map of rain-gauges as input and
the raster map of rainfall distribution is returned as
output [15]. Each pixel in the output map is assigned
the class, name, identifier or value of the nearest
point [15].

Moving Average

The main disadvantage of the Thiessen interpolation
method is the loss of rainfall spatial gradient. To
overcome this problem, other methods have been
developed that incorporate the spatial gradient of
rainfall [8]. The moving average method accounts
for the spatial gradient of rainfall by performing a
weighted averaging on point values based on a weight
function, an exponent and a limiting distance [18]. Two
weight functions expressed by the following relations
are available; inverse distance (w;) and linear decrease
(w2) [15]:

wy = (1/d™) -1, (1)

w2=1—dn,» (2)
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where n' is the weight exponent and d is the relative
distance of a point to output pixel (D/Dy), in which
D is the euclidean distance of the point to output pixel
and Dy is the limiting distance.

Note that the weight values decrease with increas-
ing distance. The inverse distance weighted method, as
presented by Watson and Philip (1985), estimates the
rainfall at a point by a weighted interpolation, based on
the distance of each rainfall gauge from the point where
the rainfall estimate is required [18]. The typical values
for the exponent in an inverse distance method are in
the range of 0.5 to 3 [7]. The inverse distance function
may be selected when accurately measured point data
are available. On the other hand, the linear decrease
function is suitable for point maps where measurement
errors exist and points lying close to each other hold
different values [15]. Similar to the Thiessen method,
the inverse-distance weights are based on the region
geometry and, hence, can be implemented easily in any
raster GIS.

For each output pixel, the rainfall value is cal-
culated as the sum of the products of the calculated
weights and point rainfall values, divided by the sum
of weights.

Z = " (wi x Zi)/zn:wi» (3)
i= =1

1

where w; is the weight value for gauge i,Z; is the
rainfall value at gauge 4, Z is the rainfall value for any
output pixel and n is the total number of point rain-
gauges.

Moving Surface

In this method, weight factors should be calculated by
the method described in the previous section. Then,
weight factors and rainfall values are multiplied, where
the results of multiplication are known as weighted
rainfall values. The rainfall value at any point may be
calculated by fitting a polynomial surface through all
of the weighted rainfall values of rainfall measurements
which fall within the limiting distance [15]. The best
polynomial surface should have the minimum square
error. The polynomial surface may be expressed by:

f(x,y) = Z btuztyuv (4)

where b;, is a coefficient, z and y are coordinates,
t and u are exponents, and f(x,y) is the estimated
rainfall value at (z,y) location. The summation of ¢
and u determines the degree of polynomial surface. For
example, the 2nd-degree linear surface formula can be
written as:

f(z,y) = box + biizy + bory + boo. (5)

The moving surface operation in a raster GIS requires
a point map as the input map and returns a raster map
as the output.

Polynomial (Trend) Surface

Polynomial surfaces are based on constructing a surface
to fit the input point data with least-square minimiza-
tion of the errors [7]. The form of polynomial function
follows Equation 4, where the coefficients (b:,) are
chosen to minimize the following function:

n

E= Z[P(xnyi) — fzi, 3% (6)

i=1

where n is the number of rain-gauges, p(z:,v.) is the
observed value of rainfall at gauge i, f(zi,¥:) is the
estimated rainfall at gauge 7 and E is the error function
to be minimized.

Kriging

Although the inverse-distance method shows the spa-
tial trends in rainfall, it is limited in that the exponent
of weighting functions needs to be preselected. The
choice of exponent may significantly affect the resulting
interpolated field [8]. The method of kriging avoids the
need to preselect the parameters [8]. Kriging is based
on extracting semivariogram from the input point map.
The semivariogram formula can be written as:

; ;wij(zi - Z;)
v= — n n ! (7)
22 2wy
1=13=1

where w;; is the weight of a pair of points < and 7, Z; and
Z; are input values at ¢ and j, respectively and 7 is the
semivariogram. When a pair of points (7,j) belongs
to a certain distance class, then w;; = 1, otherwise
wi; = 0. If the semivariogram formula is calculated
for several points of an input point map, the following
matrix can be constructed:

0 v(h12) y(hin) 1
Y(h21) O Y(han) 1
[r] = e , (8)
Y(hn1) Y(hn2) - 0 1
1 1 e 1 0

where h;; is the distance between the input points 7
and j and «y is the value of the semivariogram model
corresponding to the distance h;;.

The semivariogram model must be known from
the semivariogram values and several models have been
proposed to fit them. Two major groups of semi-
variogram models are stationary and non-stationary.
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The stationary models (such as spherical, gaussian,
circular and exponential) have a sill value. Sill is the
semivariogram model value when the semivariogram
model is equal to the variance of the measured point
values [18]. For example, a spherical model may be
expressed by:

3h R

v(h)=Co+C, for h>a, (9)

], for 0<h<a,

where a is the range of the semivariogram model, & is
the distance, Cy is the nugget effect, C is the difference
between the sill and nugget effect and (k) is the value
of the semivariogram model for distance h. Figure 1
shows a schematic view of a stationary semivariogram
model.

A semivariogram with a nugget effect does not
pass the origin. The variables of semivariogram values
are normally erratic over the short distances where
the semivariogram increases from zero to the level of
the nugget effect, in a distance less than the sampling
distance [15]. However, non-stationary models (such as
linear and power models) don’t have any sill value. For
example, the power model may be expressed by:

v(h)=Co+sh?, for 0<p<2, (10)

where p is the exponent value of the model, s is the
slope value of the model, Cj is the nugget effect value
and ~(h) is the value of the semivariogram model for
distance h.

Now, the following matrix may be determined:

'Y(hol)
7(ho2)
o7=1 : |, (11)
V(hon)
1

where h,; is the distance between the output pixel
and input point ¢ and 7(ho;) is the value of the

Semivariance

Sill

C+Co+

Co

Distance h

Figure 1. Schematic view of the stationary
semivariogram model.
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semivariogram model for distance h,;. The kriging
weight factors may be found by solving this matrix
equation:

[r] % [w] = [D']. (12)

The summation of weight factors (w;) in [w] for
different point values matrix should be unity. The
estimated output pixel value can be calculated by:

Z=> (wixZ). (13)
i=1

This algorithm should be performed for all output
pixels [15].

EVALUATION CRITERIA

The cross validation (or fictitious-point method) tech-
nique is used in this study for evaluating different
interpolation methods. This criteria was first proposed
by Seaman [19], where the real value at one point, or
at a number of points, is removed from the data set
and interpolation is performed on the remaining points.
Then the estimated values of the removed points are
compared with the real values using statistical param-
eters. In this study, Mean Absolute Error (MAE) and
Mean Bias Error (MBE) are used for the evaluation of
errors corresponding to different methods. MAE and
MBE are calculated by the following equations:

E |Ze1) - ril

MAE = _Ln____ (14)
Z(Zei Zm')
MBE = iln— (15)

where Z.; and Z,; are the estimated and real values of
rainfall at point i, respectively.

REGION OF STUDY

The study region is located in the southwest of Iran,
north of the Persian Gulf. The region boundaries are
{(46° to 57°, 24'}E and (26° to 33°, 24')N. Figure 2
shows the DEM and location of the study region in
Iran. The area of study region is approximately 590,000
km? with 46 reliable synoptic and climatological gauges
(Figure 3). Two rainfall events of March 7, 1991 and
February 21, 1991, which roughly covered the entire
region, are studied. Figure 3 shows the depth of daily
rainfall in milimeters for March 7, 1991. The positive
signs show the location of gauges. The rainfall data
has been provided by the Meterological Organization
of Iran.

Because of the high spatial changes in the climate
conditions and elevations in the study region, the daily
rainfall shows high spatial variations.
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Table 1. MAE values corresponding to different polynomial (trend) surface methods.

Plane | 2nd Degree Linear | 2nd Degree Parabolic | 2nd Degree | 3rd Degree
5 Points 9.0 7.6 7.8 6.8 7.0
Removed
5 Points 9.9 8.1 9.4 8.3 30.4
Removed
10 Points 8.0 10.2 10.7 11 12.6
Removed
12 Points 6.9 75 7.1 7.9 13.0
Removed
15 Points 8.0 8.0 7.5 8.9 9.4
Removed

-.‘/56

Elevation (m) 52-

Figure 2. DEM and location of the study region in Iran.
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Figure 3. Location of the rain-gauges (positive signs) and
the amount of rainfall (mm) observed on March 7, 1991.

RESULTS

Suitable Option for Each Interpolation
Methods

Due to the variety of options available in each inter-
polation technique, it is first necessary to choose the

0 -2,

most suitable option associated with different methods.
Cross validation was performed by randomly removing
sets of 5, 10, 12 and 15 points from the original rainfall
point map of March 7, 1991. Consequently, several new
point interpolated maps are produced each time.
Different polynomial surface methods, such as
plane, second degree linear, second degree parabolic
(f(z,y) = a + bz + cy + dx? + ey?), second degree
(f(z,y) = a+ bz + cy + dz? + ey® + fxy) and third
degree, were performed to produce interpolated rainfall
maps. Figure 4 shows rainfall distribution in the study
region produced by the second degree linear polynomial
(trend) surface method, where negative values imply
the inability of this method to predict daily rainfall.
The best method was determined by calculating the
corresponding MAE and MBE values. Tables 1 and 2
show the MAE and MBE values in different rain-
gauge removing states. Table 3 summarizes the sum of
accuracy ranks in Tables 1 and 2. The ranking method
assigns rank numbers from 1 to m (m being the number
of compared different methods) to different method on
the basis of the amount of error values. For example,
the ranking values of 1 to 5 are assigned to five MAE
values in each row of Table 1 and then the summation
of ranking values in each column should be computed
for determining the sum of MAE ranks. The ranking

Depth (mm)
42

25

e

Figure 4. Interpolated rainfall map based on the trend
surface (2nd degree linear) method.
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Table 1. MAE values corresponding to different polynomial (trend) surface methods.

Plane | 2nd Degree Linear | 2nd Degree Parabolic | 2nd Degree | 3rd Degree
5 Points 9.0 7.6 7.8 6.8 7.0
Removed
5 Points 9.9 8.1 9.4 8.3 30.4
Removed
10 Points 8.0 10.2 10.7 11 i2.6
Removed
12 Points 6.9 7.5 7.1 7.9 13.0
Removed
15 Points 8.0 8.0 7.5 8.9 9.4
Removed
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Figure 2. DEM and location of the study region in Iran.
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Figure 3. Location of the rain-gauges (positive signs) and
the amount of rainfall (mm) observed on March 7, 1991.

RESULTS

Suitable Option for Each Interpolation
Methods

Due to the variety of options available in each inter-
polation technique, it is first necessary to choose the

most suitable option associated with different methods.
Cross validation was performed by randomly removing
sets of 5, 10, 12 and 15 points from the original rainfall
point map of March 7, 1991. Consequently, several new
point interpolated maps are produced each time.
Different polynomial surface methods, such as
plane, second degree linear, second degree parabolic
(f(z,y) = a + bz + cy + dz? + ey?), second degree
(f(z,y) = a+ bz + cy + dz? + ey® + fzy) and third
degree, were performed to produce interpolated rainfall
maps. Figure 4 shows rainfall distribution in the study
region produced by the second degree linear polynomial
(trend) surface method, where negative values imply
the inability of this method to predict daily rainfall.
The best method was determined by calculating the
corresponding MAE and MBE values. Tables 1 and 2
show the MAE and MBE values in different rain-
gauge removing states. Table 3 summarizes the sum of
accuracy ranks in Tables 1 and 2. The ranking method
assigns rank numbers from 1 to m (m being the number
of compared different methods) to different method on
the basis of the amount of error values. For example,
the ranking values of 1 to 5 are assigned to five MAE
values in each row of Table 1 and then the summation
of ranking values in each column should be computed
for determining the sum of MAE ranks. The ranking

Figure 4. Interpolated rainfall map based on the trend
surface (2nd degree linear) method.
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Table 2. MBE values corresponding to different polynomial (trend) surface methods.

Plane 2nd Degree 2nd Degree 2nd Degree 3rd Degree
Linear Parabolic

5 Points 9.0 7.6 7.8 7.0 -2.0
Removed

5 Points -6.3 -5.4 -7.5 -6.5 -6.7
Removed

10 Points 3.0 3.4 5.7 2.5 2.7
Removed

12 Points 5.8 6.0 74 3.9 11.1
Removed

15 Points 2.5 1.3 1.1 2.9 4.9
Removed v

Table 3. Sum of accuracy ranks of different trend surface methods.
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Plane|2nd Degree |2nd Degree | 2nd Degree [ 3rd Degree
Linear Parabolic

Sum of MAE 13 11 13 15 22
Ranks

Sum of MBE 15 13 19 11 17
Ranks

Sum of MAE and MBE| 28 24 32 26 39
Ranks

values in Table 3 imply that second degree linear is the
best method.

The results of applying a moving average (inverse-
distance) with exponent values of 2 and 3 are compared
after randomly removing 5, 10, 12 and 15 points from
the original rainfall map. Tables 4 and 5 show cross
validation results for different randomly removing point
states. Table 6 shows the sum of accuracy ranks of
the MAE and MBE values. The results show that
the exponent 3 has performed better than that of

Table 4. MAE values corresponding to inverse distance
method with exponent 2 and 3.

n=2 n=3
5 Points Removed 4.2 3.5
10 Points Removed 8.6 8.3
12 Points Removed 6.4 6.5
15 Points Removed 8.7 9.1

Table 5. MBE values corresponding to inverse distance
method with exponent 2 and 3.

n' =2 n' =3
5 Points Removed 4.2 3.5
10 Points Removed 3.9 3.4
12 Points Removed 5.2 5.1
15 Points Removed 4.4 4.9

exponent 2. Figure 5 represents rainfall distribution in
the study region produced by inverse distance method
with exponent 3.

The moving surface method is examined with
exponent 3 of the inverse distance in second degree
linear and third degree surface methods, with removal
of 10 and 15 points. After interpolation and calculation
of MAE and MBE for each method, it is found
that second degree linear performs better than third
degree surface. Values of MAE and MBE for each
method are presented and compared in Tables 7 and 8.
Figure 6 shows rainfall distribution in the study region

produced by a moving surface with exponent 3 with

Table 6. Sum of accuracy ranks for inverse distance
methods.

n' =2 n' =3
Sum of MAE Ranks 6 6
Sum of MBE Ranks 5
Sum of MAE and MBE Ranks 13 11

Table 7. MAE values corresponding to moving surface
method with 2nd-degree linear and 3rd-degree surface.

2nd Degree | 3rd Degree
Linear
10 Points Removed 10.5 11.1
15 Points Removed 8.5 16.1
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Figure 5. Interpolated rainfall map based on the inverse
distance method with exponent 3.

Table 8. MBE values corresponding to moving surface
method with 2nd-degree linear and 3rd-degree surface.

2nd Degree | 3rd Degree
Linear
10 Points Removed 0.0 8.2
15 Points Removed 4.2 11.8

inverse distance and second degree linear surface.
Prior to the application of the kriging method,
the semivariogram model must be determined. The
empirical semivariogram data of the March 7 rainfall
event is similar to the stationary semivariogram pattern
in the initial part of the semivariogram (Figure 7). But
the overall semivariogram resembles a non-stationary
semivariogram pattern (Figure 8). This implies that
daily rainfall has a non-stationary random pattern.
However, the semivariogram showed high variability
and didn’t follow any of the known models. Various
stationary and non-stationary models were fitted to the
data to determine the best model. Spherical, circular,
exponential and gaussian stationary models were ex-

-64 ¥ : : At

Figure 6. Interpolated rainfall map based on the 2nd
degree linear moving surface (inverse distance) method
with exponent 3.
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Figure 7. Empirical semivariogram data and different
stationary semivariogram model.
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Figure 8. Empirical semivariogram data and different
non-stationary semivariogram model.

amined in Figure 7. The semivariogram characteristics
of the models were estimated as: sill = 190, nugget
effect = 30 and range = 3.

The Root Mean Square Error (RMSE) values
of different models are shown in Table 9, where the
spherical model stands as the best stationary model.
Therefore, the kriging method with the spherical model
was chosen for comparison with other interpolation
methods. Figure 9 represents the rainfall distribution
in the study region for March 7, 1991, produced
by the kriging method with an assumed spherical
semivariogram model.

As for the non-stationary model, power models
with different exponent values were fitted to the empiri-
cal semivariogram values (Figure 8). The RMSE values
of different power models are shown in Table 10, where
a power model with an exponent equal to two is the
best non-stationary power model. The kriging method

Table 9. RMSE values for different stationary models.

Spherical | Circular | Gaussian | Exponential
Model Model Model Model
RMSE 48.0 48.1 48.9 49.0
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Figure 5. Interpolated rainfall map based on the inverse
distance method with exponent 3.

Table 8. MBE values corresponding to moving surface
method with 2nd-degree linear and 3rd-degree surface.

2nd Degree | 3rd Degree
Linear
10 Points Removed 0.0 8.2
15 Points Removed 4.2 11.8

inverse distance and second degree linear surface.
Prior to the application of the kriging method,
the semivariogram model must be determined. The
empirical semivariogram data of the March 7 rainfall
event is similar to the stationary semivariogram pattern
in the initial part of the semivariogram (Figure 7). But
the overall semivariogram resembles a non-stationary
semivariogram pattern (Figure 8). This implies that
daily rainfall has a non-stationary random pattern.
However, the semivariogram showed high variability
and didn’t follow any of the known models. Various
stationary and non-stationary models were fitted to the
data to determine the best model. Spherical, circular,
exponential and gaussian stationary models were ex-

Figure 6. Interpolated rainfall map based on the 2nd
degree linear moving surface (inverse distance) method
with exponent 3.
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non-stationary semivariogram model.

amined in Figure 7. The semivariogram characteristics
of the models were estimated as: sill = 190, nugget
effect = 30 and range = 3.

The Root Mean Square Error (RMSE) values
of different models are shown in Table 9, where the
spherical model stands as the best stationary model.
Therefore, the kriging method with the spherical model
was chosen for comparison with other interpolation
methods. Figure 9 represents the rainfall distribution
in the study region for March 7, 1991, produced
by the kriging method with an assumed spherical
semivariogram model.

As for the non-stationary model, power models
with different exponent values were fitted to the empiri-
cal semivariogram values (Figure 8). The RMSE values
of different power models are shown in Table 10, where
a power model with an exponent equal to two is the
best non-stationary power model. The kriging method

Table 9. RMSE values for different stationary models.

Spherical | Circular | Gaussian | Exponential
Model Model Model Model
RMSE 48.0 48.1 48.9 49.0
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Figure 9. Interpolated rainfall map based on the kriging
method with spherical semivariogram model.

Table 10. RMSE values for power model with different

exponent values (p).

p=0.5
32.0

p=1.0
27.1

p=2.0
23.0

p=1.5
24.3

RMSE

with this model was also selected for comparison with
other interpolation methods.

Overall, the selected methods for further analysis
consist of Thiessen (T), inverse distance with expo-
nent 3 (ID3), moving surface (inverse distance) with
second degree linear surface and exponent 3 (MS2),
trend surface with second degree linear surface (TS2),
kriging with spherical semivariogram model (KGsp),
and kriging with power semivariogram model with
exponent 2 (KGp2).

Determination of the Best Interpolation
Method

In this section, the results of the application of all the
selected methods in the previous section are computed.
Random removal of 5 points from the rainfall point map
in six scenarios, 10 points in four scenarios, 15 points in
three scenarios and 20 points in two scenarios produces
15 new point maps. The interpolation operations
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Figure 10. Interpolated rainfall map based on the
Thiessen method.

were performed by Thiessen (Figure 10), i.e inverse-
distance with exponent 3 (ID3), moving surface 2nd-
degree linear with exponent 3 (MS2), MS2 method with
converting the negative values to zero (MS2z), trend
(polynomial) surface with 2nd-degree linear (TS2), TS2
with converting the negative values to zero (TS2z),
kriging with spherical semivariogram model (KGsp)
and power semivariogram model (KGp2) over the 15
new point maps. Due to the nature of mathemati-
cal relations used in the moving surface, polynomial
surface and kriging (with spherical model) methods,
negative values may be generated in the interpolated
maps. Such negative values are converted to zero where
found in the interpolated rainfall maps. The averages
of MAE and MBE values corresponding to various
point removal scenarios are calculated and reported in
Tables 11 and 12.

Table 13 shows the sum of the accuracy ranks for
different interpolation methods. According to Table 13,
the inverse distance with exponent 3, followed by
Thiessen, and MS2z clearly overweigh other methods
for estimating the spatial distributions of daily rainfall.
The results of the empirical semivariogram (Figure 8)
and cross validation (Table 13) demonstrate that daily
rainfall has random non-stationary distribution.

Table 11. Average values of MAE corresponding to different interpolation methods.

T | ID3 | MS2 | TS2 | MS2z | TS2z | KGsp | KGp2
5 Points 8.5 8.1 9.9 9.6 8.4 9.3 9.3 9.6
Removed
10 Points | 7.8 8.0 9.0 9.3 8.2 9.0 9.1 9.3
Removed
15 Points | 8.1 7.9 8.2 8.7 7.9 8.3 8.9 8.9
Removed
20 Points | 7.7 7.6 9.2 9.4 T 9.0 8.6 9.6
Removed
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Figure 9. Interpolated rainfall map based on the kriging
method with spherical semivariogram model.

Table 10. RMSE values for power model with different

exponent values (p).

p=0.5
32.0

p=1.0
27.1

= 1.5
24.3

p=2.0
23.0

RMSE

with this model was also selected for comparison with
other interpolation methods.
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nent 3 (ID3), moving surface (inverse distance) with
second degree linear surface and exponent 3 (MS2),
trend surface with second degree linear surface (TS2),
kriging with spherical semivariogram model (KGsp),
and kriging with power semivariogram model with
exponent 2 (KGp2).

Determination of the Best Interpolation
Method

In this section, the results of the application of all the
selected methods in the previous section are computed.
Random removal of 5 points from the rainfall point map
in six scenarios, 10 points in four scenarios, 15 points in
three scenarios and 20 points in two scenarios produces

15 new point maps.

The interpolation operations
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were performed by Thiessen (Figure 10), i.e inverse-
distance with exponent 3 (ID3), moving surface 2nd-
degree linear with exponent 3 (MS2), MS2 method with
converting the negative values to zero (MS2z), trend
(polynomial) surface with 2nd-degree linear (TS2), TS2
with converting the negative values to zero (TS2z),
kriging with spherical semivariogram model (KGsp)
and power semivariogram model (KGp2) over the 15
new point maps. Due to the nature of mathemati-
cal relations used in the moving surface, polynomial
surface and kriging (with spherical model) methods,
negative values may be generated in the interpolated
maps. Such negative values are converted to zero where
found in the interpolated rainfall maps. The averages
of MAE and MBE values corresponding to various
point removal scenarios are calculated and reported in
Tables 11 and 12.

Table 13 shows the sum of the accuracy ranks for
different interpolation methods. According to Table 13,
the inverse distance with exponent 3, followed by
Thiessen, and MS2z clearly overweigh other methods
for estimating the spatial distributions of daily rainfall.
The results of the empirical semivariogram (Figure 8)
and cross validation (Table 13) demonstrate that daily
rainfall has random non-stationary distribution.

Table 11. Average values of MAE corresponding to different interpolation methods.

T | ID3 | MS2 | TS2 | MS2z | TS2z | KGsp | KGp2
5 Points | 8.5 8.1 9.9 9.6 8.4 9.3 9.3 9.6
Removed
10 Points | 7.8 8.0 9.0 9.3 8.2 9.0 9.1 9.3
Removed
15 Points | 8.1 7.9 8.2 8.7 7.9 8.3 8.9 8.9
Removed
20 Points | 7.7 7.6 9.2 9.4 7.7 9.0 8.6 9.6
Removed
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Table 12. Average values of MBE corresponding to different interpolation methods.

T ID3 MS2 TS2 MS2z TS2z KGsp KGp2
5 Points -2.5 -1.6 -3.0 -0.9 -2.4 4.3 3.1 -1.8
Removed
10 Points -2.3 -1.2 -3.1 -0.8 -2.3 -0.5 -1.7 -0.7
Removed
15 Points 0.4 0.1 2.0 2.3 2.4 -0.2 -0.3
Removed
20 Points -2.3 -1.5 -4.0 -2.5 -0.1 -2.2 -0.7
Removed
Table 18. Sum of accuracy ranks for different interpolation methods.
T ID3 MS2 TS2 MS2z TS2z KGsp KGp2
Sum of MAE 8 5 22 26 8 18 21 28
Ranks
Sum of MBE 21 11 27 12 23 18 19 11
Ranks
Sum of MAE and 29 16 49 38 31 36 40 39
MBE Ranks

Determination of the Best Interpolation
Method in a Smaller Region

To examine the sensitivity of the results obtained for
the entire region, similar interpolation operations were
performed at a river basin scale bounded by (47°, 41 to
51°,18')E and (30°,10' to 32°, 55')N region. The area
of this region is approximately 100,000 km?, where a
total of 12 gauges are located. Due to a limited number
of gauges, a random removal of points was performed
in six scenarios, each scenario involving the removal of
only two gauges.

The interpolation methods were Thiessen, moving
average (inverse-distance) with exponent 3, moving
surface (inverse-distanse) with 2nd-degree linear and
exponent 3 and trend surface with 2nd-degree linear
surface. Negative values were transformed to zero in
the two latter techniques. Kriging was not applied
since none of the models fitted the semivariogram.
This again demonstrates that there is non-stationary
random distribution in daily rainfall values.

The results of ranking based on the accuracy
reflected by average MAE and MBE values in six
scenarios shown in Table 14, confirm the conclusion
drawn for the entire region. Once again, the inverse
distance is found as the most appropriate method for
determining the spatial distribution of daily rainfall in
a smaller region with higher gauge density.

Table 14. Sum of accuracy ranks of different
interpolation methods in the subregion.

T ID3 MS2z TS2z
Sum of MAE 13 12 17 16
Ranks
Sum of MBE 13 13 18 16
Ranks
Sum of MAE 26 25 35 32
and MBE Ranks

Comparison of Kriging and Moving Average
for Another Event

The comparison between kriging and moving average
methods was performed on the study region for the
rainfall event of February 21, 1991. The semivariogram
was not similar to that of the previous rainfall event.
A spherical model was fitted to the semivariogram.
Random removal of points was performed in twenty
five scenarios, where, in each scenario, only one gauge
was removed. The results of cross validation are
summarized in Table 15, where it shows that the
inverse distance method may still be declared as the
most suitable method for modeling the daily rainfall
distribution.

The results of this study are in general agreement
with those of Dirks et al. [8], although the two studies
are quite different in the spatial scale of their region.
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Table 15. Cross validation results for February 21, 1991
rainfall event.

ID3 KGsp
MAE 8.1 7.2
MBE 2.9 3.5

They compared the Thiessen, mean area, inverse dis-
tance and kriging methods and concluded that the
inverse distance method was the most appropriate
choice for operational use over integration times of
hourly or greater rainfall.

CONCLUSIONS

For this particular region under study, with very
low rain-gauge density, the following conclusions were
drawn:

1. Daily rainfall follows non-stationary random spatial
distribution;

2. The inverse distance method with exponent 3 is the
best method for interpolating daily rainfall, since
the spatial pattern is non-stationary random and
the inverse distance assumes no spatial trend;

3. The second best method for daily rainfall interpola-
tion is the Thiessen method;

4. The methods which are based on existence of a
spatial trend among points do not offer a suitable
technique for daily rainfall interpolation;

5. The inverse distance method also outperforms other
methods for a subregion of the study area with
greater gauge density.

In general, the inverse distance method for modeling
the spatial variability of daily rainfall on a regional
scale with a low density rain-gauge produces more re-
alistic rainfall fields and requires minor computational
effort.
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NOMENCLATURE

a range

b coefficient

Co nugget effect

C difference between sill and nugget
effect
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D euclidean distance of point to output
pixel

Dy limiting distance

d relative distance of a point to output
pixel

E square error

f(zi,yi)  estimated rainfall at gauge ¢

h distance

hij distance between the input points ¢
and j

hoi distance between the output pixel and

input point ¢

MAE Mean Absolute Error

MBE Mean Bias Error

n number of points or rainfall gauges or
values

n weight exponent

p exponent value of power model

p(zi,y;)  observed rainfall at gauge 7

RMSE Root Mean Square Error

s slope of power model

t exponent of z in polynomial surface

U exponent of y in polynomial surface

w; weight value for point ¢

Wi weight of a pair point

z longitude coordinate

Y latitude coordinate

Z estimated value for output pixel

Z; value of input point i

Z; value of input point j

[w] matrix of weight factors of points

¥ semivariogram

y(hijz) value of semivariogram model for
distance h;;

¥{(hoi) value of semivariogram model for
distance h,;
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