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Multiple Simultaneous Fault

Diagnosis via Hierarchical and
Single Artificial Neural Networks

R. Eslamloueyan!, M. Shahrokhi* and R. Bozorgmehri'

Process Fault Diagnosis (PFD) involves interpreting the current status of the plant given sensor
readings and process knowledge. There has been considerable work done in this area with a variety
of approaches being proposed for PFD. Neural networks have been used to solve PFD problems in
chemical processes, as they are well suited for recognizing multi-dimensional nonlinear patterns.
In this work, the use of Hierarchical Artificial Neural Networks (HANN) in diagnosing the multi-
faults of a chemical process are discussed and compared with that of Single Artificial Neural
Networks (SANN). The lower efficiency of HANN, in comparison to SANN, in PFD is elaborated
and analyzed. Also, the concept of a multi-level selection switch is presented and developed to
improve the performance of hierarchical artificial neural networks. Simulation results indicate
that application of multi-level selection switches increases the performance of the hierarchical

artificial neural networks considerably.

INTRODUCTION

Fault detection and diagnosis is an important task
in process engineering. A fault might originate from
outside the plant battery limit (e.g. fluctuation in flow
rate, temperature or pressure of the utility streams),
or from inside the plant itself (e.g. equipment failure,
catalyst deactivation or malfunction of instrument
and control valves). Although based on the HAZOP
(Hazard and Operability) studies, a plant is normally
equipped with the required interlock and protection
systems, however, these facilities are usually activated
only when the symptoms of the faults are so dangerous
that the plant, or at least part of it, should be shut
down. It is evident that the emergency shut down
of a plant is economically undesirable. On the other
hand, even if emergency shut down does not occur,
the yield and product quality of a plant operating in
an abnormal situation (i.e. process variables deviate
significantly from their nominal values) would be low.

Industrial statistics now estimate the economic
impact due to emergency shut down and abnormal
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situations to be around $20 billion a year in the US
petrochemical industries alone [1]. If the value of
losses caused by abnormal situations of all the process
plants in the world were estimated, the importance
of abnormal situation management would be more
clarified.

The first step in abnormal situation management
is to detect the process of the abnormal condition and
diagnose the faults creating this situation (i.e. process
fault detection and diagnosis). Today’s process plants
are very complex with a lot of measured variables for
plant monitoring and, hence, Process Fault Diagnosis
(PFD) in such plants is a very difficult task, even
for an experienced operator. Therefore, designing an
intelligent real time system for PFD has received con-
siderable attention both from industry and academia,
due to the economic and safety impact involved [2].

Although there are various methods for PFD in
open literature, based on the form of process knowledge
used by these methods, they can be classified as pro-
cess model-based and process history-based techniques.
The models used in the former category can be a
quantitative deep model [3] or a qualitative causal
model, such as a signed digraph [4]. The major
restriction of quantitative model-based methods is the
fact that finding a rigorous model for a plant consisting
of so many unit operations is either very expensive
or impossible. On the other hand, the qualitative
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model-based methods, such as signed digraph and fault
tree techniques, suffer from the generation of a large
number of hypotheses leading to a poor resolution.
Furthermore, due to intensive computations, the causal
qualitative model-based algorithms are not suitable for
on-line process fault diagnosis. However, it should be
noted that these methods usually result in a complete
set of possible fault candidates and, because of mimick-
ing human reasoning, they posses the power to explain
how the fault originated and propagated.

The process history-based methods make use
of the large amount of process data obtained from
recorded measured variables of the plant during ab-
normal and normal situations. This category con-
sists of techniques like expert systems and statistical
and neural network methods. Expert systems are
knowledge-based techniques which are able to repre-
sent existing expert knowledge, accommodate existing
data bases and accumulate new knowledge, leading
to practical and justifiable decisions. The knowledge-
base can be obtained from heuristics, expert testimony
(shallow knowledge) and/or structural behavioral and
mathematical models (deep knowledge) of the process.
Several recent papers describing applications of expert
systems in process fault diagnosis are available [5-12].
Multivariate statistical techniques, based on Principal
Component Analysis (PCA), Partial Least Squares
(PLS) and Fisher Discriminant Analysis (FDA), have
been employed for fault detection and diagnosis [13-18].

In this work, a Hierarchical Artificial Neural
Network (HANN) and a Single Artificial Neural Net-
work (SANN) for multiple-fault diagnosis are discussed
and their performances are compared. The use of
neural networks in process fault diagnosis has re-
ceived considerable attention over the last few years.
Venkatasubramanian et al. proposed a SANN for
process fault diagnosis and compared its capabilities
with a knowledge-based approach [19]. The potential
of their method has been shown through a case study.
According to their studies, the SANN was able to
diagnose both the faults it was trained upon and novel
fault combinations not included in the training data.
Furthermore, the SANN could also handle incomplete
and uncertain data. Watanabe et al. showed that
a two-stage HANN could discriminate between the
causes of faults and, also, identify the degree of fault
deterioration [20]. 1In the first stage, the fault is
diagnosed by a three-layer network and depending
on the type of fault detected in the first stage, the
corresponding network in the second stage is triggered
to determine fault deteriorations. In another attempt,
Fan et al. enhanced the representation capability of a
conventional back-propagation network for diagnosing
faults with various levels of deterioration, by adding
to the input layer a number of functional units (sine
and cosine functions) [21]. Watanabe et al. developed
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a HANN for diagnosing multiple simultaneous faults
of a chemical process [22]. In their approach, a set
of neural networks was used in a hierarchical manner.
These networks were arranged in two stages. The
first stage, which consisted of one neural network,
was used to discriminate between normal and single
fault patterns. The second stage, whose role was
distinguishing various combinations of binary faults,
consisted of a set of conventional feed forward networks.
The number of networks in the second stage was the
same as the number of outputs of the network in the
first stage. They claimed that the proposed HANN
could be trained easier and faster than the other
neural net-based alternatives. Some other neuromor-
phic approaches have been suggested for process fault
diagnosis [23-30].

In this paper, the structure and performance of
HANN is critically reviewed. It is shown that a single
conventional artificial neural network outperforms a
HANN, provided that it is trained with an effective and
powerful training algorithm. Also, by using a multi-
level selection switch, the performance of the HANN
is improved significantly. The paper is organized as
follows. Firstly, the proposed two-stage and three-
stage hierarchical artificial neural networks are pre-
sented and their training procedure is briefly described.
Secondly, the proposed single artificial neural network
and the training technique are explained. Thirdly,
the simulated process used for generating the training
and validating fault patterns is described. Finally, the
trained hierarchical and single artificial neural networks
are applied to diagnose the process faults and the
advantages and disadvantages of these methods are
discussed in detail. Also, the concept of a multi-
level selection switch is described and applied to the
two- and three-stage hierarchical artificial neural net-
works.

HANN STRUCTURE AND TRAINING
METHOD

The HANN structure used here for evaluation is a
two-stage HANN proposed by Watanabe et al. [22].
The first stage consists of a conventional backprop-
agation network which receives the process measure-
ments and discriminates normal, single and multiple
fault patterns. If normal condition is detected in
the first stage then the output of this stage will be
considered as the HANN output, otherwise, based on
faults detected in the first stage, the corresponding
networks in the second stage are activated. Since
the neural networks in the second stage discriminate
single fault and binary fault combinations, the total
number of neural networks in the second stage is equal
to the number of single faults. For multiple faults,
the fault set diagnosed by HANN is obtained through
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performing an “OR” operation on the output of the
second stage networks. The HANN structure is shown
i Figure 1, where R/B is a real to binary number
converter which receives a real number from zero to
one. If the input value to R/B is greater than, or equal
to, a predetermined threshold (in this case 0.5), its
output will be 1, otherwise it will be set to zero. In
this figure, NSS (Network Selection Switch) specifies
those networks in the second stage which should be
triggered.

The number of neurons in the input and output
layers of each SANN are equal to the number of input
measurements and number of patterns that the SANN
is supposed to classify, respectively.

The main objective of this HANN structure is to
divide, systematically, a large number of patterns into
smaller subsets, in order to facilitate the training of the
networks and classification of the faults.

The HANN structure is suitable for classifying
single, double and, at most, triple-fault patterns. To
accommodate the triple-fault patterns in the training
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Figure 1. Schematic diagram of a two-stage HANN.
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set of the HANN, based on the design concept of
the two-stage HANN, a three-stage HANN has been
developed, as shown in Figure 2. The first and
second stages of the three-stage HANN are similar
to the two-stage HANN. The third stage consists
of a set of neural networks, where each network is
responsible for discriminating a given double fault
and its corresponding triple faults. If the result of
the ‘OR’ operation after the second stage networks
is a single or double fault then these faults will
be considered as the final HANN’s output and the
third stage networks will not be triggered. On the
other hand, when the second stage ‘OR’ operation
generates more than two possible faults, all binary
combinations of these faults are generated and the
network selection switch ‘NSS2’ triggers third-stage
corresponding networks. For example, if the fault set
created by a second-stage ‘OR’ operation consists of
the faults F;, F; and F then the third-stage networks
corresponding to FiFj, FiFy and F;F, will be acti-
vated. In this case, the final result of the HANN
is the fault set obtained from the third-stage 'OR’
operation.

Each network in two-stage and three-stage hi-
erarchical neural networks is trained independently,
based on its own training patterns. All networks
are conventional backpropagation networks with log-
sigmoid neurons.

The training algorithm used here is called vari-
able learning-rate backpropagation with momentum.
When the momentum filter is added to the parameter
changes, one obtains the following equations for the
training algorithm:

AW =AW — (1 - Yas™ (@™ H7T, (1)

a™ = fllymam-14pm); (2)

AbYyy = yAbY —(1 = y)as™,

for m=1,---, M, (3)
where:

AW the weight matrix update of layer ‘m’ at
iteration ‘k’,

AT the bias vector update of layer ‘m’ at
iteration ‘k’,

a learning rate of the training algorithm,

vy momentum of the training algorithm,

a™ output vector from layer ‘m’ having
transfer function ‘ f™’,

s™ the sensitivity vector of mth layer.

The sensitivity vector is determined by the following
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Figure 2. Schematic diagram of the proposed three-stage
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equations:
f f 0
0 m e 0
: (n7)
Ffny = " ], (4)
0 0 EW
famy = o ()
sm—-l
=) WialTh+o, (6)
i=1

™ = F(gm)(wm-{—l)Tsm-}—l,

form=M-1,---,2,1, (8)

where:
cm total number of neurons in layer ‘m’,
ny’ net input to layer m,
m transfer function of the neurons in the layer
‘mY’

M total number of layers in the network,
a® =P  the input vector to first layer,
aM =a the output vector from the last layer,
t target output vector.

There are different approaches for changing the learn-
ing rate. The approach used here is a straightforward
batching procedure [31].

SANN STRUCTURE AND TRAINING
METHOD

The SANN structure used in this paper for fault
diagnosis is similar to the first stage network of the
HANN described previously. Two structurally similar
single artificial neural networks were trained separately,
through applying a different set of learning patterns.
The first SANN, which is called, henceforth, SANNI,
has been trained by a set of normal, single and double-
fault patterns. The data set used to train the second
SANN (called SANN2) consists of normal, single and
double, as well as triple fault patterns.

The synaptic weights and biases of SANN1 were
determined by the method of variable learning-rate
backpropagation with momentum. However, since
SANN2 cannot be trained into a reasonably small
error by this method, a specific type of conjugate
gradient technique is used for its training. This
technique, which is called Scaled Conjugate Gradient
(SCG) algorithm, was proposed by Moller to avoid the
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time consuming line search procedure of the conjugate
gradient method [32]. Although the SCG algorithm is a
relatively complex method, its basic idea is to combine
the model trust region approach used in the conjugate
Levenberg Marquardt algorithm, with the conjugate
gradient approach.

SIMULATED PROCESS

The process considered here for simulation is the
same process used by Watanabe et al. [22]. In this
process, heptane is catalytically converted to toluene
in a reactor heated by circulating steam. The reaction
is endothermic and the required heat is supplied by
an external electrical heater installed in the inlet line
of circulating steam to the reactor. The schematic
diagram of the process is shown in Figure 3. The
following reaction takes place in the reactor:

CrHig(g) — CrHie(g) + 4Hz(g): (9)

The mathematical model and steady state conditions
used in the simulation of this plant have been presented
in Appendix 1. As supposed by Watanabe et al. [22], it
is assumed that the plant is operating in near normal
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Figure 3. Heptane to toluene reaction unit.
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operating conditions and any process faults evolved
at an early stage tend to be strongly suppressed and
alleviated by the PI controller. Therefore, no catas-
trophic or abrupt event occurs during plant operation.
Assuming the controller is always on a non-faulty
operating mode, the following seven possible causes of
faults are considered for the plant. These are the same
faults considered by Watanabe et al. [22]:

F, 0.1% decrease in the controller set point, ug,
F, 2.0% decrease in the frequency factor of the
rate equation, kg,
F3;  0.1% decrease in the activation energy, E,,
Fy  2.0% decrease in the heater gain, K,
Fy;  2.0% decrease in the overall heat transfer
coefficient of the reactor, U,
Fs  1.0% decrease in the feed concentration,
Cé7H16’
F;  1.0% decrease in the feed temperature, T;.
The following seven variables are measured for the
process fault diagnosis [22]:

Ty outlet temperature of electrical heater,

T product temperature at the reactor outlet,
S; integrator output in the PI controller,
Cc,m,s  Outlet concentration of heptane,

Cc,u,, outlet concentration of toluene,
Cé.u,, heptane concentration in the feed,
T; reactor feed temperature.

As mentioned before, the faults are not strong enough
to push the process far from the linear operating re-
gion. Hence, based on the superposition principle, the
pattern of measured variables resulting from multiple
simultaneous faults can be produced by adding the
patterns of the corresponding single faults separately.
Table 1 presents normal and single-fault patterns ob-
tained from the plant simulation.

For example, if Ay;, Ay; and Ay, are the devia-
tion vectors of measured variables, resulting from single

Table 1. Normal and single-fault patterns from plant simulation.

Measured Input Pattern
Fault ATy AT As; ACc,H;e ACc,Hg ACE, 1, AT;
°C °C mV Mole/lit Mole/lit Mole/lit °C
Normal 0 0 0 0 0 0 0
F1 -1.85 -0.74 -1.19 5.55 -5.55 0 0
Fy -0.83 0 -0.83 5.04 -5.04 0 0
F3 0.90 0 0.90 -5.55 5.55 0 0
Fy 0.00 0 4.55 0.00 0.00 0 0
Fy 3.04 0 3.04 0.00 0.00 0 0
Fg -0.86 0 -0.86 -4.76 -5.23 -10 0
Fy 0.43 0 0.43 0.00 0.00 0 -3
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faults, F;, F; and Fy, then, the pattern of simultaneous
three faults, F;F;Fy, is given by:

Ayijk = Ay; + ij + Ayy. (10)

As long as the plant operating condition is not far
from the normal operating region, the accuracy of
the above approximation for generating multiple-fault
patterns is acceptable. It should be noted that noise
signals were added to each fault pattern to produce
the necessary amount of learning data for training each
neural network. Thirty neurons have been considered
here for the hidden layer, which is the same as the
number of hidden layer neurons used by Watanabe
et al. [22]. Experience in training SANN and the
neural networks of HANN showed that having thirty
neurons for the hidden layer is relatively good. In
the next section, the training results and abilities
of each diagnostic method are discussed. Also, the
main reasons for HANN’s shortcomings are explained
and a new method is proposed to overcome some of
them.

TRAINING RESULTS

All aforementioned neural networks have been trained
by using noisy learning data. Test patterns are
comprised of normal, single-fault, double-fault, triple-
fault and quadruple-fault patterns. It should be noted
that although the multiple-fault patterns, for training
purposes, have been derived based on the superposition
principle, the multiple-fault patterns, used in validating
fault diagnosis techniques, have been obtained from
the plant simulation. For instance, Tables 2 and 3
show patterns of double and multiple faults with higher
degrees of deterioration, respectively.

Table 4 shows information corresponding to the
training of various fault diagnosis techniques. The error
trajectories during the training of SANN1 and SANN2
are shown in Figures 4 and 5, respectively.
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Table 2. Double-fault patterns from plant simulation.

Measured Input Pattern

Fault|AT,,| AT [As; |ACc,H,|ACc,H, ACE, ., |AT:

°C | °C |mV | Mole/lit [Mole/lit| Mole/lit | °C
1 F3 |-2.68(-0.74{-2.01 10.6 -10.6 0 0
F1F3|-0.94]-0.74]-0.28 0.00 0.00 0 0
F1Fy[-1.85(-0.74(3.35 5.55 -5.55 0 0
F1Fs)1.171-0.74] 1.84 5.55 -5.55 0 0
F1Fg [-2.70(-0.74|-2.03 0.74 -10.73 -10 0
F1F7{-1.42(-0.74}-0.75 5.55 -5.55 0 -3
F3F3(0.08 [0.00(0.08 -0.51 0.51 0 0
FyF4]-0.83(0.00|3.71 5.04 -5.04 0 0
FyFs(2.200.00{2.20 5.04 -5.04 0 0
F3Fg |-1.68{0.00 |-1.68 0.23 -10.22 -10 0
F»F71-0.40(0.00|-0.40 5.04 -5.04 0 -3
F3F4(0.90(0.005.48 -5.55 5.55 0 0
F3F%|3.97(0.00(3.97| -5.55 5.55 0 0
F3Fs{0.04(0.00{0.04] -10.25 0.26 -10 0
F3F7(1.34(0.00(1.34 -5.55 5.55 0 -3
F4Fs(3.04{0.00(7.66 0.00 0.00 0 0
F4F¢|-0.86|0.00|3.68 -4.76 -5.23 -10 0
FqF7(0.43(0.00|4.99 0.00 0.00 0 -3
FsFe|2.17(0.00]2.17 -4.76 -5.23 -10 0
FsF713.48 (0.00]3.48 0.00 0.00 0 -3
FeF7(-0.43(0.00[-0.43] -4.76 -5.23 -10 -3

DIAGNOSIS RESULTS

The validation fault patterns were introduced to the
diagnostic schemes, SANN1, SANN2, two-stage HANN
and three-stage HANN. The performances of these
diagnostic schemes have been presented in Table 5.

Table 3. Patterns of multiple faults combined with different deterioration degree.

Measured Input Pattern

Fault ATy AT As; ACc,H,q ACc,Hg AC&_,Hle AT;

°C °C mV Mole/lit Mole/lit Mole/lit °C

Fi(1%)*, F2(0.5%) | -2.70 | -0.75 | -2.03 10.65 -10.65 0.00 0.00

F1(1%), F3(0.5%) -0.96 -0.75 -0.29 0.02 -0.02 0.00 0.00

F2(0.5%), F5(1%) 2.23 0.00 2.23 5.05 -5.05 0.00 0.00

F1(0.5%), F2(1%), 0.32 -0.74 0.99 10.65 -10.65 0.00 0.00
F5(0.5%)

F1(05%), F5(0.5%), | o5 | 074 | 4.2 -0.01 0.01 0.00 0.00
F4(0.5%)

* % parentheses is deterioration degree applied to previously defined faults.
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Figure 4. Trajectory of error convergence for SANNI. Figure 5. Trajectory of error convergence for SANN2.

Table 4. Some training characteristics of the diagnostic methods.

Di ti
1agnc3s e Number of Training Patterns Training Method MSE! Epochs
Technique
SANN1 1 normal, 7 single-fault, 21 double-fault Scaled conjugate gradient 2% 106 510
SANN2 1 normal, 7 single-fault, 21 double-fault Scaled conjugate gradient 1075 685
and 35 triple-fault
2-stage HANN 1st stage: 1 normal, 7 single-fault VRBPM? 10-5 280-1299
2nd stage: 7 (F;, F; Fj,i#j) for each SANN
1st stage: 1 normal, 7 single-fault
3-stage HANN 2nd stage: 7 (F;, FyFj,i#j) for each SANN VRBPM 105 19-1299
3rd stage: 6 (FyFj, F;F; Fy, k91, 5)
1- Mean squared error.
2- Variable-learning rate backpropagation with momentum.
Table 5. Responses of different schemes to validation fault patterns.
Fault Pattern Response
Two-Stage Three-Stage
SANN1 SANN2
HANN HANN N
Normal and
A All All All All
Single Faults
7(2
Double Faults 17(2/2), 11/2), 17(2/2), 1(1/2), All All
3(0/2) 3(0/2)
Triple Faults 03/3),162/3), | 9(3/3),16(2/3), | 19(3/3), 7(2/3), Al
9(1/3), 1(0/3) 9(1/3), 1(0/3) 9(1/3)
Quadruple 1(4/4), 3(3/4), 1(4/4), 3(3/4), 3(4/4), 11(3/4), 20(4/4), 5(3/4),
Faults 29(2/4), 2(0/4) 29(2/4), 2(0/4) 21(2/4) 10(2/4)
Higher Degree
3(2/2), 1(2/3
Double and 3(2/2), 2(1/3) 3(2/2), 2(1/3) ( /1)’1 3( /3 All
Triple Faults (1/3)

Note: Numbers in parentheses represent the number of faults detected over total number of faults.
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As can be seen from this table, all schemes have been
able to diagnose normal and single-fault patterns. For
double faults, SANN1 and SANN2 yield completely
correct diagnoses. However, two-stage and three-
stage hierarchical neural networks equally result in
seventeen full diagnoses, one partial diagnosis and
no detection for three cases. The correct diagnoses
of SANN1 and SANN2 in the case of double faults
is not unusual, because double fault patterns have
been considered in their training set. The failure
of two and three-stage hierarchical neural networks
can be explained as follows: The partial and “no
detection” results of the hierarchical neural networks
in diagnosing double faults are due to the first stage
network, which cannot, appropriately, activate the
second stage networks. With respect to triple-faults,
SANN2 exhibits excellent performance and all faults
are detected correctly. Both SANN1 and the hier-
archical neural networks have not been trained by
triple-fault patterns, but, as Table 5 shows, the perfor-
mance of SANN1 in diagnosing triple faults is superior
to hierarchical neural networks. The main reason
for this discrepancy can be found in the deficiency
of the network selection switch (NSS1) in the first
stage of the HANN. Indeed, as stated before, the
first stage uses a rigid threshold value (here 0.5)
to select the associated network in the next stage,
which, in some cases, results in the wrong selection
of the correct network or no selection at all. This
is why the addition of a new stage to the two-
stage HANN is futile. Regarding the quadruple fault
diagnosis, the performance of SANN2 is still much
better than other schemes and more than 57% of
faulty situations have been fully diagnosed by this
scheme.

The extrapolation capability of SANN2 to the
validation data, which have not been considered in its
training pattern set, is relatively good. The last row
of Table 5 indicates the response of each method to
the multiple faults with higher degrees of deterioration.
In this case, the diagnosis of SANN2 is perfect while
other schemes show some mistakes. It should be noted
that despite the partial detection result shown for two-
stage HANN in the last row of Table 5, Watanabe et al.
presented a full detection response for this method in
diagnosing higher degree multiple faults [22]. However,
this discrepancy has no significant effect on the fact
that the performance of SANN2 is better than other
schemes.

In order to improve the performance of the hier-
archical neural networks, the concept of a Multi-Level
Selection Switch (MLSS) is proposed. To evaluate the
power of MLSS in comparison to previous network
selection switches NSS1 and NSS2, a Three-Level
Selection Switch (TLSS), with two threshold values
and a few general decision rules, is developed. Based

on whether the output neuron values of the first stage
network are less than 0.33 and greater than 0.67, in the
range of 0.33-0.67, neural networks of the second stage
are classified impossible, probable and most probable,
respectively. Then, the following rules are utilized for
activating the second stage networks:

e If the output of the first neuron in the output layer of
the first-stage network is “most probable”, then the
output of the two-stage HANN will be a normal case
and the second stage networks will not be triggered;

e Otherwise, “probable” and “most probable” net-
works of the second stage are triggered.

The output neurons of the triggered networks in the
second stage are classified in the above manner as
“impossible”, “probable” and “most probable”. Then,
by applying the following decision rule, the process
faults are diagnosed:

The “probable” and “most probable” output neu-
rons of the “most probable” second stage networks
and, also, the “most probable” ocutput neurons of the
“probable” second stage networks are considered as
faults.

The above three-level selection switch was used
for a two-stage HANN. In the same way, a TLSS was
developed and implemented for a three-stage HANN.
The simulation results for the modified two- and three-
stage hierarchical neural networks have been presented
in Table 6.

Figure 6 indicates the overall performances of
different schemes used in this work. In this figure,
percentages of partial, full and no detection for each
diagnostic scheme over the validation patterns have
been demonstrated. According to Figure 6, the best
performance belongs to SANN2 and, after that, the

3-stage HANN
SANN2
B Modified 3-stage HANN

[J 2-stage HANN
SANN1
B Modified 2-stage HANN

1004

80 1

60 A

40

No Partial Full

detection detection detection
Figure 6. Overall performances of applied diagnostic

schemes.
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Table 6. Performance of modified two- and three-stage HANN.

Fault Patterns

Diagnostic Scheme

Modified Modified
Two-Stage HANN Three-Stage HANN
Normal and
All
Single Faults All
Double Faults 17(2/2), 1(3/2), 17(2/2), 1(3/2),
1(1/2), 2(0/2) 1(1/2), 2(0/2)

Triple Faults

15(3/3), 12(2/3),

26(3/3), 9(1/3)

8(1/3)
Quadruple 2(4/4), 6(3/4), 10(4/4), 6(3/4),
Faults 25(2/4), 2(0/4) 17(2/4), 2(0/4)

Higher Degree
Double and 3(2/2), 2(1/
Triple Faults

3) 3(2/2), 2(1/3)

Note: Numbers in parentheses represent the

detected over total number of faults.

modified three-stage HANN performs better than other
schemes.

CONCLUSIONS

In this paper, the performance of a two-stage HANN
structure proposed for diagnosing multiple faults in the
literature has been evaluated. In order to improve the
performance of the two-stage HANN, particularly in
diagnosing triple and quadruple concurrent faults, it
has been extended to a three-stage structure. Simu-
lation results indicate that no significant improvement
is achieved. To alleviate this shortcoming, a Multi-
Level Selection Switch (MLSS) is introduced, which
improves the performance of the hierarchical neural
network structures considerably. In addition, two
single artificial neural networks (SANN1 and SANN2),
which have the same structures but different training,
are proposed and their performances are compared
with multi-stage hierarchical neural networks. Among
the schemes trained by single, double and triple fault
patterns, the best performance belongs to SANN2. It
should be noted that this improvement is obtained at
the expense of more computational efforts for training.
Results also indicate that the performance of SANN1
is superior to the two-stage and modified two-stage
HANNS’ performances, although they are trained with
the same training patterns.
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APPENDIX 1

State Variables

T reaction temperature, 740.0 K
Cc,H, outlet concentration of Cc, g,
524.0 mol/m3
Ch, outlet concentration of Cy,,
2097.0 mol/m3
Ccqu,,  outlet concentration of Cc,u,q,
476.0 mol/m?
T, heater outlet temperature, 889.0 K
S; output of the integrator in PI controller,

223.0 mV

Intermediate Variable

Sh

driving signal for the heater, 222.0 mV

Process Inputs

T; temperature of the reaction inlet stream,
300.0 K
Cé,u,, inlet concentration of C7Hjs,
1000.0 mol/m?
T inlet temperature of heating steam,
0.9x740.0 K
c efficiency of heater, 0.9
Reactor
ko frequency, 5.01 x 108 h—!
E, activation energy, 1.369 x 10° J/mol
R gas constant, 8.319 J/mol. K
AH  heat of reaction: 2.2026 x 10% + 6.2044 x 10T
—5.536 x 107272 — 1.15 x 10~673
+3.1469x10~7T4, J/mol
Cp specific heat, 490.7 J/mol. K
p density, 593.0 mol/m?
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a  area of heat exchange, 10.0 m?

U  overall heat transfer coefficient, 6.05x10°
J/m?2.h K

g inlet and outlet volumetric flow rate, 3.0 m?/h

V  effective reactor volume, 30.0 m?

Heater

r V'/q', heater time constant, 0.2 h
K a'Wk,/(p'CLq'), heater gain, 1.0 K/mV

PI Controller

K. proportional gain, 20.0
Tr integrator coefficient, 0.3 h
K,oy7  gain of temperature to mV transducer,
1.0 mV/K
Ug set point, 740.0 mV
Equations

Reactor energy balance:
k(T) = koel~Ee/RT),

dT AH

@ _Lr 1)~ 22 k(T)C

= 7 ) C, (T)Ccyuy6 +
all
pCpV

(T - T), T(0) = Tb.

R. Eslamloueyan, M. Shahrokhi and R. Bozorgmehri

Reactor mass balances:

dCc,H, q

——dT7_ = —VCC7H3 + k(T)CCﬁIlev
CC7H8 (0) = C%7H87

dCH2 _i

= 4k(T
dt VCH2+ k( )CC7H10’

CH2 (0) = CEIZ )

dCC H, q 1
—d;—_ﬁ == —‘—/_(CC7H16 - CC7H15)

- k(T)CC'er ’

C1C7Hls (0) = Cg7H16 "

Heater energy balance:

dT; 1 K

Td_}i = —(CT - Th) + —-Sh,Th(O) = T}?,
t T T

dsl- KC

E = T;(uc - Kmv/TT)a

Si(O) = S?’

Shp = KC(UC - Kmv/TT) + 8;.





