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Designing an E�cient Probabilistic

Neural Network for Fault Diagnosis

of Nonlinear Processes Operating

at Multiple Operating Regions

R. Eslamloueyan1, R.B. Boozarjomehry1 and M. Shahrokhi�

Neural networks have been used for process fault diagnosis. In this work, the cluster analysis is
used to design a structurally optimized Probabilistic Neural Network. This network is called the
Clustered-Based Design Probabilistic Neural Network (CBDPNN). The CBDPNN is capable of
diagnosing the faults of nonlinear processes operating over several regions. The performance and
training status of the proposed CBDPNN is compared to a conventional Multi-Layer Perceptron
(MLP) that is trained on the whole operating region. Simulation results indicate that both
schemes have the same performance, but, the training of CBDPNN is much easier than the
conventional MLP, although it has about 50% more neurons in its hidden layer. Both schemes can
reasonably handle an increase in fault deteriorations. However, the training time for CBDPNN
is much less than that of MLP. This issue gets severely important when the number of measured
variables, along with process faults, increases. Since, for plant-wide fault diagnosis, the reduction
in training time is crucial, the advantages of CBDPNN make it more appropriate for fault
diagnosis compared to other alternatives for such a case.

INTRODUCTION

Fault detection and diagnosis are important tasks in
process engineering. Plant faults may cause abnor-
mal operation and, if not detected early, can cause
emergency shutdown and even equipment damage or
casualty. It should be noted that, even if emergency
shut down or accident does not occur, the yield and
product quality of a plant operating under abnormal
situations (i.e. process variables deviate signi�cantly
from their nominal values) will not be maintained.
Industrial statistics now estimate the economic impact
due to emergency shut down and abnormal situations
to be around $20 billion a year in the US petrochemical
industries alone [1]. If the value of losses caused by
abnormal situations of all process plants in the world
were estimated, the importance of plant fault detection
and diagnosis would be more clari�ed. Today's process
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plants are very complex, with many measured variables
used for plant monitoring and, hence, Process Fault
Diagnosis (PFD) in such plants is a very di�cult
task, even for an experienced operator. Therefore,
designing an intelligent real time system for PFD has
received considerable attention, both from industry
and academia, because of the economic and safety
impact involved [2].

Although there are various methods for PFD in
open literature, based on the form of process knowledge
used by these methods, they can be classi�ed as pro-
cess model-based and process history-based techniques.
The model used in the former category can be a quan-
titative deep model [3] or a qualitative causal model,
like a signed digraph [4]. The process history-based
methods make use of the large amounts of process
data obtained from recorded measured variables of the
plant during abnormal and normal operations. This
category consists of techniques like expert systems and
statistical and neural network methods. Application
of expert systems for fault diagnosis can be found
in the open literature [5,6]. Multivariate statistical
techniques, such as Principal Component Analysis
(PCA) and Partial Least Squares (PLS), have been
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employed for fault detection and diagnosis [7,8]. Using
Arti�cial Neural Networks (ANN) in process fault
diagnosis has received considerable attention over the
last few years. Multilayer perceptron networks have
been used in di�erent frameworks for PFD [9-13]. Also,
there are some other neuromorphic approaches used for
PFD [14-18].

In general, the majority of neural network
schemes used for PFD are based on the assumption
that the process operating condition is not changed
signi�cantly. There are some cases in process industries
where the plant has to be operated under several
operating conditions (e.g., producing products with
di�erent compositions based on market demand). The
change of operating condition of a nonlinear process
may deteriorate the performance of a diagnostic scheme
designed to detect process faults over a speci�c op-
erating region. To overcome this problem, in this
work, an approach is proposed that uses a single
diagnostic scheme with an optimum structure and a
simple training procedure for detecting faults over
the whole operating region. The basic idea is to
design a Probabilistic Neural Network (PNN) with a
structure optimized, based on the cluster analysis of
the training patterns. The potential of Radial Basis
Function (RBF) neural networks for PFD has been
demonstrated in the last decade. RBF networks have
been used in the detection and isolation of process
faults, either by o�-line learning [19] or by on-line
learning of the fault patterns through an adaptive
network [20]. In the following sections, �rst, the
proposed Cluster-Based Designed PNN (CBDPNN)
is presented and the learning procedure is described
brie
y. Then, the simulated process used to evaluate
the performance of the proposed diagnostic scheme is
introduced. Finally, the performance of the proposed
CBDPNN is evaluated and compared with PNN and
MLP.

PROBABILISTIC NEURAL NETWORK

AND CLUSTER-BASED DESIGN PNN

Probabilistic neural networks can be used for classi�ca-
tion problems [21]. Figure 1 shows the architecture of
this scheme. In this �gure, Q is the number of training
patterns consisting of normal and all fault patterns.
Each target vector has K elements corresponding to
normal and faulty conditions. One of these elements is
one and the rest are zero. Thus, each input symptom
vector is associated with one of the K classes. The �rst
layer input weights, IW , are set to the transpose of the
matrix formed by the Q training patterns. When an
input symptom is presented to the input layer of the
network, a vector is produced whose elements indicate
how close the input symptom is to the centers of the
RBF neurons. These elements are multiplied, element
by element, by the bias \b" and sent to the radial basis
transfer function. The transfer function for a radial
basis neuron is given below:

radbasis (n) = e�n
2

: (1)

A plot of the radial basis transfer function is illustrated
in Figure 2. The following equations show how the
output vector of the RBF layer is calculated:

ai = bi � e�(kIWi�pk)
2

; (2)

kIWi � pk =

vuut RX
j=1

(IWi;j � pj)
2; (3)

where:

R the number of elements of the input
vector \p",

ai ith element of the RBF output vector \a",
bi ith element of the bias vector \b",
IWi ith row of weight matrix of input layer (IW ),
pj jth element of the input vector \p".

Figure 1. Schematic diagram of a PNN.
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Figure 2. Radial basis function.

The bias, b, allows the sensitivity of the neuron
with radial basis function to be adjusted. For example,
as Figure 1 illustrates, if a neuron had a bias of 0.1,
its output would be 0.5 for an input vector, p, whose
distance from the vector of weight factors (IW ) is 8.326
(0:8326=b). An equivalent variable called \spread"
is de�ned, which is related to the bias through the
relationship bias = 0.833/spread. An input symptom
vector close to a fault pattern vector will be represented
by a number close to unity in the output vector \a". If
an input is close to several training vectors of a single
class, it will be represented by several elements of \a"
that are close to unity. The second layer weights, LW ,
are set to the matrix T of target vectors. All elements
of each target are zero, except the one corresponding
to that particular class of training pattern vector.
The multiplication, \LW � a", sums the elements of
\a" corresponding to each of the K classes. The
competitive transfer function of the second layer forces
the largest element of the resulting vector to converge
to unity and the other elements to zero. The second
layer output is determined, according to the following
recurrence relation:

nK�1 = LWK�Q � aQ�1; (4)

n(t+1) = poslin[W � n(t)]; (5)

w2
i;j =

�
1; i = j
�"; i 6= j

�
; (6)

0 < " <
1

K � 1
; (7)

where \poslin" is the positive linear transfer function,
de�ned below:

poslin(x) =

�
x; x � 0
0; x < 0

�
; (8)

and n(t) is the input vector to the competitive layer at
iteration \t".

The recurrence relation eventually converges to
the output vector, a. In this way, the network
classi�es the input symptom vector into a speci�c one
of K normal/fault classes, because that class has the
maximum probability of being correct.

The spread should be so large that the active
input regions of the RBF neurons have enough overlaps
so that several RBF neurons have fairly large outputs
for all situations. This makes the network functioning
smoother and results in a better generalization for new
symptom vectors occurring between training patterns.
On the other hand, if the spread is so large that each
RBF neuron responds in the same large area of the
input space, then, the diagnostic ability of the PNN
will fail entirely. The value of \spread" is determined
as the minimum Euclidian distance among all patterns.

The fault patterns used in this paper are obtained
by considering each possible fault occurring at several
di�erent operating conditions of the process. Hence,
the number of patterns for each fault is equal to the
number of operating conditions of the process. How-
ever, it should be noted that all of these patterns might
not be required for the training of PNN. Only those
patterns of a speci�ed fault that are su�ciently dissim-
ilar or inconsistent, should be used in the training of
the PNN. The cluster analysis is applied to determine
the minimum number of inconsistent patterns required
for designing a PNN that is able to detect process faults
appropriately.

Cluster analysis, also called segmentation analy-
sis, is a way to partition a set of objects into groups
or clusters, in such a way that the pro�les of objects
in the same cluster are very similar and the pro�les
of objects in di�erent clusters are quite distinct [22].
The following procedure is applied to perform cluster
analysis on a dataset:

1. The similarity or dissimilarity between every pair
of objects in the dataset is determined. In this
step, the Euclidian distances between objects are
calculated;

2. The objects are grouped into a binary, hierarchical
cluster tree. Indeed, the pairs of objects that are
in close proximity are linked together using the
distance information generated in step 1. Objects
are paired into binary clusters and the newly formed
clusters are grouped into larger clusters until a
hierarchical tree is formed;

3. The objects in the hierarchical tree are divided into
clusters using the inconsistency coe�cient of the
links in the cluster tree. This coe�cient compares
the length of a link in a cluster hierarchy with the
average length of the neighboring links two levels
below it in the cluster hierarchy.

Therefore, by specifying a value for the inconsis-
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tency coe�cient (between 0 and 1), the clusters of the
objects can be determined. The hybrid structure of a
Cluster-Based Designed PNN (CBDPNN) is illustrated
in Figure 3.

As Figure 3 shows, the training procedure of a
CBDPNN is initiated with guessing an initial value for
the inconsistency coe�cient (cuto� threshold). Then,
all patterns of faults are introduced into the cluster
analysis algorithm and, based on the speci�ed incon-
sistency coe�cient, fault patterns are grouped into
various clusters. The mean average of the patterns
of a speci�ed fault that are fallen in a cluster is
employed as the representative vector of that fault
for designing a PNN. This reduces the number of
learning patterns and, consequently, the number of
required RBF neurons of the PNN. The bias used in the
CBDPNN is the same as that obtained in the design of
the PNN described previously. The performance of the
CBDPNN is evaluated through applying all available
test patterns to the CBDPNN. The output and the
target matrices are used to calculate the following
performance index of the network.

PI =

SX
i=1

kai � Tik : (9)

In the above equation, ai and Ti are ith columns of the
matrices \a" and T , respectively. Also, kV k denotes
the Euclidean norm of the vector, V .

This performance index is minimized through ad-
justing the inconsistency coe�cient via a minimization
algorithm. There are many minimization techniques
that may be used for �nding the optimum value of
the inconsistency coe�cient. The Golden Section algo-
rithm, which is a simple and well-known minimization

Figure 3. Flow chart for designing CBDPNN.

technique of a single variable optimization, is employed
for this purpose [23].

SIMULATED PROCESS

The nonlinear process considered for simulation is the
same process studied by Henson et al. [24]. The system
consists of two constant volume reactors cooled by
a single coolant stream. An irreversible, exothermic
reaction, A! B, occurs in both reactors. The e�uent
concentration from the second tank is controlled by
manipulating the coolant 
ow rate, qc. Figure 4 shows,
schematically, the simulated process. The mathemati-
cal modeling equations are presented in the Appendix.
The parameters of the model can be obtained from [24].

Assuming the controller is always in a non-faulty
operating mode, the following �ve possible causes of
fault are considered for the plant:

F1 15% decrease in the feed concentration, CAf ,
F2 10% increase in the feed temperature, Tf ,
F3 10% decrease in the feed 
ow rate, q,
F4 10% increase in the coolant temperature, Tcf ,
F5 15% deactivation of catalyst, kd.

The following �ve variables are measured for the
process fault diagnosis:

T1 outlet temperature of the �rst reactor,
T2 outlet temperature of the second reactor,
qc coolant 
ow rate,
Tf feed temperature,
Tcf coolant temperature.

The above-mentioned measured variables are selected
based on the fault observability and ease of measuring.

The plant produces the following product grades,
based on market demand:

1. Pure grade: 99.5% M,

2. Chemical grade: 98% M,

3. Commercial grade: 95% M,

4. Raw grade: 90% M.

When the process shifts from one product grade to
another, the operating region of the process varies

Figure 4. Flow diagram of the simulated process.
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accordingly. Indeed, there are four operating regions
associated with the four product grades. The steady
state conditions of the plant at four di�erent operating
regions are given in Table A1. As noted before, the
diagnostic scheme that has been trained, based on the
fault patterns corresponding to one of these operating
regions, may not work properly in other operating
regions. This subject will be discussed in the next
section.

TRAINING RESULTS

As mentioned before, the process operates at four
di�erent operating regions and since the process is
highly nonlinear, a fault diagnostic scheme, trained
in one of these operating regions, may fail at other
operating conditions. To show this fact, a multi-
layer perceptron network is designed for each operating
region. The required training fault patterns related
to each operating region are obtained by simulation
of the plant. Fault patterns used in this study are
presented in Table 1. Normal distribution random
noises with standard deviations of 0.2�C and 1 L/min
for temperature and 
ow measurements, respectively,
were added to the training patterns to generate the
required data for training the MLP networks. The

training results of �ve MLP networks, called hereafter
Single Arti�cial Neural Networks (SANN), are given
in Table 2. The transfer functions of the neurons in
the hidden and output layers of these SANN's are tan-
sigmoid and log-sigmoid, respectively. The number of
neurons in input, hidden and output layers of each
SANN is presented in Table 2. There are six training
patterns for each operating region that consists of one
normal pattern and �ve single fault patterns. By
adding noise to these patterns, 2000 training data were
generated for each pattern. The SANNs have been
trained in a batch-wise manner, through the method
of a scaled conjugate gradient [25].

As indicated in Table 2, the SANN covering the
whole operating region of the process, i.e. SANN1234,
is more complex and requires much more CPU time for
training in comparison to other SANNs. Furthermore,
as the number of faults increase, training of this scheme
becomes more and more di�cult. It should be noted
that in the training of each SANN, one half of the
data was used for training, one quarter for validating
and the rest for testing. Figure 5 illustrates the plot
of training error versus epochs during the training of
SAN1234.

To compare a PNN trained on the whole operating
region with the SANNs described before, a PNN is

Table 1. Single fault patterns at di�erent operating regions of the process.

Measurement T1 (K) T2 (K) qc (L/min) Tf (K) Tcf (K)

Operating Region Fault

1: Pure Grade F1 -2.097 -1.380 -27.65 0 0

99.5% M F2 0.913 -0.917 37.23 35 0

F3 -1.994 -2.176 -5.918 0 0

F4 1.278 -1.284 58.63 0 35

F5 3.089 3.426 -6.595 0 0

2: Chem. Grade F1 -0.214 -3.673 -20.26 0 0

98.0% M F2 70.06 -35.75 106.2 35 0

F3 0.744 -2.504 -2.966 0 0

F4 73.77 -35.86 153.1 0 35

F5 -0.9 3.86 -4.86 0 0

3: Comm. Grade F1 -0.145 -3.491 -23.77 0 0

95.0% M F2 55.63 -21.29 92.54 35 0

F3 0.504 -2.273 -4.754 0 0

F4 61.26 -25.84 194.2 0 0

F5 -0.644 3.512 -6.144 0 0

4: Raw Grade F1 -0.098 -3.475 -27.27 0 0

90.0% M F2 26.91 -4.441 54.06 35 0

F3 0.398 -2.121 -6.002 0 0

F4 52 -18.42 238.8 0 35

F5 -0.522 3.282 -7.465 0 0
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Table 2. Single arti�cial neural networks trained at di�erent operating regions.

Name
Number of Neurons:

Input/Hidden/Output
Training Data Error Goal CPU1 Time (sec.)

SANN1 5/4/6 Region 1 0.001 116.11

SANN2 5/5/6 Region 2 0.001 164.44

SANN3 5/5/6 Region 3 0.001 175.16

SANN4 5/5/6 Region 4 0.001 262.93

SANN1234 5/10/6 All regions 0.001 1517.7

1- PC: Pentium III, CPU: Intel 733 MHz.

Table 3. Fault patterns at di�erent operating regions classi�ed through cluster analysis.

Cluster No. F1 at Region: F2 at Region: F3 at Region: F4 at Region: F5 at Region:

1 One - - - -

2 Two - - - -

3 Three, four - - - -

4 - One, four - - -

5 - Two, three - - -

6 - - One - -

7 - - Two - -

8 - - Three, four - -

9 - - - One -

10 - - - Two -

11 - - - Three, four -

12 - - - - One

13 - - - - Two

14 - - - - Three, four

Figure 5. Performance error versus epochs during
training of SAN1234.

designed by using 21 training patterns consisting of one
normal pattern and all single fault patterns presented
in Table 1. This PNN has 5 neurons in the input
layer, 21 RBF neurons in the hidden layer and 6
neurons in the output layer. The maximum spread

value, used in the PNN design, is equal to 0.07.
Although the PNN structure is more complex than
the SANN1234, its training time is almost negligible
(about 0.4 second), compared to the time required
for training the SANNs. On the other hand, as the
number of fault patterns increases the number of hid-
den RBF neurons of the PNN increases proportionally.
However, the number of RBF neurons in the hidden
layer of the PNN can be optimized by the method
explained before through designing a Cluster-Based
Designed PNN (CBDPNN). Applying the procedure
for designing a CBDPNN led to a PNN with 15 RBF
neurons in the hidden layer. The training time for
CBDPNN is about 8.5 seconds, which is still much
less than the training time of the SANNs. The �nal
clusters, determined through training CBDPNN, are
presented in Table 3. Although the number of RBF
neurons of CBDPNN is 1.5 times greater than the
hidden neurons of the SANN1234, its training time
is almost 200 times less than the training time of
SANN1234.
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Table 4. Faults detected by the diagnostic schemes at di�erent operating regions.

Diagnostic Scheme Operating Region

One Two Three Four

SANN1 All N�, F4 N , F1, F4 N , F1, F4

SANN2 N , F1, F3, F5 All N , F1, F2, F3, F5 N , F1, F3, F5

SANN3 N , F1, F3, F5 N , F1, F3, F4, F5 All N , F1, F2, F3, F5

SANN4 N , F1, F2, F3, F5 N , F3, F4, F5 N , F1, F3, F4, F5 All

SANN1234 All All All All

PNN All All All All

CBDPNN All All All All

*: N denotes normal condition.

DIAGNOSIS RESULTS

After adding noise to the measured variables of fault
patterns at all operating regions, they were introduced
into di�erent diagnostic schemes explained before. The
results are given in Table 4. It should be mentioned
that the neurons of the output layer of the MLP
network are log-sigmoid, which produce a real number
between 0 and 1. The criterion for detecting a fault
is that the value of the relevant output neuron be
greater than 0.5. As can be seen, none of the SANNs
trained, based on the data obtained at a speci�c
operating region, can diagnose all faults correctly at
other operating regions. This is due to the nonlinear
behavior of the process over the whole operating
region. On the other hand, the SANN1234, which used
the fault patterns of all the operating regions, could
diagnose all of the faults and the normal case over the
whole operating region, at the expense of more di�cult
training and much higher CPU time. Although, in
this case, one could train SANN1234 over the whole
operating region, notice that the increasing di�culty
of network training may cause the complete failure of
the training algorithm.

As can be observed from Table 4, PNN with 21
and CBDPNN with 15 RBF hidden neurons have
detected all faults correctly, at the expense of a greater
number of hidden layer neurons, in comparison to
SANN1234. However, in spite of more hidden neurons,
the training of the network is much easier and the
required CPU time of PNN is much less than that of
SANNs. On the other hand, by using a CBDPNN,
the number of hidden neurons can be made as small
as possible. The advantage of CBDPNN for fault
diagnosis becomes more evident when the degree of
nonlinearity and complexity of the plant increase and
the operating condition varies over a wide range. The

exibility of the CBDPNN and SANN1234 in diagnos-
ing faults with a higher degree of deterioration has been
evaluated by simulation. The results of this evaluation
reveal that both diagnostic schemes can tolerate 30%

magni�cation in F1, 50% magni�cation in F2 and F4,
and 100% magni�cation in F3 and F5. Therefore, with
respect to the generalization ability, CBDPNN is as
good as SANN1234.

CONCLUSIONS

In this paper, the performance of a Probabilistic
Neural Network (PNN) in diagnosing the faults of a
nonlinear process plant operating at di�erent operating
conditions is evaluated and compared to the multi-layer
perceptron networks. Also, to optimize the structure
of the PNN, a cluster analysis is employed to �nd
the minimum required RBF hidden neurons. The
developed Cluster-Based Designed PNN (CBDPNN),
with a smaller number of hidden neurons compared
to PNN, can diagnose all of the faults over the whole
operating region correctly. Although the number
of hidden neurons of the CBDPNN is greater than
the SANN trained over the whole operating region
(SANN1234), its training procedure is much easier
and the required CPU time for training is almost
negligible. As the number of faults, measured variables
and operating regions of a plant were increased, the
training of a SANN capable of diagnosing faults over all
operating regions became prohibitively di�cult. Also,
in such a case, the number of data points required
for training a SANN and, consequently, the cost of
the data gathering, is considerably much more than
that of a CBDPNN. Evaluation of CBDPNN and
SANN1234, for diagnosing faults with a higher degree
of deterioration, reveals that both schemes can tolerate
fault deterioration in a reasonably wide range.

NOMENCLATURE

a output vector from RBF layer

ai ith element of the RBF output vector
\a"

a output vector from PNN
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Ai heat transfer area for ith tank

b bias vector

bi ith element of the bias vector \b"

CAf concentration of component \A" in the
feed, gmol/L

CA1 concentration of component \A"
at outlet stream from �rst reactor,
gmol/L

CA2 concentration of component \A" at
outlet stream from second reactor,
gmol/L

Cp heat capacity

e�x exponential function

E activation energy

F fault

h heat transfer coe�cient

IW input weight matrix

IWi ith row of IW

k0 preexponential factor

K number of classes

LW layer weight matrix

n input vector to RBF neurons

n(t) the input vector to the competitive
layer at iteration \t"

N normal condition

OF objective function

P input pattern vector to the network

pj jth element of the input vector \p"

q volumetric 
ow rate into the �rst
reactor, L/min

qc volumetric 
ow rate of coolant, L/min

Q number of all training patterns

R number of measured symptom variables

S number of testing patterns

T number of training patterns after
clustering

Tcf coolant feed temperature, K

Tf feed temperature to the reactor, K

T1 outlet temperature from the �rst
reactor, K

T2 outlet temperature from second
reactor, K

V 1 liquid volume in the �rst reactor, L

V 2 liquid volume in the second reactor, L

Greek Letters

�H heat of reaction

" inhibitory weight of the competitive
weight matrix

� 
uid density

�c coolant density
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APPENDIX

Mass and energy balances:

dCA1
dt

=
q

V1
(CAf � CA1)� k0CA1 exp

�
�

E

RT1

�
;

dT1
dt

=
q

V1
(Tf � T1) +

(��H)k0CA1
�Cp

exp

�
�

E

RT1

�

+
�cCpc
�CpV1

qc

�
1� exp

�
�

hA1

�cCpcqc

��
(Tcf � T1) ;

Table A1. Plant steady state conditions at di�erent
operation regions.

Operating

Region

Normal Steady

State Condition

One

CA1 = 0:0853 kmol/m3,

CA2 = 0:005 kmol/m3

T1 = 441:94 K,

T2 = 449:97 K,

qc = 1:651 � 10�3 m3/s

Two

CA1 = 0:9594 kmol/m3,

CA2 = 0:02 kmol/m3

T1 = 355:09 K,

T2 = 472:8 K,

qc = 0:9934 � 10�3 m3/s

Three

CA1 = 0:9695 kmol/m3,

CA2 = 0:05 kmol/m3

T1 = 354:05 K,

T2 = 452:57 K,

qc = 1:421 � 10�3 m3/s

Four

CA1 = 0:964 kmol/m3,

CA2 = 0:1 kmol/m3

T1 = 353:51 K,

T2 = 437:76 K,

qc = 1:754 � 10�3 m3/s

dCA2
dt

=
q

V2
(CA1 � CA2)� k0CA2 exp

�
�

E

RT2

�
;

dT2
dt

=
q

V2
(T1 � T2) +

(��H)k0CA2
�Cp

exp

�
�

E

RT2

�

+
�cCpc
�CpV2

qc

�
1� exp

�
�

hA2

�cCpcqc

��

�

�
T1 � T2 + exp

�
�

hA1

�cCpcqc

�
(Tcf � T1)

�
:


