Scientia [ranica, Vol. 10, No. 4, pp 471-476
(© Sharif University of Technology, October 2003

Research Note

Establishing Preemption Intelligent
Rate-Monotonic Scheduling Algorithm

M. Naghibzadeh* and M. Fathi!

Rate-monotonic scheduling algorithm is one of the most widely used scheduling strategies, for
real-time systems. Since 1973, when it was first introduced, many researchers have studied
its behavior and practical safety verification algorithms have been developed. In this paper, a
possible modification to the traditional Rate-Monotonic (RM) algorithm is examined. Namely,
by eliminating unnecessary preemption, processor utilization is well improved. Another less
important result, due to this modification, is that the number of context switching is decreased,
which, in turn, reduces overhead time. The new scheduling strategy is called a preemption
Intelligent Rate-Monotonic (IRM) algorithm. It is proved that a system of two tasks is safe if,
and only if, the processor load factor is U < 1. It has also been proved that any system that is
safe with the rate-monotonic algorithm is also safe with the IRM algorithm.

INTRODUCTION

Scheduling algorithms play a significant role in the
design of safe real-time systems. A real time system
must not only be correct but it must also perform its
tasks in a timely manner. A hard real-time system is
a system in which every request has a deadline before
which it must be executed. In such a system missing
any deadline may cause a catastrophe, which implies
that the cost of missing a deadline is infinitely high [1].
Nuclear power plant and aerospace control systems are
examples of hard real-time systems. In a soft real-
time system, missing some deadlines will lower the
accuracy and/or performance of the system, but the
system will still continue to operate. Teleconferencing
and multimedia applications are examples of soft real-
time systems.

There are two wide classes of scheduling preemp-
tive and non-preemptive. With preemptive schedulers
a newly arrived higher priority request can cause to sus-
pend the currently executing lower priority request. A
non-preemptive scheduler, on the other hand, executes

*. Corresponding Author, Department of Computer Engi-
neering, Ferdowsi University of Mashad, Mashad, I.R.
Iran.

1. Department of FElectrical and Computer Engineering,
University of New Mexzico, USA.

the current request until completion is reached, even if
a higher priority request has arrived, since this request
is picked up for execution. Preemptive schedulers
usually offer better overall system utilization, so, they
are preferred over non-preemptive schedulers. On
the other hand, non-preemptive scheduling is usually
used in some cases where preemptive scheduling is
not practical or the system load is low. Preemptive
scheduling is also expensive, since it involves overheads
and additional scheduling activities at run time [2,3].
The amount of time given to the system to execute
and complete a request is called the deadline parameter
of the request. The deadline parameter could be as
short as the execution time of the request or it could be
much longer. For periodical tasks, both theoretical and
industrial attraction is towards systems in which the
deadline of a request is at the exact time when a new
request is generated from the same task [3-6]. Real-
time systems with arbitrary deadline parameters are
also studied and interesting results are obtained [1,7].
For static priority scheduling, priorities are as-
signed to tasks in advance, before any execution begins
and the scheduler has to respect these priorities [8].
A request carries the priority of the task, which has
generated the request. In static priority scheduling
algorithms, whether preemptive or non-preemptive,
the decision making process to assign priorities is
made during the system design. The dynamic priority

472

assignment is an online activity and the scheduler
makes scheduling decisions as the system is running.
A dynamic priority preemptive algorithm will decide,
on the spot, whether to continue executing the current
task or suspend it for another. A dynamic priority non-
preemptive algorithm will continue with the current
task till completion and then decides which of the ready
tasks to be executed next.

Preemptive rate-monotonic scheduling is studied
in depth in [3], where Liu and Layland proved that a
set of n periodic tasks will always run safe if the least
upper bound to processor load factor is U = n(21/7—1).
Sha and Goodenough [9] commented that this bound is
pessimistic, because the worst case task set is contrived
and unlikely to be encountered in practice.

Many practical issues are dealt with and it is
shown that the theoretical results for the RM algorithm
are not just an academic curiosity but, also, tools in
the design of real systems [9-12]. The RM scheduling
of periodic task sets with arbitrary deadlines is studied
in {1,7]. The fault-tolerant processing of periodic tasks
with rate-monotonic scheduling is studied in [13,14].
In [15], the task switching time for different computers
is computed.

In this paper, the concern is with systems running
periodic hard real-time tasks, in which each request
must be completed before or at the time the next
request from the same task is generated. Tasks are
independent. Request intervals and execution time for
requests from each task are known in advance. Pri-
orities are statically assigned to tasks and all requests
from a task have the same priority as the task itself.
Preemption is allowed. The scheduling strategy used
is a new version of the rate-monotonic strategy, which
will be explained later in the next section.

In the rest of the paper, first, the modified ver-
sion of the traditional rate-monotonic algorithm that
is called the preemption Intelligent Rate-Monotonic
(IRM) algorithm is introduced. Systems running only
two periodic tasks are then studied. Then, it has
been theoretically proven that any system that is safe
with the RM algorithm is also safe with the IRM
algorithm, but, there are many systems that are not
safe with the RM algorithm but are safe with the IRM
algorithm. A sample is given in Example 1. It is
clear that IRM reduces the number of task switching in
comparison to the RM algorithm and, hence, reduces
the overall system overhead. The exact amount of
overhead reduction is left for future research.

PREEMPTION INTELLIGENT
RATE-MONOTONIC ALGORITHM

Preemptive scheduling strategy usually offers higher
process utilization than its non-preemptive counter-
part. For example, in a system running two periodic

M. Naghibzadeh and M. Fathi

tasks with a preemptive rate-monotonic algorithm,
the least upper bound to processor load factor is
approximately 0.83. For a system of n tasks, a feasible
schedule on a single processor can definitely be devised
when the load factor of the task set is not greater than
n(n'/™—1). It converges to 0.69 as n becomes large [3].
The load factor of the set of tasks is defined as:

U= iei/ri,
=1

where 7;,7 = 1,2,--+ ,n, is the request interval of task
7, and e;,4 =1,2,--- ,n, is the execution time of each
request made by task 7;. For a similar system of two
tasks with a non-preemptive scheduler to be safe, the
two following inequalities must simultaneously hold:

e1+er <y
[ro/ri].e1 +e2 <72

Considering the case where ry >> e, i.e. 71 s
much greater than ej,ro >> r; and e; = 11 — ey,
the system is safe while process utilization approaches
zero. For example, think of a system with n = 2,7, =
5.0,e; = 0.0001, 79 = 499990 and e; = 4.9999. In this
system, U = 0.0001/5.0 + 4.9999/499990 = 0.000012.
The system is safe, but any increase in the execution
time of either task will make the system unsafe. A
similar situation can occur when the number of periodic
tasks is greater than two. '

It was observed that with the RM algorithm,
in certain situations, preemption could be harmful.
Consider a system of two periodic tasks with properties
ry = 4,e7 = 2,79 = 5 and ez = 2.1 and suppose two
simultaneous requests are generated from tasks 7 and
7o at time ¢ > 0. Under a preemptive rate-monotonic
algorithm, the second request by 7 at time ¢ + 4 will
preempt the request generated by task 7 at time ¢.
This will cause the request made by task 72 at time ¢
to be overrun at time ¢t + 5. This situation could be
avoided if the running request were not preempted at
time ¢ + 4.

Consider a situation where a lower priority re-
quest is running when a higher priority request ar-
rives. With the RM algorithm, the lower priority
request is immediately preempted, no matter what
the situation is. It is proposed that if the lower
priority request has an earlier, or even equal, deadline
than the higher priority request, the lower priority
task is not to be preempted. No other change is
suggested and otherwise, the algorithm will work as
the traditional RM algorithm. The new strategy will be
called a preemption Intelligent Rate-Monotonic (IRM)
algorithm. The proposed change does not affect the
static nature of the scheduling algorithm.

Under the IRM algorithm, when a new request
arrives, besides checking to see whether the running

Preemption Intelligent Rate-Monotonic Scheduling Algorithm

request has a lower priority, as is done in the RM
algorithm, it must also check to see if the deadline of
the running request is earlier than that of the newly
arrived request. The aim is to avoid unnecessary
preemption which, as will be seen later, will have
a great impact on the load factor of an acceptable
set of tasks. On the other hand, it can reduce the
overhead time by avoiding unnecessary preemption.
However, the latter improvement is not a concern of
this paper.

The rest of this paper is concerned with real-
time systems running a set of n periodic tasks with
a preemption intelligent rate-monotonic scheduling al-
gorithm. The total processor load factor is assumed to
be less than, or equal to, one, i.e. U < 1 and tasks
start simultaneously at time zero (or later).

Lemma 1

In a system of two periodic tasks with U < 1 and the
IRM scheduling algorithm, if t5,,4 = 1,2,---, is the
end of the ith request interval of 7, and ¢}, is the time
when the last request from 7; is generated prior to time
t2,, then, this request will receive at least < (tp, —t],)

1
execution time within the interval [t} ,ts,].

Proof

Proof is by induction on task two’s request interval
number. Suppose both tasks start, simultaneously, at
time zero. ¢, is the end of task two's first request
interval and #7, is the time when the last request from
71 is generated prior to ¢5;. Then, the two following
cases can be distinguished.

a) There is no processor idle time within the interval
(0,t2,). If the execution time spent on the request
made by 71 at time ¢} is less than £L(¢5, —¢],) then
(see Figure 1):

) .1 > Ta,

t] ta, — t]
es + <i> .1 + <u
Ty 1

or:

t
€y + (ﬁ'> .61 > To.
1

Dividing both sides by r2:

>.€1 > 1.

ta,

{2
T1.T2

D)
T2

1

-
T
T

T2

! !
1] t tll tzl tli t2i t! t2i+1

Figure 1. Last processor idle period ends at time ¢.

473

Replacing t2, by r2 and eliminating 7 from the
nominator and denominator of the second term, it
follows that £ + £ > 1, meaning that U > 1, which
is a contradiction.

There is at least one processor idle period within
interval (0,t2,). Suppose t is the end of the last
processor idle period within that interval. If ¢} <
t < ty,, the request that is generated by 7, at time
t’11 has consumed e; execution time and, since r; >
ta, —1t1,, by dividing both sides of the inequality by
r1, it follows:

1> M

T1

Multiplying both sides by ey;

e1 2 2ty 1)),
1
which again proves that the execution time spent on the
request generated by 71 at time #;, is at least ZL(t2, —
L.

l Now, assume t < t; . The execution of the
request made by 7 at time zero must have been finished
by time t.

If the execution time spent on the request gener-
ated by 7 at time ¢}, is less than £:(¢3, —t],), one can
write:

(t21 — t) €1 > (ta, —).

1

Dividing both sides by (¢2, —¢) one gets 2- > 1, which
contradicts U < 1.

Suppose that the statement is true for the :th
request interval of 7. It must be proven that the
statement is also true for the (z + 1)th request interval
too. Based on the induction hypothesis, the execution
time spent on the request made by 7 at time ¢}, where
t, is the time at which the last request from 7 is
generated prior to time t5,, is greater than, or equal
to, %(tzi had tlli)'

If t/ is the time when the first request from 7, is
made after or at time ¢5,, i.e. deadline of the request
made at time #; , the execution time needed by the
request generated by 7, at time ¢}, during the (74 1)th
request interval of 5 is:

e <Lt —ty).
T1

Therefore, by comparing the first request interval and
the (¢ + 1)th request interval of 72, it can be concluded

that:
to,,, —t' ty, — 0
es+¢e + (L> ey <ep+ (—2‘——> €.
T1 T

474

Based on the latter inequality, a similar argument, as
was given for the first request interval of 79, proves that
the statement is true for the (i + 1)th request interval
of T2.

The following theorem shows the superiority of
the IRM algorithm over the RM algorithm, for a two-
task real-time system. ‘

Theorem 1

A system of two periodic tasks with a preemption
intelligent rate-monotonic algorithm is safe if, and only
if, U < 1.

Proof

First, it is proven that if U < 1, the system is safe. At
the exact time when a request by 7y is received, one of
the following two situations may occur:

1. The processor is not executing a request from 7,
whose deadline is earlier than the deadline of the
request from 7;. In this case, if a request from 7,
is being executed, it will be preempted immediately
and the execution of the newly arrived request from
71 will be started. On the other hand, if the
processor is idle, the newly arrived request from 7,
will be picked up for execution immediately. In any
case, knowing that U < 1, it is clear that this task
will be completed in time.

2. The processor is busy executing a request from 7,
whose deadline is earlier than the deadline of the
request from 7. Here, the request under execution
cannot be preempted, but it is clear that the newly
arrived request from 7 will be the last one that
can be generated before the deadline for the request
from 7o is over. Suppose that the request from 7, is
arrived at time 1. and the deadline for the request
from 7, will be over at ¢y, > t;., see Figure 2.

According to Lemma 1, the execution time con-
sumed by the request from 71, up to time tz,, will be
at least £.(tg, — ¢t}).

This task can receive t{,, — t2, execution time
after time ¢,,, where 7, is the deadline for the request
that is generated at time ¢}, from ;. Therefore, the
total possible execution time, which can be spent on
the request from 71, which is generated at time ¢, is:

€1

E~(t2i =t,) + (t1,,, —t2)

4
—
-
-
L
-~

b ==~ ———
-

9
~

O e ——
e

"
ta;_y ta

i

f "
trot2itn gy,

Figure 2. A two-task system with U < 1.

M. Naghibzadeh and M. Fathi

€

Since &< 1, one has:

e
= (ta, — ty,) + (8., —t2.)

v

€1
—(t2, — t1,)
™

€1 .1
+ - (t11+1 - t2i)

€1 .y
Z E(tli+1 - tli)

261.

Therefore, every request from 7; will be executed in
time.

Within ¢th, 1 = 1,2, 3, - - -, request interval of task
T9, there is a request from 7; that is generated prior to,
or at the time the ith request from 7, is generated. If
the deadline for this request is at time t{,, according
to Lemma 1, the execution time needed by ‘this request
within the interval (t2,_1,17,) is €' < 2(¢), —t3,_,).

Therefore, in order for the ith, ¢+ = 1,2,---,
request from 75 to be executed in time, one must have:

e + [(t2, —t],)/71).e1 +e2 <.

But,
€1
T (e —t1)) er +ep < (), —ta)
1
e
+ (t2,- —t’l’i)‘-—l + e2,
T1
< 6—1.7"2 + eo.
1
Since U = —‘} + %f < 1, therefore, Lry+e <o
It is clear that if U > 1, the system is not safe.
Example 1

Consider a system of two tasks with r; = 8.0,e; =
1.9,79 = 9.9 and e; = 6.11. The processor load factor
for this system is U = —l + —1 = 19 + 611 = 0.855.
This system is not safe Wlth ‘the RM algorlthm and
when the system starts at time zero, the first request
from 7o will not be executed in time. This system will
run safe with the IRM algorithm. The system will be
safe even if, for example, e, is increased to become 7.5.
The processor load factor is now:
€1 ()] 1.9 7.5

= =+ — =0.9951.
7‘1+’I"2 80+99

Theorem 2

Any system that is safe with the RM algorithm is also
safe with the IRM algorithm.

Preemption Intelligent Rate-Monotonic Scheduling Algorithm 475

Proof

Suppose the statement is not true and there exists a
system consisting of n periodic tasks which is running
safe with the RM algorithm, but not with the IRM
algorithm.

When the system starts at time zero (or any
other time), there must be a request from task 7;,7 =
1,2,--- ,n, that will not be executed by the time its
deadline is reached. If this request is generated at time
t, its deadline will be at time ¢t; = t + r,. When the
IRM algorithm is used, there might be some processor
idle time within the interval (0, ¢;). The statement will
be proven later when there is no processor idle time
within the interval (0, ;).

Suppose that the first processor idle time starts
at time ¢, and ends at time t3 > t; (see Figure 3).
It will be shown that the processor will also be idle
in the interval (t2,¢3) when the RM algorithm is used.
Since ty < t and the system is safe with the RM, all
requests generated in the interval [0, ;] are executed
in time by both the RM and the IRM algorithms. On
the other hand, no request is generated in the interval
(t2,t3). Therefore, the processor must be idle within
the interval (¢2,t3) with the RM algorithm. Using a
similar argument, if there are other processor idle times
prior to ¢t with the IRM algorithm, the processor will be
idle within the same intervals with the RM algorithm
too.

Suppose, the last processor idle time ends at
t4 < t. With the IRM algorithm and within the interval
[ts,t1], no request from tasks 711, Tit2, " ,Tn, With
deadline at time ¢; or later, will have higher priority
than the request generated at time t by 7;. Requests
from 741, Tit2, -+, Tn, with deadlines prior to time #;,
will have to be completed before time ¢;, under either
the RM or the IRM algorithms. All requests made by
T1,T2, "+ ,Ti—1, within the interval (t4,t;), have higher
priorities over the request made by 7; at time ¢, when
the RM algorithm is used. However, there might exist
circumstances that the request generated by 7; at time
t, is given higher priority over some requests made
by 71,72, ,Ti—1, within the interval (t4,t;) with the
IRM algorithm. Therefore, when RM is used, there

First processor idle period

] ' ! !

o h—— e i--+ i -r-- H— ;

: I i i i

: P P i
i —+ ——p

T2 b——— P i
A P i i |
. P P §
T '._______._____.___——--n-—-:.L —-—— v
A P : ! ;
! i H ! i
_______ [- L +

™ p———— . T i
0 ty t3 ts t t

Figure 3. A request from 7; is not executed in time.

must exist a request from some task that will overrun
prior to, or at time, t;.

The argument for the situation when there is no
processor idle time within the interval (0,¢;) is similar
to the argument given above for the interval (t4,t1),
with ¢4 being replaced by 0.

This contradicts the assumption that the system
is safe with the RM algorithm and not safe with the
IRM algorithm.

Based on Theorem 2, all safety verification algo-
rithms for the RM scheduling strategy can also be used
for the IRM algorithm [3-6,8,10].

Example 1 shows that not all systems that run
safe with the IRM algorithm can also run safe with the
RM algorithm.

CONCLUSION

In this paper, a modified version of the rate-monotonic
algorithm, which is called an intelligent rate-monotonic
algorithm, has been introduced. The performance of
the two algorithms is compared and it was shown that
the performance of an intelligent rate-monotonic algo-
rithm is superior to a rate-monotonic algorithm in two
directions, without noticeable increase in complexity.
First, there are systems that are safe with the IRM and
are unsafe with RM. Second, it reduces the number
of task switching, by its nature, and increases total
system performance. The authors believe that IRM
could substitute RM in all practical areas where RM
is previously used. Future research could concentrate
on detailed comparison of the two algorithms for real
applications.

REFERENCES

1. Tindell, K., Burns, A. and Wellings, A.J. “An ex-
tendible approach for analyzing fixed priority hard
real-time tasks”, Real-Time Systems, 6(2) pp 133-151
(1994).

2. Kim, K.H. and Naghibzadeh, M. “Prevention of task
overruns in real-time non-preemptive multiprogram-
ming systems”, Proceedings of ACM Performance Eval-
uation Review, pp 267-276 (Summer 1980).

3. Liu, C.L. and Layland, J.W. “Scheduling algorithms for
multiprogramming in a hard real-time environment”,

Journal of the ACM, 20(1), pp 46-61 (1973).

4. Lehoczky, J.P., Sha, L. and Ding, Y. “The rate-
monotonic scheduling algorithm: Exact characteriza-
tion and average case behavior”, In Proceedings of the
10th Real-Time Systems Symposium, Santa Monica,
CA (Dec. 1989).

5. Manabe, Y. and Aoyagi, S. “A feasibility decision
algorithm for rate-momnotonic scheduling of periodic
real-time tasks”, IEFE 1st Real-Time Technology and
Applications Symp., pp 212-218 (May 1995).

476

10.

Manabe, Y. and Aoyagi, S. “A feasibility decision
algorithm for rate-monotonic and deadline monotonic
scheduling”, Real-Time Systems, 14(2), pp 171-181,
(Mar. 1998).

Lehoczky, J.P. “Fixed priority scheduling of periodic
task set with arbitrary deadlines”, Proc. Real-Time
Systems Symposium, pp 201-209 (1990).

. Leung, J. and Whitehead, J. “On the complexity of

fixed priority scheduling of periodic real-time tasks”,
Performance Evaluation, 2 (1982).

Sha, L. and Goodenough, J.B. “Real-time scheduling
theory and Ada”, IEEE Computer, pp 53-62 (April
1990).

Klein, M., Ralya, T., Pollak, B., Obenza, R. and
Harbour, M.G., A Practitioners Handbook for Real-
Time Analysis: Guide to Rate-Monotonic Analysis
of Real-Time Systems, Kulwer Academic Publisher
(1993).

11.

12.

13.

14.

15.

M. Naghibzadeh and M. Fathi

Naghibzadeh, M. “Safety verification of real-time com-
puting systems serving periodic devices”, Journal of
Engineering, IRI, 7(3) (Aug. 1994).

Sha, L., Rajkumar, R. and Sathaye, S.S. “Generalized
rate-monotonic scheduling theory: A framework for
developing real-time systems”, in Proceeding of the
IEEE, 82(1), pp 68-82 (Jan. 1994).

Ghosh, S., Melhem, R. and Mosse, D. “Fault-tolerant
rate-monotonic scheduling”, Journal of Real-Time Sys-
tems, 15(2) (Sept. 1998).

Pandya, M. and Malek, M. “Minimum achievable uti-
lization for fault-tolerant processing of periodic tasks”,
IEEFE Transactions on Computers, 47(10) (1998).

Otterbach, R. and Leinfellner, R. “Real-time simula-
tion: Requirements and the state of the technology”,

Translated from Virtuelles Ausprobieren Elektronik, 8
(1999).

