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Research Note

Embedded Test for Processor and
Memory Cores in System-on-Chips

M.H. Tehranipour!, S.M. Fakhraie*, M. Nourani?,
M.R. Movahedin' and Z. Navabi!

Embedded processors are now widely used in system-on-chips. The computational power of
such processors and their ease of access to/from other embedded cores can be utilized to test
SoCs (System-on-Chips). The first step, naturally, is to test the processor itself and its memory
partner, as all other SoC test activities require both. In this paper, an efficient test architecture is
presented to achieve high quality testing of embedded processor and memory cores. Especially, in
testing the memory core, a test algorithm is presented for bit-oriented memories and its enhanced
version for word-oriented memories. The method requires low overhead but provides significant
flexibility in terms of fault model, test mechanism and future reuse.

INTRODUCTION
SoC Design and Test Paradigm

Current design and manufacturing technologies of in-
tegrated circuits allow for the integration of complete
systems onto a single chip, commonly referred to
as system-on-a-chip (SoC) or system chips. System
chips are increasingly designed by embedding large
pre-designed and pre-verified modules {1]. The most
important advantage of using these so-called cores
is that they speed up the design cycle. In recent
years, cores have captured the attention of designers
who understand the potential of using these cells.
Examples of cores are CPUs, DSP engines, memories
and communication modules of various kinds. Being
able to rapidly develop, manufacture, test, debug and
verify complex SoCs is crucial for the continued success
of the electronics industry [2].

Core-based SoCs have significant advantages.
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Due to the fact that almost all of the components are in
the same chip, SoCs can operate faster with less power.
The SoCs reduce the number of discrete components
used, thereby reducing the total size and cost of the
end product. Furthermore, using embedded cores in
SoCs has the potential of greatly reducing the time-to-
market because of the design reuse involved.

Testing core-based systems is a major challenge.
The main reason is that the accessibility of the cores
and blocks is greatly reduced. Additionally, the system
designer might have a limited knowledge of the core
internals due to the protection of the Intellectual Prop-
erty (IP) of the cores [3]. Several factors, such as fault
coverage, test time, performance and area overhead,
need to be considered to determine an effective test
strategy when integrating cores into a SoC. To obtain
high fault coverage, all of the system blocks should be
thoroughly tested. It is very important that in the
chosen test methodology the test time be kept as small
as possible. For reducing cost, the amount of additional
silicon area needed to implement the test scheme should
also be low. Finally, performance penalties should be
carefully evaluated.

Embedded Test: BIST Generalization for
Embedded Cores

The problem with strategies using external test pat-
terns is that they typically require a large test volume
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and need complex dynamic test control protocols to get
stimulus and receive responses from the cores and set
up the necessary control to execute the test on a core.
A promising strategy that minimizes such requirements
is BIST. All known benefits of BIST come from the
fact that BIST embeds a test into the circuit under
testing. It generates and evaluates the test patterns
on-chip. Hence, it does not require porting of test
vectors from the core creator to the integrator and
then to the fabricator. Since BIST implements test
reuse, it offers advantages, similar to in-design reuse, to
reduce the product development cycle. Additionally, it
reduces the cost of manufacturing testing and system
maintenance by providing the same test capability
throughout all levels of system integration [4].

In addition to providing on-chip test resources,
BIST simplifies peripheral access complications, since
it requires a simple interface and allows reuse of the
core as a self-contained block. Today’s BIST schemes
are mature enough in terms of providing very high fault
coverage. They also enhance the diagnosis capability,
while allowing IP protection. BIST is an autonomous
testing method and is considered efficient for core-
based systems [5].

A self-testing methodology in a system-chip, by
running test programs using a programmable core, has
several potential benefits, including at-speed testing,
low design for test (DFT) overhead due to elimi-
nation of dedicated test circuitry and better power
and thermal management during testing. This self-
test strategy is referred to as functional self-test or
embedded-software-based self-test or embedded test for
short [6,7]. For high-speed circuits, self-testing has
clear advantages over testing which relies on external
testers. On-chip clock speed is increasing dramatically,
while the tester’s Overall Timing Accuracy (OTA) is
not. Self-testing offers the ability to apply and analyze
at-speed test signals on chip. This, in general, provides
greater accuracy and shorter test time.

The embedded test is an advanced solution for
testing large SoCs. An embedded test is comprised of
two distinct test approaches: external Automatic Test
Equipment (ATE) and conventional DFT. Building
on conventional DFT approaches, such as scan and
BIST, an embedded test integrates high-speed and high
bandwidth portions of the external ATE directly into
the ICs. This integration facilitates the chip, board
and system level test, diagnosis, debug and repair [5].

The embedded test integrates multiple disciplines:
DFT features, BIST pattern sources and sinks (points
in a system chip to generate test patterns and consume
test responses), precision and high-speed timing for an
at-speed test, test support for many different core types
(logic, memory, processors and analog) and capabilities
for diagnosis and debug. With an embedded test,
the on-chip test data generation reduces the volume
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of external patterns and can be customized per core
type. Also, the on-chip test and diagnostic data com-
pression reduces ATE data logging requirements. More
importantly, the on-chip timing generation achieves
true at-speed testing that can scale to match process
performance [8].

The use of BIST in some of the most common
cores used in system-chips is briefly described next.

Random Logic Cores

Conventional BIST provides a typical, random logic
embedded test. This self-test is performed using a
pseudo-random pattern source as the stimuli generator
and a Multiple Input Signature Register (MISR) for the
output results compression. The random logic BIST
IP must be capable of operating at full application
speed [8].

Memory Cores

The nature of a core may also have an impact on
the internal test strategy. For example, almost all
memories today tend to use BIST. Hence, providers
of embedded memory cores typically incorporate BIST
wrappers in their memory core design [5,8]. Almost
all memory test methodologies use deterministic test
patterns to achieve a high quality testing of embedded
memory cores.

Analog Cores

Embedded analog cores, such as RF and telecommuni-
cation circuits, may be tested with a similar embedded
test approach to random logic and memories. The
analog embedded test automatically generates synthe-
sizable RTL codes, synthesis scripts and verification
and test patterns. Analog BIST allows at-speed testing
of analog cores using a standard digital ATE. For
instance, in PLL BIST [8], the RTL design objects
connect to only the inputs and outputs of the PLL
under test. No changes or connections to the internal
nodes of the PLL are necessary. A digital multiplexer
drives the input of the PLL. Testing the PLL is fully
synchronous, making it suitable for very high-speed
tests. PLL BIST measures the loop gain, frequency
lock range, lock time and jitter [8]. This is a character-
istic of advanced analog embedded test techniques [8].

Processor Cores

Test designers today tend to use a self-testing method-
ology for processor cores. This will be a software-based
test providing a test program made of deterministic
and random instructions and data run by a processor
core for testing itself. Testing the processor by running
test programs using the processor itself has several
advantages similar to at-speed testing, such as low cost
testing, low DFT overhead and elimination of some
additional test elements. In this case, test pattern
generation/delivery and signature analysis are done on-
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chip and applied at the speed of the processor. A
GHz processor core can test itself without relying on
expensive high-speed external testers [6,9-12].

Motivation and Contribution

Most approaches that use processors to test SoCs,
such as [13-15], implicitly assume that the embedded
processor and memory cores are already tested. In this
work, a test mechanism for testing these two important
cores is proposed to fill the void. The main contribution
of this paper is twofold. First, a BIST-based test
methodology is presented that utilizes an embedded
processor to test a SoC, including the processor itself.
Second, an efficient scheme is proposed to test embed-
ded memories using the on-chip processor.

The major components already found in most
SoCs are processors and memories. Testing processor
and memory cores is the focus of this work. The tested
processor and memory can be used efficiently for testing
the entire core-based system chip [13,14]. In complete
systems, embedded processors may be required to
run software routines for test pattern generation and
response evaluation [15]. The test scheme described
here is based on using a small test RAM in the SoC,
called test RAM (TRAM), to store the test program
and data related to each core, such as the processor and
memory. Practically, TRAM can be a dedicated RAM
module holding only the test program(s) or an existing
instruction memory sharing the space with normal
mode programs. In either case, a direct downloading
mechanism, e.g. DMA (Direct Memory Access), is
required to allow test programs to be stored in TRAM
before the test session begins. All of the test programs
related to the processor under test and other cores
that are tested by the processor, such as memories,
are stored in TRAM.

In the presented approach, first the processor
tests itself at-speed by reading its self-test program
from TRAM. Then, the tested processor can test the
embedded memory at-speed. Since testing is done
inside the system and the test program is read from an
embedded TRAM, only a low-speed device is required
for transferring the test programs into TRAM. It is also
assumed that a path is available from the system 1/0
pins to the TRAM, so that the test data and program
can be downloaded into the memory. This reduces the
need for high-speed expensive external testers. The
size of the test controller is very small because the
processor uses its normal-mode controller. Since most
of the testing processor, memory and other cores are
specified in software, the method is very flexible for: a)
Future change and reuse and b) Incorporating various
types of cores that may use different test methodologies
(e.g. BIST, scan, etc.) or even different fault models
(e.g. stuck-at-fault, functional fault, etc.).
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The rest of this paper is organized as follows. The
next section describes the embedded test for processor
cores and the main test architecture. Then, an embed-
ded test for memory cores is described. Experimental
results and implementation statistics for the proposed
architecture are presented next, followed by concluding
remarks.

EMBEDDED TEST FOR PROCESSOR
CORES

Embedded processor cores are used in many systems.
Core-based design offers several advantages, including
design reuse and portability to different ASIC systems.
This allows processors to be used in a variety of ap-
plications in a cost effective manner. However, designs
that include processor cores present new challenges for
testing, since access to these embedded processor cores
becomes further restricted from the pins of the SoC [9].

For future high-speed (GHz) SoCs, it will be
critical to test embedded processor cores at-speed.
Therefore, there is a growing need for self-testing of
embedded processor cores. By generating the required
test patterns on-chip and applying the tests at the
speed of a circuit, a high-speed processor core can test
itself without relying on high-speed and prohibitively
expensive external testers. Processors, due to their
complex control structures, are highly random-pattern-
resistant [6,16]. Acceptable fault coverage cannot be
achieved by simply applying random test patterns to
the entire processor. Structural techniques, like test
point insertion and using deterministic test patterns,
typically need to be performed to increase the fault
coverage.

Proposed Architecture

Implementation of the presented embedded test archi-
tecture to test an embedded processor core is shown
in Figure 1. This architecture can also be used for
memory testing with the aid of the tested processor.
TRAM can be an existing instruction memory or a
dedicated memory for test programs. The instruction
decoder and the processor controller execute the test
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Figure 1. A general view of the test architecture.
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programs similar to the normal mode. If needed,
appropriate hardware modules (e.g. Linear Feedback
Shift Register (LFSR)) provide random patterns to
feed to cores/blocks under test.

Depending on the cores under test and the test
budget, a hardware compressor/analyzer (e.g. Multiple
Input Signature Register (MISR)) may be used to check
the signatures or ask the processor to do the job.
The latter requires more time but does not have the
extra overhead for signature analysis. A hardware-
software MISR has been used in this architecture
where reading/writing from/into the MISR is done by
newly defined instructions and signature generation is
performed by the hardware of the MISR. This is similar
to LFSR. Generating the test patterns is done with
the hardware of the LFSR and reading the generated
patterns is performed by a newly defined instruction.
The most important advantage of this method is the
at-speed test generation and signature analysis. The
LFSR and MISR in this case are new elements for the
processor and an inseparable part of the processor data
path. Combined with other registers, LESR/MISR can
be controlled by instructions. Therefore, all blocks in-
side the processor core that can be controlled /observed
by LFSR/MISR are controllable/observable by instruc-
tions directly. This removes the necessity of having
additional multiplexors. Note carefully that no ex-
ternal test controller is needed, as all of the control
operations are performed internally. Only a low speed
ATE is used for transferring test programs into TRAM
in a DMA fashion. In processor testing, the processor
core can test itself by reading the processor self-test
program stored in TRAM. For memory testing, the
processor reads the memory test program and executes
it for testing the targeted memory core on SoC. For
other cores that are tested by the processor, their test
programs are read by the processor and executed [16].

Developing Test Program

The stored test program into TRAM consists of: 1)
A test program and some deterministic patterns for
testing the processor. A random pattern generator
provides random patterns when required (e.g. LFSR);
2) A program and deterministic patterns for testing
the embedded memories; 3) Other test programs for
testing the other cores on SoC, such as User Defined
Logic (UDL), various data path and controller cores,
etc. These programs are written in tested processor
assembly language. The embedded microprocessor and
memory pair will test the remaining components of the
SoCs.

Actually, the test program consists of normal
instructions that are executed by the processor core,
while the data are provided by using deterministic or
random patterns generated by the LFSR. Structural
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faults are targeted during component test generation
of the processor core. Component tests of the core
can be provided by using deterministic or random
patterns. For example, only deterministic patterns are
used for the Shifter unit and for other blocks, such as
ALU, in the processor, both deterministic and random
tests are used. In ALU testing, a loop segment reads
random patterns from LFSR, applies patterns to the
ALU and writes the results of the operations into MISR
for signature generation. The number of iterations of
this loop is determined using a technique to tradeoff
between fault coverage and test time. Clearly, the
number of instructions in the test program(s) does not
affect the test overhead, although it affects test time.
Eventually, the signatures obtained will be compared to
the fault-free signatures, pre-computed and pre-loaded
into the memory.

In general, writing the test programs depends on
the nature of the cores, the blocks within the cores, the
test methodology employed for each core and the level
of testability expected. In this work, it is assumed that
such information is available for each core targeting
the structural faults within the cores and the job of
the processor is to deliver the patterns (random or
deterministic) to the right ports at the right time and,
eventually, analyze the signatures.

New Instructions

Minor modifications to the processor controller and
the creation of new instructions are needed to accom-
modate test features. More specifically, the controller
uses added new instructions in the test mode. These
instructions are created for easy operation on test
generation and signature analysis at the speed of the
processor. In [17], a systematic approach has been
proposed to modify the VHDL code of a processor to
include test instructions and test controller systemat-
ically. Additional hardware components, e.g. LFSR
and MISR and suitable test instructions can be added
to allow test methodology applied to the selected cores
(see Table 1). The new instructions read or write
into/from the accumulator. These instructions are
added in the execute stage of the pipeline. LFSR and
MISR are not regular registers and new instructions
for these two registers perform two jobs when these
instructions are used. As shown in Table 1, since
LFSR is only used for read operations, an instruction
that reads the new content of the LFSR register, e.g.
MOV Acc, LFSR is created. For this instruction, first,
LFSR generates its new random data and, then, moves
it to the accumulator for application. MISR is used
for Read/Write operations. When the MISR is used
as a signature analyzer, the result of execution of an
instruction is loaded into MISR, e.g. MOV MISR,
Acc. In this case, first, the content of the accumulator
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Table 1. New instructions.

Instruction

Operations

Type of Operation

MOV Acc*, LFSR

1- Generates a new random data in LFSR, 2- Acc «— LFSR

Read from LFSR

MOV MISR, Acc

1- MISR « Acc, 2- Generates a new signature in MISR

Write into MISR

MOV Acc, MISR

1- Acc — MISR (Signature is loaded into Acc for comparison step)

Read from LFSR

* Acc: Accumulator

is loaded on the input lines of MISR, then, it is
applied to MISR and the new signature is generated.
When the value of MISR is needed to compare with
the pre-computed results from a fault-free circuit, the
content of MISR must be read, e.g. MOV Acc, MISR.
Hence, the random pattern generation and signature
analysis are performed, internally, at the speed of the
processor and the LFSR and MISR are considered as
new processor elements.

EMBEDDED TEST FOR MEMORY CORES

Other widely used cores today are the embedded
memories. Future SoCs are expected to embed very
dense memories of large sizes (256M bits or larger).
These dense memories may include: SRAMs, DRAMs
and/or flash memories. Almost all memory providers
today tend to incorporate BIST in memory core design.
They rely on embedded sources to generate input test
data and sinks to evaluate the output results. More-
over, since the embedded sink evaluates the memory
response data, the role of this sink could be slightly
expanded in order to perform diagnosis of the failed
bits [5,8].

Defects in the layout of memory are modeled
as faults in the corresponding transistor(s) diagram.
The electrical behavior of each defect is analyzed and
classified, resulting in a fault model at SRAM cell
level. Only spot defects are considered for memory
testing. These defects result in breaks and shorts in
the circuit [18,19].

In this section, the focus is on SRAM testing
in system chips. The tested processor uses the data
and address buses of memory for the testing process.
The deterministic test patterns stored in the embedded
TRAM use the data bus of the memory under test and
the processor uses the address bus of the memory for
read/write test data from/into each word of memory.
In the test process of the system chip, once the testing
of the processor core is completed, it is used to test the
embedded memories. It is referred to as software-based
BIST. The proposed architecture is also implemented
for testing embedded memories but there is no need to
use LFSR and MISR for the random pattern generator
and signature analyzer. In memory testing, only
deterministic patterns (e.g. marching 0/1) are used
as test data.

The 9N Test Algorithm

The pseudo code of the 9N test algorithm for a
Bit-Oriented Memory (BOM) has been presented in
Figure 2, where N is the number of addresses. It is a
march-based algorithm that uses marching ‘0’ and ‘1’
values 9 times. In the initialization and March element
1 and 2 steps, the all stuck-at 1/0 and transition faults
are checked. In March element 3 and 4, state coupling
faults (coupling faults between two adjacent cells at
one address) are covered. Because read and write
operations are done for each cell of memory, decoder
address faults are also detected. A data retention
test is added to this algorithm. The proposed wait-
time in the data retention test depends on the nodal
capacitance and the leakage current in a memory cell.
For example, in the Philips 8 K x 8, a wait-time of
100 msec was estimated. The 9N test algorithm is a
march-based test algorithm for memory testing [18,19].
The second column in the figure shows the type of
operation. The third column shows the increasing of
the required addresses for each step of the algorithm
and, finally, the algorithm needs 9 times read or
write operations from or into the N address of the
memory [18,19].

The 9N test algorithm is written in the assembly

// Begin Marching Type of
// N: The number of bit addresses Operation
// Initialization
Write ‘0’ in addresses 1 to N; Wr0 1N
// March element 1
Read ‘0’ from addresses 1 to N; Rdo 2N
Write ‘1’ in addresses 1 to N; Wri1 3N
// March element 2
Read ‘1’ from addresses 1 to N; Rd1 4N
Write ‘0’ in addresses 1 to N; ‘Wr0 5N
// March element 3
Read ‘0’ from addresses N down to 1; RdO 8N
Write ‘1’ in addresses N down to 1; Wrl N
// March element 4
Read ‘1’ from addresses N down to 1; Rd1 8N
Write ‘0’ in addresses N down to 1; Wro 9N

// End Marching

// Data retention test
// Wait
Pause RAM for 100 msec;
// March element 5
Read ‘0’ from addresses 1 to N; Rdo
// End of the 9N Algorithm

Figure 2. The pseudo code of the 9N algorithm for a
bit-oriented memory.
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language program of the embedded processor core and
stored into the TRAM. Although the 9N algorithm
was used, any memory test algorithm can be adopted
and used as the test program. When the processor
enters the test mode for testing the embedded memory
cores, it simply runs the test program corresponding
to the 9N algorithm. It can be proven that the 9N
test algorithm detects all faults of the fault model [20].
The test algorithm detects all stuck-at, transition, state
coupling, multiple accesses and stuck-open faults.

Word-Oriented Memory (WOM) Test

Word-oriented memories contain more than one bit per
word; i.e., B > 2, where B represents the number of
bits per word and usually is a power of two. Read
operation reads the B bits simultaneously and write
operation writes data into the B bits of memory.
Many different data backgrounds are used for testing
the word-oriented memories [21]. The fault model
for word-oriented memories can be divided into two
classes: 1. Single-cell faults: this class includes stuck-
at, stuck-open and transition faults and 2. Fault
between memory cells: this class of faults consists of
coupling faults.

The 9N algorithm reads and writes ‘0’ and ‘1’ to
each bit cell in bit-oriented memories, while it needs
to be converted for word-oriented memories. March
tests for bit-oriented memories can be converted to
march tests for word-oriented memories by taking into
account that in the bit-oriented memory tests, the
‘Rd0’, ‘Rd1’, ‘WrQ’ and ‘Wrl’ operations are applied
to a single bit. In the case of word-oriented memories,
an entire word of B bits has to be read or written; the
data value of this word is called the Data Background
(DB). Figure 2 shows that the data backgrounds in
a bit-oriented memory for consecutive read and write
operations are ‘0’ and ‘1’. In bit-oriented memory, if
‘0’ is data background (DB), ‘1’ will be considered as
the inverse data background (IDB).

Word-oriented SRAMs introduce the problem of
state coupling faults between two cells at one address.
To detect these faults, all states of two arbitrary cells
at the same address must be checked. This is only
possible if several data backgrounds are used. A
minimum of K data backgrounds will be needed where
K = [log, B]+ 1. In many memories, B is the power of
two, then, the formula is simplified to: K = log, B+ 1.
For example, for a memory with B = 4, then K = 3
and the DBs are: “0000”, “0101”, “0011” and IDBs
are: “1111”7, “1010” and “1100”. In the converted
9N algorithm for word-oriented memories, for read
operation, ‘RdADB’ and ‘RAIDB’ are used instead of
‘Rd0’ and ‘Rd1’. Similar generalization is needed for
write operations in this algorithm. It can be easily
verified that for any two cells, all four possible cases
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(i.e. ‘00°, ‘10°, ‘01’ and ‘11’) occur. Therefore, the
coupling between any pair of cells in the same address
is checked [21].

K(9M) Algorithm

The pseudo code of the K (9M ) algorithm for the WOM
test has been shown in Figure 3, where M is the
number of word addresses and K is the number of data
backgrounds. The K(9M) is a converted version of the
9N algorithm in WOM test mode.

The data backgrounds and inverse data back-
grounds (DBi and IDBI) for a 32K-16 bit memory are
shown in Table 2.

In the 9N algorithm, N is: N = V.B, where V
represents the size of memory and B is the number of
bits per word. In the BOM test, the total number of
read and write (R/W) operations is: Ngom = 8.V.B.In
the K(9M) algorithm, M is: M =V, Nwom = K.8.V
and, then, (Nwom/NBom) = K/B. As seen, the
number of R/W operations in the WOM test is much
lower than the BOM test. It shows that in the WOM
test, the total number of R/W is reduced dramatically
when the number of bits (B) is increased. For example,
in a 32K-16 bit RAM, B = 16, K = 5 and, then,
K/B = 5/16. Converting the BOM test algorithm to

Table 2. DBi and IDBi for a 32K-16 bit memory, B = 186,

K =5.
i 1 2 3 4 5

DBi 0000 5555 3333 0FOF | 00FF

IDBi | FFFF | AAAA | CCCC | FOF0 | FF00

// Begin Marching Type of
// M: The number of word addresses Operation
For i=1 to K Loop;
// K = The minimum of data backgrounds
// Initialization
Write ‘DBi’ in addresses 1 to M; ‘Wr DBIi

// March element 1 1M
Read ‘DBi’ from addresses 1 to M; Rd DBi
Write ‘IDBY{’ in addresses 1 to M; Wr IDBIi [2M

// March element 2 3aM
Read ‘IDBi’ from addresses 1 to M; Rd IDBIi
Write ‘DBi’ in addresses 1 to M; ‘Wr DBi [4M

// March element 3 5M
Read ‘DBi’ from addresses M down to 1; Rd DBIi
Write ‘IDBi’ in addresses M down to 1; Wr IDBi (6 M

// March element 4 ™
Read ‘IDBi’ from addresses M down to 1; | Rd IDBIi
Write ‘DBi’ in addresses M down to 1; Rd DBi |8M

// End Marching oM
// Data retention test

// Wait
Pause RAM for 100 msec;

// March element 5
Read ‘DBi’ from addresses 1 to M;

End Loop;

// End of the K(8M) Algorithm

Rd DBi

Figure 3. The pseudo code of the K(9M) algorithm for
WOMs.
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Figure 4. A test evaluation framework for processors.

a WOM test algorithm can be performed for all of the
memory test algorithms.

EXPERIMENTAL RESULTS
Case Study: UTS-DSP

A UTS-DSP processor is the case study in this paper
and its structure is briefly described in this subsection.
The UTS is compatible at the instruction set level
with TT's TMS320C54x DSP processor family, which
has CISC architecture. This is a fixed-point digital
signal processor designed in the VLSI Circuits and
Systems Laboratory, Department of Electrical and
Computer Engineering of the University of Tehran.
The UTS-DSP Central Processing Unit (CPU), with
its modified Harvard architecture, features minimized
power consumption and a high degree of parallelism.
Also, the versatile addressing modes and instruction
set improve the overall system performance. In this
system, there are the processor cores, SRAM and ROM
and some interface units, such as Serial Port Interface
(SPI) and Host Port Interface (HPI) [22,23]. Testing of
the two main embedded cores in SoCs, i.e., processor
and memory cores, is discussed here. The processor
core is comprised of some functional blocks, such as
ALU, Shifter and Multiply/Accumulate (MAC) units.
The testing of each functional block has been done in
the processor-testing phase.

Processor Testing Results

A testability analysis of each block was first performed
within the processor. Then, a complete self-test
program for testing the embedded processor core of
the UTS-DSP has been written. To evaluate the fault
coverage of a test program on the processor under test,
a test evaluation framework has been established, as
shown in Figure 4. As shown, the compiler takes the
code of the test program written in processor assembly
language and prepares a .Ist file [24]. A converter
program (written in C language) converts the .Ist to a
.dat file (memory readable format}. This file contains
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Table 3. Processor testing results.

Fault Coverage > 95%
Clock cycle 162,500
Test time

(For a processor with f = 65 MHz) 2.5 msec
Number of words of TRAM for a

complete processor test program 350

the instructions and data that are used as a test bench
for the VHDL simulator. In reality, the test bench is
a program to be executed by the HDL simulator on
the codes corresponding to the faulty and fault-free
cores. This simulation is like executing an assembly
program on a processor in terms of checking the
functionalities and possible errors. The HDL simulator
takes the design description (faulty/fault-free), runs
the test bench and captures the input signals to the
processor. A “C” program performs the fault injection,
automatically, into the HDL code of the core.

A structural/net coverage is undertaken that is
a good estimate of the fault coverage in practice.
Accurate fault coverage cannot be obtained. The
structural/net coverage can be captured much faster
while it shows the same trend in terms of quality
of testability. Test program development has been
performed based on covering nets and structural com-
ponents. As shown in Figure 4, the fault coverage is,
eventually, determined by comparing the fault-free and
faulty responses. Fault coverage and test time for one
of the best programs is shown in Table 3. This program
occupies 350 words of TRAM. The total area overhead
for processor testing is negligible. It consists of one
16-bit LFSR, one 16-bit MISR, some control elements
for executing the new instructions and 350 words of
RAM. This area overhead, compared to the size of the
processor core, is negligible.

Memory Testing Results

The same process is also performed for embedded
SRAM testing with a test program and a defined
fault model. The SRAM test program that is written
in assembly language occupies 88 words of embedded
TRAM. In this case study, there is a 32K 16-bit SRAM,
then, B = 16, K = 5 and the algorithm will be 5(9M).
The results of these experiments are shown in Table 4.

This table shows that the K{9M) algorithm
covers all of the faults under the defined fault model
for memory, such as stuck-at, transition, decoder
address and state coupling faults, while other methods
cannot cover all faults. The Marching 1/0 method
does not detect state coupling fault, but is performed
faster. The Checker pattern method cannot cover
state coupling fault and it covers 50% transition
faults. In this case, this method only covers ‘0’ to
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Table 4. Comparison of several methods for a WOM (M = number of addresses).

GALPAT | Checker | Marching K(9M)
Algorithm | Pattern 1/0 Algorithm
Complexity K(4M?) K(4M) K(6M) K(9M)
Stuck-at Fault Yes Yes Yes Yes
State Transition Fault Yes 50% Yes Yes Yes
Decode Address Fault Yes No Yes Yes
State Coupling Fault Yes No No Yes
32K SRAM (f=65MHz) 9hr 31msec 46msec 81 msec
‘1’ transition and cannot detect ‘1’ to ‘0’ transition REFERENCES
fault. This algorithm is faster than other methods. . .
1. Gupta, R.K. and Zorian, Y. “Introducing core-based
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