Scientia Itanica, Vol. 10, No. 4, pp 436-442
© Sharif University of Technology, October 2003

A Near Optimal Midcourse Guidance
Law Based on Spherical Gravity

A.R. Deihoul* and M.A. Massoumnia'

In [1], an optimal midcourse guidance law for close distances, where the difference of gravity
for interceptor and ballistic missile is negligible, was introduced. There, a closed form solution,
based on an optimization problem, was found, with very good performance for close distances
but degraded performance in real problems with unequal gravity for missile and interceptor. In
this paper, the difference of gravity is taken into account by considering a spherical gravity

model. A new equation to express the relative motion between missile and interceptor is

used to derive a “Near Optimal Guidance Law".

The results found using the new derivation

are similar to those in [1] but it provides a guidance law with matrix coefficients. Next,
the performance of the guidance law is improved using Kepler's algorithm. This modified
approach results in an almost perfect intercept, even for large distances between missile and

interceptor.

INTRODUCTION

Intercepting a ballistic missile is an important problem
in air defense systems where an offensive ballistic mis-
sile (called missile) is intercepted by another defensive
missile (called interceptor). Recent experience has
shown that attacking ballistic missiles after re-entry
is not a good strategy. It is much more effective to
attack the ballistic missile before the re-entry phase,
when the missile is outside the sensible atmosphere and
is not maneuvering. For this, usually, an interceptor
is fired toward the missile, which, after midcourse
guidance, coasts ballistically toward the target and
during final engagement fires a kill vehicle to achieve
actual intercept.

It is clear that an optimal guidance law for the
interceptor during the midcourse phase will minimize
missile effort during the final intercept phase. There-
fore, interceptor guidance during the midcourse phase
is vital to actual intercept. In this paper, a near
optimal midcourse guidance law for an interceptor is
presented that uses thrust vector control during a fixed
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maneuvering interval. The important point to consider
in this paper is spherical gravity and, based on this
consideration, a near optimal guidance law is found for
this problem.

The optimal guidance law for constant gravity has
been derived in [1] and some non-optimal law for non-
constant gravity has been introduced in [2]. The main
difference between this paper and [1] is the separate
consideration of gravity for the missile and interceptor.
This work also differs from [2] in terms of the near
optimal guidance law and clear explanation of the
results obtained.

The presentation is organized as follows. In
the next section, the problem is formulated using a
spherical gravity model. Then, a closed form solution
for a near optimal guidance law is derived, based on
a linearized formula for the relative motion. The
dynamical equation derived here is similar to the one
given in [1] but with small differences that lead to a
guidance law with matrix coefficients. This guidance
law is not exact and results in small errors, due
to the approximations used in deriving the relative
motion. Consequently, the impact error, due to linear
approximation, is removed using Kepler’s algorithm.
This approach leads to a perfect intercept. Finally,
sample simulation results are presented and these
results confirm the good performance of the improved
guidance law, based on Kepler’s algorithm.
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PROBLEM FORMULATION

First, the missile (M) and interceptor (I) equation of
motion is described by considering the flight regime
outside the atmosphere for both objects. Assuming
no aerodynamic force, the equation of motion for the
missile during the midcourse phase can be described as
follows:

RM IVM, (1&)
Vi = Gu. (1b)

Here, Vi is the velocity vector, Ry, is the position
vector and Gy is the gravitational acceleration of the
missile.

The equation of motion for the interceptor during
the midcourse phase can be described as follows:

Ry =V, (2a)
VIZG]+A]. (2b)

Here, V; is the velocity vector, R; is the position
vector, Gy is the gravity acceleration vector and A;
is the thrust acceleration of the interceptor. The
relative position and velocity of the missile is usually
required because the objective is to minimize the
distance between missile and interceptor. Hence, let
the relative position and velocity be denoted by R and
V, respectively. Using the definition of the relative
quantities, one has:

R =Ry — Ry, (3a)
V=Vy-V. (3b)

Subtracting Equation 2 from Equation 1, the relative
dynamic equation can be written as follows:

R=Y, (4a)
V=G-A, (4b)
Here, G is the gravity difference and is defined as
follows:
G=Gu-Gr. (5)
In close distances, where R is close to Ry,
assuming equal gravity for missile and interceptor
removes the nonlinear term, G, in the relative equations
of motion (Equation 4b). But, for large distances,
it is more appropriate to take the gravity difference

into account. Note that by assuming an inverse square
gravity law, G; and G can be written as follows:

——R], (6&)

—Ruy. (6b)
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Here, p is the gravity constant and R represents the
length of the vector R.

Now, an appropriate objective function is derived
for the specific problem. The goal here is to minimize
the distance of missile and interceptor at the final time,
Ty, by commanding an appropriate acceleration control
vector, Ay, during the finite time interval from ¢ to ¢,
where t; denotes the thrust burnout time and ¢ can
be any time between 0 and t;. Now, the objective
function can be formulated in terms of the relative
positions at final time and acceleration effort during
the maneuvering interval, as follows:

ty
T 1
mmJ—ER%”mg”+§/Aﬂﬂm“an@

V=-A4+Gy -G, R=V. (7b)

Here, Ty is the time of intercept and ¢; is the time
of burnout. Note that here, Ty > t;, since there is a
relatively long coast time after burnout and ~ is the
weighting factor for this optimization problem.

In order to solve the said optimal control problem,
a more tractable formulation should be found for the
relative gravity difference, G. For this, the physical
problem is considered, where the relative gravity is due
to two factors: One is the difference in height and the
other is the difference in direction.

First, note that the important term in Equation 5
is the difference in direction of R; and Ry . One can
omit the nonlinear term of the relative gravity equation
by setting the length of position vectors with an average
quantity. Using this strategy, the nonlinear term can
be replaced with a constant term, R,,, so the relative
gravity formula can be rewritten as follows:

1 1 1 n

= R, G=-
3 3 ’ 3
R‘I R‘M RZV R‘au

R. (8)

In a real problem, where the geometric positioning
of the missile and interceptor is clearly defined, the
best value of R,, can be computed using computer
simulations. However, the authors’ experience shows
that the performance of the guidance law is not very
sensitive to the value of R,,.

NEAR OPTIMAL GUIDANCE LAW

Based on formulas which were defined in the previous
section, the optimal control problem of Equation 7 can
be written in a new form as follows:

ty
mmﬂ=%3%nman+%/Aﬂﬂmumﬂ

t (9a)
V=-A;+E.,R, R=V, (9b)
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where:
1
Eau = —[LRE; . (9C)

For obtaining an ordinary optimal control prob-
lem where there is only one final time, it is necessary to
omit one of the final times, T or t5, from the Formula
9a. For this, the relative position vector at time 7%
can be found, with respect to the relative velocity
and position vector at time ¢y, using a Taylor series
expansion at time ty, as follows:

R(Ty) = R(ty)
21 [ om
5 (sem) o]
R d2n+1 N
Z 2n+1 <t2"+1R) Ty =t
n=0 t=tg

(10a)

Using Equation 9b, the derivatives of R can be found
by noting that the thrust is zero after burnout. Hence,

[45eB],_, = [Bw]" Rity),

= [Eau]n V(tf), (10b)

q2ntl
| &R
t=tg

Next, the scalar functions f; and f; are defined in terms
of Ty — ty, using the above equation as follows:

R(Ty) = fiR(ts) + 2V (E5), (11a)

fi=1+3] [2%. [Ear]™ * (Ty - tf)%] ,
n=1 :

i [ 2n+1)'

(Ea]™ (Ty - tf)(%“)} . i)
11

Note that in [1], the formula given in Equation 11a was
used but with f; and fo computed as follows:

fi=1,

f2=T5 - ty. (12)
By defining a new variable, A*, as follows:

A*=A-FE,. R, (13)

the optimal control problem of Equation 9 becomes
identical to the optimization problem in {1}. Therefore,
the optimal acceleration has the form of state feedback
and can be written in terms of R and V as follows:

A;pt = KrR+ KyV, (14

~—
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where the optimal feedback gains, Kv and Kg, are
computed using the following formulas:

Ky(t) = [f2+f1tb]2

-1
* tl +t [f22+f1f2tb+f12tl2)/3]J :
g (15a)

Kg(t) = [if2 + i)
-1
* ll +to [f7 + frfats +f12t,2,/3]J .
v (15b)

ty is time to burnout, {, =ty —¢.

Now, returning to the problem, the optimal accel-
eration, Aopt, can be computed by solving Equation 13
for A and substituting in Equation 14. Therefore, the
optimal acceleration is:

Aopt = KvV + (Kr + Eo)R. (16)

The above guidance law works well when there is not
too much change in the altitude of the missile and the
interceptor during the coast phase after burnout. But,
in actual cases where the duration of the midcourse
phase is too long, with large variation in the missile
and interceptor altitude, it can result in appreciable
error.

To improve performance in these cases, the fol-
lowing formula is used for the relative motion:

2
g--—R EMRM E[R] (17&)
dtz
Here:
© ©
Ey=—-—==, Er=-—=. (17b)
R R}

Next, Equation 17 is rewritten in such a way that the
right hand side becomes linear in R. For this, first,
Equation 17 is rewritten by adding and subtracting
E; Ry, as follows:

2
;—R E/R+ (Epm — Ef)Rum (18)

Now, the last term is multiplied and divided by the
inner product of R and Ry and, hence, the right hand
side of Equation 17 can be rewritten, as follows:

d? R . Ry

E;R E/R + (EM E])R Ry

Ru. (19)

Using algebraic vectors in Cartesian coordinates, this
relation can be rewritten as follows:

[£R] = 51 + g Ru)RuIT| (R, (20)
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here, |R| denotes the algebraic vector of R in a
Cartesian coordinate.

Now, assuming that the R term (which appears
inside the first bracket of the right side of Equation 2),
is constant and has a value of Rp, and R is assumed
to have a value of Ry — R¢, the term inside the bracket
becomes a function of time and the right hand side of
Equation 20 becomes linear in R. Thus, one obtains:

[£5] = IRl (21a)
E= [Ez*l + %[RM”RM]T] : (21b)
Here:
7 ~H
E = _Fr
"7 TRw — RelP

Note that the £ matrix defined in Equation 21b is a
symmetric matrix and a reasonable estimate for Ry,
and Rc appearing inside the bracket is the value of
Ry and R at the beginning of the guidance period.

Based on the equation of motion appearing in
Equation 21, the optimal solution of the last section
can be modified using the following procedure. First,
note that R at time Ty can be described in terms of
V at time t; and R at time ¢s, using the following
relation:

R(Ty) = FiR(t) + BV (ty), (22)

where Fy and F; are the matrix equivalent of f; and
fo appearing in Equation 11b. Using a Taylor series
expansion, the following relation can be derived for Fy
and FQI

Fi=1I+ z_:l [%E"(Tf - tf)%] , (23a)
F= i [;E"(T —t )<2"+1>] (23b)
T @nr ) Fm '

Note that these relations are, in principle, generated
from Equation 11b by substituting the matrix E for
the scalar E,, . ‘

Note that solving the resulting optimal problem
in this case is much more difficult than solving the
problem in the last section. To circumvent this
difficulty, the optimal guidance law of Equation 14 is
used and the matrices F; and F, are simply substituted
for the scalars f; and fo computed in Equation 23.
Using this substitution, the following guidance law is
obtained:

Aopt = KyvV + (Kg + E)R, (24)
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where the matrices Ky and Ky are computed using
the following relations:

Ky(t) = [F2 + Fit,)?
1 -1
* [—I + by [F7 + FiFaty + Fft§/3]J .
v (25a)

Kg(t) = [ Fy + F2ty)

1 -1
* [—I +t [F§ + FiFaty + Fft§/3]J .
v (25b)

Clearly, there is an approximation in deriving this
guidance law. The error due to this approximation
results in little error in actual intercept.

Note that the guidance law proposed here is
similar to the one appearing in the last section, the
main difference being in the form of the state feedback
gains. Here, the gains are matrices but the gains
appearing in the guidance law of the last section are
scalars.

Simulation results show that the performance of
this guidance law is much better than the guidance law
proposed in the previous section. The impact error
is usually less than 100 m for a coasting distance of
1000 km. However, the guidance law of the previous
section results in impact error of about 6 km for the
same problem. Of course, even this small error can
be removed using a procedure based on predicting the
miss distance using Kepler’s equation. This procedure
is outlined in the next section.

Improved Miss Calculation Formula

In the guidance law of the previous section, relative
motion after interceptor burnout was computed using
the approximate equation of motion given in Equa-
tion 22. The error of this equation during this free fali
phase is the major cause of impact error. Basically, the
guidance is trying to remove the impact error computed
using approximate Equation 22 and is quite successful
in doing so.

To remove impact error, the error due to the
motion computation must be removed during the free
fall phase. For this, the position of the missile is
computed using Kepler’s equation [3] and an estimated
value for the impact time. A similar technique is
also used to compute the interceptor position at the
estimated impact time. However, for the interceptor,
it is assumed that the missile burnout time is the
present time during each computation cycle. Note that
in order to use Kepler’s equation, it is necessary to
consider this assumption. Of course, the accuracy of
this computation increases as the interceptor gets closer
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to burnout time and, basically, there will be no error
at actual interceptor burnout time.

After computing the missile and interceptor posi-
tion at the estimated impact time, miss distance, which
is the difference between these two position values, is
computed using the following simple relation:

Rmiss = RM(Tf) - RI(Tf) (26)

Now, there are two options for removing the miss dis-
tance. The first technique is to multiply the computed
miss distance by an appropriate gain and command this
as an acceleration to the interceptor. For the gain in
this case, the gains computed in [1] can be used. A
procedure similar to this is outlined in [2] but the gain
is not optimal. Note that the computed acceleration,
here, is not necessarily optimal by any means, because
the gains computed in [1] are based on a flat earth
approximation.

In the second technique, the miss distance, Ruyiss,
is used to compute a residual acceleration command
that is added to the acceleration command computed,
using the near optimal guidance law proposed in the
previous section. This residual acceleration is com-
puted as follows. First, an estimated miss distance is
computed using the approximate Relation 22 based on
the Taylor series expansion at the present time. Let
this miss distance be denoted by R.iss. Next, the true
miss distance is computed using Kepler’s algorithm,
denoted as Rmiss. S0, the error is the difference of
estimated and true miss distance, which can be used
for removing the miss completely, as follows:

A Rmiss = Rmiss — Rmiss- (27)
Now, the residual acceleration is computed by mul-
tiplying the residual miss, ARpmiss, by gain values
introduced in {1], as follows:

tg

AAf =
Lttty + tyts + tits/3)

AR pmiss- (28)

Here, t, is time to go until intercept and is defined as,
ty = Tf — 1.

It is very interesting that by using this tech-
nique, the error of the guidance law can be removed
completely and, also, a near optimal profile for the
acceleration command can be achieved.

SIMULATION RESULTS

The example of [2] is used as a bench mark for
comparing the performance of different guidance laws
proposed in this paper.
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Let it be assumed that the initial position and
velocity of the missile and interceptor are as follows:

Ry(t = 0) = (1000000, 0, 6800000)[m],
Vi (t = 0) = (—4000, 0, 200)[m /sec],
R;(t = 0) = (0,0, 6500000)[m],

Vi(t = 0) = (600, 0,400)[m/sec].

Also, set the weighting factor 7, appearing in Equa-
tion 9, to 100 and assume the nominal burnout time,
t;, and impact time, Ty, are 25 and 150 seconds,
respectively.

A simple computation shows that the initial dis-
tance between missile and interceptor is about 1000 km,
which is quite large. In this section, the performance
of three guidance laws are to be compared under these
conditions.

First, the optimal guidance law in [1] is applied to
the problem in hand. In this law, it is supposed that
the effect of gravity is constant for a ballistic missile
and interceptor.

Figure 1 illustrates the relative distance between
ballistic missile and interceptor. The miss distance,
Riiss, is around 6000 meters in this case. This large
error is mainly due to gravity variation during the
interceptor trajectory. Also, in Figure 2, the profile
of acceleration is shown for this example.

The second simulation uses the near optimal
guidance law with matrix gains. In this guidance law,
the effects of gravity variation are considered in the
relative equation of motion. Therefore, an improved
performance is expected, which can be seen in Figures 3
and 4.

Figure 3 shows the relative distance in this case.
As is clear, Ruiss, in this case, is reduced from 6000 m
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Figure 1. Relative distance using guidance law and
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T T

300

Command accel. (m/s?)
—
®
S

140

Time (second)

Figure 2. Thrust acceleration using guidance law and
assuming flat earth.
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to less than 100 m, computed in the first simulation.
Also, Figure 4 shows the profile of acceleration in this
example. )

Third, Kepler’s equation is used to compute the
real miss and remove error using the procedure outlined
previously. Since, in this case, gravity effects are taken
into account completely, an even better performance is
expected.

Figure 5 shows the relative distance between
ballistic missile and interceptor in this case, as
well as the profile of acceleration in Figure 6. It
can be seen that, here, R, is reduced to less
than 1 meter and has a better acceleration pro-
file. This is a very good result. Therefore, by
applying this new guidance law, an almost perfect
intercept can be achieved with less effort in burnout
time.

Guidance law with matrix gains and

12 x10° correction using Kepler’s miss calculations
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Figure 4. Thrust acceleration using guidance law with
matrix gains.
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CONCLUSIONS

The simulation results illustrate the excellent capabil-
ity of “Near Optimal Guidance Law” and “Improved
Miss Calculation Formula” in reducing the relative
distance between a ballistic missile and an interceptor
at impact time. The improved ‘miss’ calculation can
also be used for the optimal guidance law of [1] and
will reduce the 6000 m ‘miss’ to less than 1 meter,
the same as the result obtained for the near optimal
guidance law that reduces 100 m ‘miss’ to less than 1
meter.

Therefore, in cases where one can compute the
‘miss’ distance using Kepler’s algorithm, there is not
too much difference between the guidance law proposed
here and the one given in [1]. But, in cases where

A.R. Deihoul and M.A. Massoumnia

one cannot directly compute the ‘miss’ distance, the
guidance law, proposed here, has superior performance.
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