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Buffer Allocation Problem, a Heuristic Approach

S.K. Chaharsooghi* and N. Nahavandi!

Because of the fundamental role of production flow lines in modern industry, considerable
attention has paid to how improve their efficiency. A particular performance measure indicating
efficiency is throughput. Throughput is the number of completed units of work per time period
in steady state. In general, the throughput of a production line increases, or at least remains
constant, as the buffer capacities increase. A larger throughput is usually the consequence of a
larger buffer configuration, which, in turn, yields a larger inventory accumulation. One of the main
problems with designing a production flow line is to determine the appropriate amount of buffers
between stations in order to achieve the goals. This is known as a Buffer Allocation Problem
(BAP). The BAP is a nonlinear, multi-objective one in integer variables. The purpose of this
paper is to present a heuristic algorithm to find the optimal allocation of buffers that maximizes
throughput. The main idea is to find the amount of buffers under which the system operates,
as a system with infinite buffer capacity, so the stations will be independent of each other and
throughput becomes maximum. Numerical results are used to demonstrate the accuracy of the
proposed algorithm. The algorithm finds the allocation where it's throughput is maximum, or
only slightly less than maximum, but where it's total buffer capacity is considerably less than

optimal allocation.

INTRODUCTION

Buffers have a significant impact on the performance
measures of a production line. The particular per-
formance measures of a production line are WIP and
throughput that are representative of the effectiveness
and efficiency of operations.

Higher effectiveness implies lower WIP levels and
higher throughput means higher efficiency in flow lines.
Therefore, efficiency and effectiveness contradict each
other in flow lines. When the capacity of a buffer is
increased, the throughput increases at a decreasing rate
and becomes asymptotic to the case with an infinite-
capacity buffer. So, a larger throughput is usually the
consequence of a larger buffer configuration, which, in
turn, yields a larger inventory accumulation. Thus, the
operation of a flow line having a higher throughput,
obtained by placing buffers between the stations, may
not be quite as effective due to its inventory buildup.

Thus, the main goals in designing the flow line
are to maximize efficiency and effectiveness. The
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problem is to determine the appropriate amount of
buffers between stations in order to achieve these
goals. So, the Buffer Allocation Problem (BAP) is a
combinatorial optimization problem and the problem
can, therefore, be written as nonlinear and multi-
objective with integer decision variables that are the
buffer capacities.

This paper is organized as follows: In the follow-
ing section, mathematical programming and generative
models that are used to solve BAP are reviewed.
In the next section, the proposed heuristic algorithm
is explained and is validated by numerical examples.
Finally, a summary and a conclusion are described.

LITERATURE REVIEW

Several previous studies exist in the literature that
focus on the problem of determining the inventory
buffer requirement. The buffer allocation problem is,
essentially, a combinatorial optimization problem. The
decision variables are the buffer capacities, denoted by
z; for the ¢th buffer. Since buffers include the positions
on the machines, x; will be at least one and only
takes integer values. Lutz illustrated the combinatorial
nature of the buffer allocation problem [1]. He showed
the complexity of the problem by identifying the
possible buffer allocation combinations; assuming that
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Figure 1. Flow line.

in a flow line there are n + 1 stations and, so, there are
n buffers between the stations and the total storage of
u units is selected as described lin Figure 1, where S;

represents station ¢ and B; is buffer ¢.
The number of different ways of allocating u
storage space to n buffers can be determined using
uw+{n—1)
u |
called a buffer profile, since each represents a unique
combination of storage allocation and each will po-
tentially result in a different odtput level of the line.
The total number of buffer profiles for a line with up
to u total storage space and n buffers, is the sum
of the previous formula over the range of 0 to w,

1T The line with

. Each of these buffer arrangements is

which yields this formula

3 buffers and up to 3 total sforage spaces, has 20
buffer profiles. If the problem is expanded to a five
buffer line, evaluating up to 25 ior more storage levels
would require examining over 142,000 different buffer
profiles [2]. In the following section, mathematical and
generative models for solving BAP are reviewed.

Mathematical Programming Models
|

The buffer allocation problem is a stochastic, nonlinear
programming problem with an integer decision vector.
This problem is formulated as a nonlinear multiple-
objective programming problem where the decision
variables are the integers. Not only the BAP is a
difficult NP-hard combinatorial optimization problem,
but also it is made all the more difficult by the fact
that the objective function is not obtainable in closed
form to interrelate the integer decision variables, Z,
and the performance measures such as € throughput,
L work-in-process, YT total buffers allocated and
other system performance measures, such as p system
utilization for any but the most trivial situations.

Different types of mathematical programming for-
mulation are written in accordance with the objectives.
General formulation is as follows [3]:

Extremize Z = {fi(z), f2(z), -, fp(Z)},
st. ¢:i(2) €0,
where:
f1(Z) = average system throughput (6),
f2(%) = average work-in-process (L),
f3(2) = total buffers allocated (3, z),
f»(Z) = average system utilization (p),
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The other form of problem can be formulated as
follows:

maxf = f](ff),
s.t. in =u,

In this form, the problem is to determine how to
distribute a finite sum of buffer space, u, in a flow line

“with n + 1 stations. Recently, Harris and Powell de-

veloped an algorithm that efficiently found the optimal
allocation for this problem [4]. This formulation does
not consider the undesirable side of increasing buffer
capacities, that is, holding high WIP levels. The other
form is to consider both throughput and WIP in an
objective function [5]:

P1: maximize Z = (R-V)§ — HL

st. z,>1, +=1,23,---,n,

where R is average revenue per unit, V is the average
variable production cost and H is the average holding
cost per unit.

Another way is to minimize the total buffer space
for a given desired and feasible throughput, §’. That
is:

P2: miani

st. 6>60, z;,>1, i=1,23,---,n.

Smith and Daskalaki modified formulation P1 and
added another penalty term to the objective function
to ensure that the buffers allocated were further penal-
ized [6]. Thus, the objective becomes:

P3: maximize Z = (R—-V)§ - HL — C’in.
For further description, refer to [3].

Generative Models

The difficulty in all the mentioned optimization prob-
lems is that there are no explicit expressions for average
system throughput, 6, and average work-in-process,
L, in terms of z;. These are usually obtained from
the steady-state distribution of the jobs in the buffers.
Thus, due to a lack of differentiable functions that
are usually assumed in classical optimization problems,
the approach used to solve the above optimization
problems may be an ad-hoc one.

The general procedure is used by most researchers
to find the optimal buffer levels. In this procedure, an
evaluative model is used to obtain system performance
measures, i.e. the mean buffer levels, which are then
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used by the generative model in its search for the
optimal value for a given objective function. Usually,
either a queuing network model, a simulation model or
an approximation model is used in evaluative models.
Simulation models, when used in optimization scheme
like this, have the disadvantage that only parameter
estimations can be obtained. But simulation has the
obvious advantage that arbitrary system configurations
and the transient phase can be modeled.

In general, four generative (optimization) meth-
ods are used in the literature to search for optimal
buffer sizes. In Table 1, a number of buffer optimization
models for flow line are given. This table is based on an
original table taken from [7] with additional references
added.

Increasing Buffer Size by One at a Time

The simplest method is to change the buffer size
manually, in increments of one. Another name for
this method is the enumeration method [7]. It is
obviously feasible for a very small system and in cases
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of designing balanced production lines with equal buffer
sizes between work centers or production lines with a
central buffer storage for in-process inventories [8].

Factorial Design of Experiment

The factorial design of an experiment is one of the
simultaneous search methods with multiple variables.
If one is unable to determine a specific mathematical
form for the response function, such as throughput rate
over buffer size, it may be useful to design a set of
possible experiments in order to obtain information
about the direction of an optimal solution. As the
length of a production line increases, it is more difficult
to process statistical insights into relations of system
performance with buffer size, unless a large number of
function evaluations are made. Thus, although this
method can provide a brief insight into the possible
location of the optimal solutions within the study
domain, it may fail to provide a global optimum buffer
size.

Table 1. Research pertaining to buffer allocation problem in flow line.

Numb f
Authors [7] Methodology Objective um .er °
Stations
Evaluative Model | Generative Solution Model
Altiok and Stidham (1983) Coxian queuing Search method of aximize K
network Hooke and Jeeves average profit
Analytical method Minimi
Anderson and Moodie (1969) Simulation ‘na yrical metho . Hmize K
inventory model inventory cost
Maximi
Chow (1987) Simulation Dynamic programming AXITIZE K
throughput
i E i tal desi Maximi
Hillier and So (1991) Queuing xperimental design aximize Four, five
network and Heuristic method line utility
Maxim
Ho, Eyler and Chien (1979) Simulation Perturbation analysis aximize K
throughput
’ Mathematical Maximize
J t al. (1991 D i i K
ensen et al. ( ) analytical model YRAMIC programming throughput
impl themati Maximi t
Kraemer and Love (1970) Markov Chain Simple ma 'ema € aximize ne Two
analysis profit
Maximi
Masso and Smith (1974) Simulation Approximation A axm'.n'ze Three
line utility
Hillier, So and Boling (1993) Math.ematlcal Enumeration aximize K
analytical model approach throughput
Min. total buff
Park (1993) Heuristic Heuristic M:; d(::s?red tlf;
Moo
Powell and Pyke (1996) Simulation aximuze
throughput
Moximi
Hurely (1996) Heuristic Heuristic aximize
throughput
Math tical Improve
Singh and Smith (1997) N -ema e Search method performance K
analytical model
measures
Max. th hput
Lutz, Davis and Sun (1998) Simulation Tabu search a?( . roustip K
Min. inventory
Harris and Powell (1999) Simulation Simplex search Max. throughput K
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Figure 2. Flow line with n machines and n buffers.

Analytical Method

A number of analytical models have been developed,
which consist of dynamic programming or the Markov
process. In dynamic programming, an M-state buffer
design problem is decomposed into a (m — 1) two stage
problem and a recursive relationship is formulated.
It must be noted that an optimal decision for the
remaining stages must be independent of the decision
adopted in the previous stages. In the Markov process,
it must be assumed that the distribution function of
the service times is exponential.
These methods address the combinatorial nature
of the buffer allocation problem, but are not capable of
modeling large or complex manufacturing lines.

Search Methods

Probably, frequently used generative models are those
utilizing search methods. Search methods exist that
can be used with queuing network models or stochastic
simulation models. There are various non-linear op-
timization methods that can be applied to solve the
buffer design optimization problem. They include the
Gradient method, the Hooke and Jeeves method and
the Tabu search. For further reading, refer to [2,5,8,9].

PROPOSED HEURISTIC ALGORITHM

In this section, a heuristic algorithm is proposed to find
the particular allocation that maximizes throughput,
which is defined as the number of completed units of
work per time period in the steéudy state.

Consider a production flow line with n machines
in a series. There is a buffer before each machine, as
shown in Figure 2.

Where ) is the mean arrival rate to the system,
i; is the mean service rate of machine ¢ and X;
is the buffer size at machine 7. X, is included in
position on the machine 4, so it will be at least the
one and only integer value. ‘In most cases in the
literature, arrival and service di$tributions are assumed
to be exponential. So, it is assumed that arrivals at
station one are generated from an infinite population,
according to a Poisson distribution with mean arrival
rate, A, and the service time distribution at each
machine, 4, is exponential with mean rate y,. It is
assumed that each machine has one server.

Case 1

Consider the case where there is no buffer limit in any
machine. It means that the capacity of the buffers
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is infinite. In this case, Saaty [10] proved that for
all 4, the output from machine ¢, or equivalently the
input to machine i, is Poisson with mean rate A and
that each machine may be treated independently as
M/M;/1/oc [10]. This means that for machine 7, the
steady state probabilities, Pj.), are given by:

k1

Py =1 —pi)p" 1=1,2,---,n,

where p; = M p; < 1,ki is the number of parts in
the buffer of machine ¢ and Py, is the probability
that there are ki parts in buffer machine <. So, Pk
is the marginal probability distribution of finding ki
parts in the ith machine. Jackson showed that the
joint distribution for all stations is written as closed-
form and is given by:

P(k1,k2,k3, -, kn)
= Py (k1)Py(k2)P3(k3) - - P, (kn),

where P(k1,k2,k3,--- ,kn) is the probability that
there are k1 parts in buffer machine 1 and k2 parts
in buffer machine 2 and so on.

This result means that the number of parts at
each machine is independent of the queue length at the
other machines. In this way, the expected WIP and
throughput is given by:

E(WIP) =3 S "> (k1 +k2+ - +kn)

vkl Vk2 Vkn

x P(k1,k2,--- ,kn)

= STkIP(k1) + -+ Y knP(kn),
k1

kn

throughput = (1 — P,(0)) ttn,

where P,(0) is the probability that the buffer of
machine n is empty and so the machine is starved.

As stated previously, as the total amount of
buffer capacity increases, the throughput increases, but
usually at a decreasing rate. So, maximum throughput
is attained at X; = oo for all 7 and, because of the large
buffer configuration, WIP also reaches the maximum.

Case 2

In reality, because of space limitation and cost con-
sideration, there are target levels for buffers between
machines. As in the literature of the queuing theory,
one station with a finite buffer capacity, X, is analyzed
as M/M/1/X and Py is:

(=)t
e

where P, is the probability of finding & parts in the
buffer and r = % In this system, an effective input rate
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to the system is A = A(1 — P, ), which is the accepted
portion of arrivals where P, is the probability that the
buffer is full. So, traffic intensity is p = 2.

In this case, minimum throughput yields when
X = 1, so there is one part in the system and,
consequently, the system has minimum WIP.

When finite buffers are allowed between successive
machines, then the analysis of the flow line will be
difficult. This is because individual machines cannot
be solved in isolation and are dependent. Consequently,
the buffer limitations give rise to blocking that causes
stoppage at work stations due to lack of space or
excessive accumulation of in-process inventory in the
downstream stages. Similarly, starvation may exist in
the manufacturing systems, causing idleness in stations
due to lack of jobs to process in the upstream stages.
So, the blocking and starving of machines are the main
causes of inefficiency in production lines and difficulty
in analysis of these systems. Because of the finite
buffer capacity, work stations are not independent of
each other, so P(k1,k2,--- ,kn) cannot be written as
closed-form and is determined by using Markov chains.
The number of states in the Markov chain increases
rapidly with the amount of workstation and buffer
capacity. For example, a line with five stations and
buffer capacity X; = 3 for each station, gives rise to a
Markov chain with 19,402 states. So, it is impractical
to solve the system using the Markov chain.

Case 3

Consider a flow line with n machines so that X; is finite
and X5, X3, -, X, are infinite. Since the buffer ca-
pacity of the first machine is finite, the flow of material
into the system is limited and under controlled. ) =
A(l = Py, ) is the proportion of materials entered into
the system. Since the buffers capacity X5, X3, -+, X,
are infinite, machines 1,2,--. | n are independent from
each other and there are no blocking effects between
stations.

The main idea of the proposed heuristic method is
to find the number of buffers under which, the system
operates as the system with infinite buffer capacity.
Since the machines are independent of each other, the
steady state probabilities are easily defined (as closed
form) and throughput reaches the maximum value. On
the other side, the flow of material into the system is
limited and so inventory accumulation is limited and
the WIP of this line is much less than case 1.

In the proposed heuristic method, the effective-
ness of buffers is measured by their effects on system
throughput, which is the average number of parts
produced per time unit in the steady state.

For the first machine, there is finite buffer capac-
ity and so it is analyzed as M/M/1/X,. To find the
best value for X, the probability that the buffer is full
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is calculated and it is put equal to 5.

(1—7)rXs A

e =5 T

B is an arbitrary value and the manager defines it. In
fact, X is defined so that in 1003% time, the buffer of
the first machine is full.

For the other machines, one must define the
number of buffers under which, the system operates as
the system with infinite buffer capacity. Machine 7 is
analyzed as M/M/1/o0. A; is the mean arrival rate to
machine ¢ and g, is the mean service rate of machine

P(X)) =

1. It is required to find buffer capacity X;, so that

the system M/M/1/X; becomes equivalent to system
M/M/1/oo. It means that the performance measures
of two systems are equal.

If one calculates the probability of more than X;
parts in the machine ¢ ({ = 2,3,---,n), then, the
formula for X, can be written as:

Z F(j) =

j=Xi+1

o0

Z pl(1 - p;)

j=Xi+1

o0
=(1=p) Y ol =p5.
J=Xi+1

Probability of more than X; parts in the buffer of the
machine i = a;. And so;

: In o
pf‘“ =a;, and X; = - 1.
In p;
where p; = ;)_ and o; are acceptable error and the

1
manager defines it.

Description of Proposed Heuristic Algorithm

Notations

A mean arrival rate outside the system

by mean arrival rate to machine 1,
i=2-.n

i mean service rate of machine 7,
1=1,2,---,n

(out);  mean output rate of machine i,
1=1,2,---,n

X; finite buffer size of machine 1,
1=1,2,---,n

Di traffic intensity of machine ¢,
1=1,2,---,n

pi(Xi)  the probability that machine ¢ is full,
1i=12,---,n

5} the probability that the buffer of the first
machine is full

; probability of being more than
X, parts in the buffer of machine 17,
1=2,3,---,n.
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Assumptions
The assumptions made are summarized below:

1. Arrivals occur only through the first queue;

2. Queues are arranged in a series topology with buffers
preceding each server;

3. Failures, scrap and rework are not considered. They
are often considered in service times (u;);

4. Production blocking is BAS. So, the part which has
completed its service at the sth station has to go
directly to the (¢ + 1)st station. If the queue of
the (i + 1)st station is full at the moment of the
service completion of the part at the ith station,
then, the part waits, keeping the server idle at the
ith station until the service at the (i+ 1)st station is
completed. This is a common!blocking phenomenon
in production systems; |

5. Tt is assumed that arrival and service rate are drawn
from an exponential distribution. So, the input
process to each station is assumed to be Poisson
(although it is not). Therefore, all of the queues are
M/M/1]X;;

6. At each station, the service discipline is First-Come-
First-Served.

Algorithm
Step 1: Station i1 =1
Consider the first station as M/M/1/X,. Determine
buffer size (X;) with given S by this formula:

A (1 —r)rk

rT=-—, Pl(Xl):

o (o =

and calculate:

l1—7r

P(0) = %1

(out)y = (1 - £ (0)).

Step 2: Stationt =1+ 1,

A ln o
)\i: t)i-1, i:_la i — l_a
(out)i—1, p 1 X In p;
1—pi ‘
P.L(O) = :‘m, (Out)i = ,Uq(l bt PI(O))
Step 3

Continue Step 2 until the last station (i = n).

Numerical Examples

In this section, the performance of the presented
algorithm is reported on a different type of line. The
success of the proposed heuristi¢ algorithm depends on
how closely it can reach the maximum throughput. The
objective of the proposed heuristic method is to identify
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buffer spaces with the minimum possible storage level
needed to achieve the highest output level.

It is assumed that arrivals to the first machine are
Poisson with mean rate A and service times at the ith
machine are exponentially distributed with mean rate
pi. Two classes of problems, balanced and unbalanced
lines, are examined.

Balanced Lines

Sets 1-4 are examples of balanced lines. In these
sets, the mean service rates of the machines are
equal. The buffer allocation problem, in balanced
lines with predetermined total buffer capacity, is well
understood [11]. Many researchers have studied BAP
in balanced lines. Their results show that for CV’s
below 1.0, the optimal allocation is also balanced,
while for CV’s more than 1.0, the bowl phenomenon
becomes optimal [12-14]. In the proposed algorithm,
BAP is solved while total buffer capacity is not prede-
termined.
Four sets are as follows:

Set1: n=3, A=0.5,
1= p2 = p3 =3,
Set2: n=7 A=0J3,
P = po = 3 = fg = fs = fe = pi7 = 3,
Set3: n=4, A=23,
M1 = p2 = p3 = pq =6,
Set4: n=7, A=23,

p1 = po = i3 = fa = ps = pg = pr = 6.

To demonstrate the steps of the algorithm, Set 1
is solved with the values of 8 = 0.01 and a; = 0.001(z =
2,3,---,n) as follows:

Step 1:
LA _05 1
w3 ’
X1
(=X (1-H%
P(X) = oy = oo = 00h

X1 = 2.46 (rounding) = X; =3,

1-1
Pi(0) = 64 = 0.8339
-t
= (Out)y) = (1 — 0.8339)3 = 0.498,
Step 2:
7;:21 /\Zzout(l)ﬁ P2:ﬁ:9£‘8‘,
13 3
1
X2 = n o2 -1= X, =3,

~ Inp,
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1 _ 0.498
PQ(O) = 1—@ = 0.8346 = Ollt(g)

3

(1 - 0.8346)3 = 0.496,

i=3, X;=Outgy), pszﬁzg)ﬁ,
H3 3
1
ngna3—1=>X3:3
In ps

= buffer allocation : (X1, X3, X3) = (3,3, 3).

The manager defines o and B. It is obvious that
different values of o and 3 yield different allocations.
For example, for Set 1, if 8 = 0.001 and a; = 0.001,
then, the buffer allocation (4,3,3) is resulted. The
following parameter values are used throughout all sets
reported in this paper: 5 = 0.01 and o; = 0.001(; =
2,3,---,n).

Other sets are solved in this way and are shown
in Table 2.

Unbalanced Lines

Sets 5 to 12 are examples of unbalanced lines. In the
unbalanced lines, one or more bottleneck operations
exist whose average unit-processing time is longer than
that of other operations in the line. In the literature,
it is well documented that the maximum attainable
output level of an unbalanced line is determined by
the performance and functioning of the bottleneck
operation [11]. Thus, the output level of an unbalanced
line is maximized by avoiding or reducing the idle time
of the bottleneck operation caused by starvation or
blockage. Hence, the buffers surrounding the bottle-
neck operation are of specific importance and are likely
to contain larger storage spaces than other buffers in
the line.
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Single Bottleneck

One begins with four sets of experiments, in which the
mean service rate of a single machine is less than other
machines. Sets 5 to 8 are examples of unbalanced lines
with one bottleneck. it must be noted that the position
of the bottleneck is different in all sets.

Set 5: n=3,A=0.5,

w1 =p3 =3, pp =1,

Set 6: n=7,A=0.5,

1= po =3 = fig = pis = pir = 3, us = 1,

Set 7: n=5,1=0.5,

B = po = p3 = pa =3, ps =1,

Set 8 n=7,1=0.5,

M1 = po = 3 = fg = 5 = g = 3, pr = 1.

The results of the proposed heuristic algorithm are
shown in Table 2. As expected, a single bottleneck
station draws buffers toward it.

Multi-Bottleneck

One attention now turns to the flow lines having two
or more bottlenecks. To illustrate the power of the
heuristic algorithm, four sets of production line with
different numbers of machines and service rates are

Table 2. Comparison of proposed heuristic method and other methods.

Proposed Heuristic Alg. Smith and Daskalaki Method First Space Finite and Others Infinite
Buffer Allocation [Throughput| Buffer Allocation |Throughput Buffer Allocation Throughput
Set 1 (3,3,3) 0.5 (9, 9, 10) 0.5 (3, Inf, Inf) 0.5
Set 2| (3,3,3,3,3,3,3) 0.49 9,9,9,9,9,9, 10) 0.5 (3, Inf, Inf, Inf, Inf, Inf, Inf) 0.5
Set 3 (6,9,9,9) 2.95 (18, 6, 25, 25) 3 (6, Inf, Inf, Inf) 2.96
Set 4((6,9,9,9,9,9,9) 2.98 (18, 6, 6, 6, 25, 25, 25) 3 (6, Inf, Inf, Inf, Inf, Inf, Inf) 2.98
Set 5 (3,9, 3) 0.5 (10, 25, 10) 0.5 (3, Inf, Inf) 0.5
Set 61 (3,3,3,3,3,9,3) 0.49 (10, 10, 10, 10, 10, 25, 10) 0.5 (3, Inf, Inf, Inf, Inf, Inf, Inf) 0.49
Set 7 (3,3,3,3,9) 0.5 (10, 10, 10, 10, 25) 0.5 (3, Inf, Inf, Inf, Inf) 0.5
Set 81 (3,3,3,3,3,3,9) 0.48 (10, 10, 10, 10, 10, 10, 25) 0.5 (3, Inf, Inf, Inf, Inf, Inf, Inf) 0.48
Set 9 3,4,3,3,9) 0.5 (3, Inf, Inf, Inf, Inf) 0.5
Set 10| (3,3,3,3,9, 4) 0.49 (3, Inf, Inf, Inf, Inf, Inf) 0.49
Set 11{(3,3, 3,3, 3,9, 3, 4) 0.49 (3, Inf, Inf, Inf, Inf, Inf, Inf, Inf) 0.49
Set 12| (6,3,4,3,3,3) 0.49 (6, Inf, Inf, Inf, Inf, Inf) 0.49
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solved:
Set 9: n =25, A =0.5,
1= p3 = pg = 3, uz%’-l s =1,
Set 10: n =6, A = 0.5, |
M1 = po = p3 = pa =3, ps =1, pe =2,
Set 11: n =38, A = 0.5,
B =po=p3=pgs = ps = pr =3, e =1, 1g =2,

Set 12: n = 6, A = 0.5,

N2:u4:ﬂ5:37 /‘L1:17 /‘l‘3:27 M6=4

Table 2 shows the results. It can be seen that the
bottleneck with the lower service rate draws more
buffers toward it, even in the presence of the second
bottleneck [4].

Evaluating the Proposed Heuristic Algorithm

In order to evaluate the proposed formulae for X; that
s X; = lll]r.—(;T’ — 1, each set is simulated with a buffer
profile as form (Xj,inf, inf,-- - ,inf), which means a
finite buffer at the first machine and an infinite buffer
capacity for other machines.

SLAM (Pritsker and Associates, Inc.,1988) is used
to simulate the problems. The throughput of the line
is evaluated with the simulated time set to 11,000 min.
The first 1,000 min of each run were viewed as the
transient period and, therefore, were not used in the
analysis. The remaining 10,000 min are viewed as
representing the simulated steady state of the line.
The number of units processed at the last operation,
during the remaining 10,000, is used to represent the
throughput of the line.

The result of the simulation for buffer allocation
(X1,inf, inf, - - - | inf) for all sets is shown in Table 2.
As can be seen, the throughput of the buffer allocation
using the heuristic algorithm is equal or, in some cases,
close to the buffer profile as (X1, inf, inf, - - - ,inf). So, it
can be resulted that buffer proﬁfes (X1,inf, inf, - - - | inf)
and (X1, X9, X3,---, X,,) are equivalent.

The proposed algorithm is also compared with the
Smith and Daskalaki method [15]. Smith and Daskalaki
combine the expansion method and Powell’s method
into an overall design methodology to solve the BAP.
The objective of their method, was to determine the
optimal allocation of buffers so that the throughput
is maximized, while minimizing the holding and buffer
storage costs. The basic objective function is as follows:

maximize Z = R(P - V) - HL,

S.K. Chaharsooghi and N. Nahavandi

where:
R =  average throughput of the nth machine,
P = average revenue/item,
V =  average variable production cost,
H = average holding cost/item,
L =  average total number of units in the

production line at steady state.

The parameter values that are used in their method are
P =$30.00/unit, V = $10.00/unit, H = $0.5/unit [15].
The results of the Smith and Daskalaki method
for Sets 1 to 8 are shown in Table 2. As can be seen,
the optimal buffer allocation proposed by the presented
heuristic algorithm needs a smaller buffer capacity.

It is observed in all sets that in the proposed
heuristic algorithm, the buffer capacity in the first
station is smaller than that in the Smith and Daskalaki
method. As a result, input to the system is controlled
and more limited. Since average WIP decreases as
buffer capacity decreases, it is expected that the
proposed heuristic algorithm will have less WIP and
so more effectiveness.

It is possible to discuss the parameters used in
the Smith and Daskalaki method. For example, it is
expected that by increasing the H value, the buffer
capacity for each machine decreases. But the point
is, the throughput of the heuristic method is equal or,
in some sets, close to the smith method but needs
less levels of storage. It means that two methods
have almost the same throughput while the proposed
heuristic method suggests less buffer capacity.

SUMMARY AND CONCLUSIONS

The BAP in a finite production flow line is one of the
most difficult problems in performance modeling and
in the design of production flow lines. As Altiok [16]
has stated, this is due, in part, to the combinatorial
nature of the problems and, in part, to the lack of
explicit differentiable equations for the measure of
performances involved in the design problems.

In this paper, a heuristic algorithm to solve buffer
allocation problems is proposed. The main idea is to
find the amount of buffers under which, the system
operates as the system with infinite buffer capacity,
so the stations will be independent of each other and
throughput becomes maximum.

Examples demonstrate that the proposed algo-
rithm finds optimal and near optimal allocations in
balanced and unbalanced lines with one and more
bottlenecks. The algorithm finds the allocation where
it’s throughput is maximum or only slightly less than
maximum but it’s total buffer capacity is considerably
less than optimal allocation. It must be noted that the
algorithm finds allocation without predetermined total
buffer capacity. Consequently, the proposed algorithm
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finds the optimal, or near optimal, allocation with less
WIP.

Future research could be directed towards finding

the effects of line length, variability, bottleneck, service
time distributions, service discipline etc. in the optimal
buffer allocation in flow lines with n stations.
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