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Research Note

Hilbert Transform of Schwartz Distributions

F. Tahamtani!

In this paper, an intrinsic description of the space H(D) and its topology is presented.

INTRODUCTION AND PRELIMINARIES

Let D(R) be the Schwartz space of C* functions with
compact support on R and let H(D) be the space of
all C* functions defined on R for which every element
is the Hilbert transform of an element in D(R) that is:

H(D)={¢:¢¥(zx)=pwv. ~°° Z?—E%dt
= H[¢l(z); ¢ € D(R)}, (1)

where the integral is defined in the Cauchy principle-
value sense. Introducing an appropriate topology in
H(D), Pandey (1] defined the Hilbert transform H f of
f € (D(R))" as an element of (H(D))' by the following
relation:

<Hf ¢>=<f,-He¢ >
forall ¢ € H(D), (2)

and then, with an appropriate interpolation he proved
that:

(—;},Z)H2 f=f forall fe(D(R). 3)
However, he did not describe the space H(D) and its
topology in an intrinsic way. In this paper, an intrinsic
description of the space H(D) and its topology is given,
thereby providing a solution to an open problem posed
by Pandey [2, p 90]. From the definition #(z) in
Equation 1, it is shown in [1] that:

” Mdt = p.v. ) Mdt

¥ (z) = pv. ,
— 00 t—x —a t—=x (4)
where, the support of ¢ is contained in [—a, a}.

An infinitly differentiable functions ¢(z) (—oo <
z < 00) is said to belong to the testing functions space
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Dy (R) iff:

P

(9) = ( | |¢<m>(z>:f’dx)'l’ <o,

— 00

m=0,1,2,.... (5)

Since 7, is a norm, the sequence of semi-norms,
{¥m Yov=0, is separating (3, p 8]. The space Dy, (R)
is a complete countably multi-normed space and D(R)
is dense in it [4, p 199]. It is proved in [1] that the
Hilbert transform H : Dy (R) — Dp,(R) defined by:

o0
t
) A, p.v./ &dt, (6)
o t—T
is a linear homomorphism with its inverse given by:

H g = (—;15)1{0; forall $eDL(R.  (7)

Since D(R) is dense in Dy (R), it follows that the space
H(D), with the subspace topology on it, is dense in
Dy (R). The space H(D) and its topology have not
been yet described in an intrinsic way.

In [1] Pandey and Chaudhry developed the theory
of the Hilbert transform of Schwartz distribution space,
(Dr,)', p > 1, which coincides with the correspond-
ing theory for the Hilbert transform developed by
Schwartz [4] by using the technique of convolution.
However, the technique used by Pandey and Chaudhry
in {1] is much simpler and can be easily used by
applied scientists. In [2] Pandey extended the Hilbert
transform to Schwartz distribution space, D’, but he
did not describe the space H(D) and its topology in an
intrinsic way. The object of this paper is to describe
the space H(D) and its topology in an intrinsic way by
a method analogous to that used by Ehrenpreis [5] for
the extension of the Fourier transform to the Schwartz
distribution space, D’. It may however be noted that
the inverse Fourier transform of ¢ € D can be extended
as an entire function, whereas the Hilbert transform
of @ € D cannot be extended as an entire function.
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This is due to the singularity of its kernel, but it can
be extended as a holomorphic function, ¥(z), which is
analytic outside the support of ¢.

Before the main theorem is proven, some lemmas
will be given, which will be used in the sequel.

Lemma 1

Let {¢;}22, be a sequence of functions tending to zero
in Dr,(R) as j — oo, that is:

Y.(¢;) — 0 as j » oo foreach k=0,1,2,...,

then, for each £k =0,1,2,...:

qbg.k)(x) — 0 as j — oo uniformly for all = € R.

Proof

This result is proven in [4,6]. A very simple proof can
be given as follows. For é§ € (Dr,(R))',

M(z)=<8(t), ¢ (z —t)> forall ¢eDy (R).

(8)

Now, there exists a constant, ¢ > 0 and a non-negative
integer, r, satisfying [7, p 8-19]:

| <8),6% @ —1)>| <er! (¢P(z—1)

or:

'7,,(¢) = ma'x('Yo (¢)’71 (¢)a e (¢)),

Y, (9) = Y, ().
Therefore:
16 (@)] < e’ (¢4)

that is, for each £ =0,1,2,...:

—0 as j— o0,

¢§k)(z) — 0 as j — oo independently of z.

Lemma 2 [1]

Let ¢(t) € D. Then as y — 0%:

I ol Mé—%dt—»pv [ 2B gy,

o t—zx

iy Ly $WW=—2) g, () in Dp,(R), p> 1.

w J~oo (t—z)24y
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Lemma 3
Let ¢ € D. Then, as y — 0%:

By [ ¥ zdt — pu. [T & zdt—l—urqS( z) uniformly

forallz € Rand asy — 07,
i) [© 28g — po. = ¢t 4t — iwp(z) uniformly

—00 t—2z oo t—zx
forall z € R.
Proof
One has:
< t) < @)t — =)
wlt—2z t_/oO (t—z)2+y2dt
[T ye(t)

Now the results (i) and (ii) follow using Lemmas 1
and 2.

INTRINSIC DEFINITION OF THE SPACE
H(D) AND ITS TOPOLOGY

Definition 1

A function ¥(z) defined on the complex plane belongs
to the space ¥ iff the following four properties hold:

(Py): v¥(2) is analytic outside some closed interval [a, b],
depending upon v;

(P): ¢(’°)(Z) = 0(
0,1,2,.

(Ps): For each fixed k = 0,1,2,..., ¥v®(z + iy)
converges uniformly for all z € R as y — 0%;

(Py): (a) = LHBY=E) where ., (z) = lim p(c+iy)
y—b
and ¥_(z) = 1111_’1% —(z +iy).

) |z| — o0, for each fixed k =

Theorem 1

A necessary and sufficient condition that a function
1(z) defined on the complex plane belongs to the space
T, is that there exists a function ¢(t) € D satisfying:

o= [ 2

dt, Imz#0
-z

= p.v./ Mdt, Imz = 0.
o t— X

Proof (Necessity)

If ¥(z) € ¥, then in view of Conditions (P;) and
(P2),%(x + iy) as a function of x belongs to Dr,(R)
for a fixed y # 0. In view of Conditions (P;) and (Pz)
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it follows that if {y,}52, is an arbitrary sequence of
positive real numbers tending to zero then:

¥ *N (@ +iyn) — ¥ (2 + iym)|l, — 0

as m,n — oo,

independently of each other.  Therefore, {¥(z +
iYn)}5L, is a Cauchy sequence in D, (R), p > 1. Since
Dy, (R) is complete it follows that there exist a function
Y4+ (z) € D, (R) such that 7}1{1010 Y(x+iy,) = Y4(z) in
Dg,(R), p> 1. Since {yn} is an arbitrary sequence of
positive numbers tending to zero, it follows that there
exists a function ¢ (z) € D, (R) such that:

lir{)l Y(z +1iy) =i (r) in Dp,. (11)
y—0+

Similarly, it can be shown that there exists a function
Y_(z) € Dr,(R) such that:

li%l Y(z +iy)=v_(z) in Dg,. (12)
y—0-

Now using Condition (P,) and Equations 11 and 12, it
follows that:

_ Yi(@) + ¢ (2)
2

From Lemma 1 and Equations 11 and 12, it follows
that:

() GDL,,, p>1.

1'11})1+ P(z +it) = Y4 (z) uniformly for all z € R,
y—

and:

li%l Y(z +iy) = ¢¥_(z) uniformly for all z € R.
y—0~
Since ¥(z) is analytic outside a closed interval {a,b],
it follows that ¢¥4(z) = ¥_(z) = 0 outside [a,}]
and therefore belongs to D. Using Cauchy’s integral
theorem and the technique used in [1], it can be shown
that for e > O:

__1._. Mdt :1/)(2-{-1;5)’

- Imz >0,
2 J_ o t—2
=0, Imz<0. (13)

Let ¢ — 0% in Equation 13, it is deduced that:
L[ ()

%J_w t—=z2

dt =¢¥(z), Imz>0,

=0, Imz<O0. (14)
Similarly, it can be shown that:

1 [ 9-(1)

2mi oo b2

dt = —¢(2z), Imz <0,

=0, Imz>0. (15)
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Combining Equations 14 and 15, the following is
obtained:

L[ v (), _
— ————dt =(z), Imz#0.
2m /_oo t—=z (16)

Let ¢(t) = LMY= (Clearly ¢(t) € D and, thus:

= [T 20,
-z

P(z) ; Imz # 0. (17)

In view of Lemmas 2 and 3 and Condition (P), it
follows that:

P(z) = p.v./_ %dt,
that is:
P(z) = pv. /jo %dt, Imz=0. (18)

The proof for necessity follows from Equations 17
and 18.

Proof (Sufficiency)

If there exists a function ¢ € D, which vanishes outside

a closed interval satisfying:

P(z) = ooi(i)—dt, Imz#0

o b2

= p.v./ Mdt, Imz =0,
e b —Z

then, as proved in [1],

oo p(k)
P*)(z) = %(z)dt, Imz #0,
oo p(k)
= p.v. ¢t _(z)dt, Imz=0.

Clearly v satisfies Conditions (P;) and (P). Con-
ditions (P;) and (P,;) are also satisfied in view of
Lemma 3. This completes the proof of Theorem 1.

Theorem 1 shows that there is a one to one
correspondence between the space ¥ and the space
H(D). Therefore, it can be defined that the space
H(D) is a genuinely intrinsic way as follows.

A C* function 9(z) belongs to H(D) iff there ex-
ists a holomorphic function ¥(z) satisfying Conditions
(P1), (P,), (P3) and (Py). In other words ¥/(z) € H(D)
iff it is the average of the upper and lower limit of a
holomorphic function satisfying Conditions (P;), (Ps)
and (P3). That is, ¥(z) can be extended uniquely as a
holomorphic function satisfying Conditions (P;), (P,),
(Pg) and (P4)

The convergence of a sequence {1, (z)}5; to zero
in H(D) can be defined in an intrinsic way as follows.

A sequence {1,}0%, in H(D) converges to zero
in H(D) iff:
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A;) The associated functions ¢, (z) in accordance with
Theorem 1 are analytic outside a closed interval
[a,b] or else ¢, (z) is analytic outside a fixed closed
interval [a, b].

Ay) Yu(r) — 0in Dr, as p — oo.

Clearly if {¢.(z) o1 is a sequence in D tending

to zero in D as p — oo and:
% Bult)
bule) = [~ P 0ar (19)
and:
Yulz) = p.v./ f“_(tz) dt, Imz#0, (20)

then ¢,(2) is analytic outside the closed interval [a, b]
(see [8]) and:

]W;(Lk)”p < Cp“(z’,(ik)”p — 0 as p— oco.

Therefore, Conditions (A;) and (Ay) are satisfied. If
Conditions (A;) and (A) are assumed then, there
exists a closed interval [a,b] containing the supports
of all ¢,(z). From Equations 19 and 20 and the fact

that —%HZ =1, it follows that:
T
LI AN CI
T t—zx

Therefore:

1
18 (@)l < ol — 0 as p— oo,
™

that is, ¢,(r) — 0in Dr, as 4 — oo. Thus, by
Lemma 1, ¢,(x) —> 0 uniformly for all z € R as
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p — oo. By Condition (A;), all ¢,(z) have supports
contained in a fixed interval [a, b].

Therefore, if {1, }52; — 0in H(D) as u — oo,
then, it has been proven that:

¢, —0in D as p—> 00 <=1, — 0
in H(D) as p — oo.

Thus, Conditions (A;) and (Az) together describe
intrinsically the convergence of a sequence {1,}52, to
zero inH (D) as p — oo.
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