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Variational Finite Element
Method for Axisymmetric
Magneto-Hydrodynamic Equilibrium

F. Dini!, S. Khorasani’ and R. Amrollahi*

In this paper, a new formalism of the finite element method is presented which is capable
of analyzing axisymmetric magneto-hydrodynamic plasma equilibrium through the variational
formulation of the Grad-Shafranov equation. Several problems in terms of the integrands and
suspicious boundary conditions are encountered and successfully removed. Detailed theoretical
and numerical considerations are presented and the results of the method are compared to the
results from an exact code based on the Green function technique.

INTRODUCTION

The numerical solution of the Grad-Shafranov equa-
tion, which describes axisymmetric plasma equilibrium,
has been reported through various methods [1-3] in-
cluding the finite difference method, inverse variables,
moments method, method of eigenfunctions, Green
function method and finite element method. Numer-
ical determination of axisymmetric toroidal magneto-
hydrodynamic equilibrium has been reported by the
application of iterative schemes [4] and exact [5] and
approximate [6] variational moment methods. Free-
boundary plasma equilibrium in axisymmetric tori has
also been considered by a combination of alternat-
ing direction implicit and iterative methods [7], as
well as integral transform techniques [8]. Variational
approaches have been exploited to discuss the solu-
tion [9] and existence of free boundary solutions of
the Grad-Shafranov equation [10]. Also, free boundary
field-reverse configurations of plasma equilibrium have
been analyzed by means of the boundary element
method [11]. None of the mentioned methods is,
however, as versatile and powerful as the finite element
method [12,13], because of its flexibility to adapt
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arbitrary geometries and its reasonable efficiency and
error distribution.

Classes of the finite element method fall into
two major categories [13]: The Galerkin and the
variational method. In both approaches the solution
is expanded on a set of eigenfunctions. However, in
the Galerkin method, the coefficients are found through
an integral equation while in the variational approach
the coefficients are found through extremization of an
equivalent integral. Besides the simplicity of varia-
tional finite elements, it permits accurate evaluation of
solution functions so that in the limit of small elements,
the solution should converge to the exact analytical
one [12]. The variational approach of finite elements is
superior in terms of error distribution, when compared
to the Galerkin methods, since as a special case of the
moments method, the variational finite elements are
equivalent to a least-square minimization of error [13].
Also, variational formulations of finite elements lead
to a symmetric sparse coefficients matrix, resulting
in considerable improvements in code efficiency and
storage considerations.

Galerkin finite elements have been extensively
used in computation of closed-boundary and free-
boundary plasma equilibrium [14]. However, in the
adaptation of variational finite elements to axisym-
metric plasma equilibrium, numerous problems arise.
Part of these problems is due to an artificial boundary
condition of either a Dirichlet or Neumann type in the
solution. To the best knowledge of the authors, no
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report has considered a variational formulation of finite
elements for this purpose.

Here, a successful implementation of variational
finite elements is presented based on first-order tri-
angular meshes by locating and removing the above
problems in the theoretical description of the finite
element method. The method is verified by comparing
the results corresponding to a quadruple axisymmetric
configuration obtained through the Green function
technique [15]. The developed equilibrium code has
been used to simulate the time-domain, self-consistent
plasma equilibrium in Tokamak [16].

AXISYMMETRIC VARIATIONAL FINITE
ELEMENTS

The Grad-Shafranov equation, which describes the
axisymmetric plasma equilibrium reads [3]:

1
;A*\I/ = —poJs, (1)

in which ¥ is the poloidal magnetic flux, J; is the
toroidal current density, which includes contributions
from the toroidal current densities of plasma and
poloidal coils and A* is the elliptic Grad-Shafranov
operator; ‘
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where r and 2 are the radial and longitudinal co-
ordinates in the cylindrical system of coordinates,
respectively (obviously, this operator differs from the
Laplacian operator in axisymmetric cylindrical coordi-
nates). It can be easily shown that Equation 1 may be
regarded as the Euler-Ostogradskii equation [17] of the
functional [6,8,16]:

(¥) = // (217|V\1/|2 - p,th\I/> drdz. (3)

Here, the gradient operator is given in cylindrical
coordinates as A = 9/0rf + 8/0z% and the integration
is taken over a two-dimensional solution region in (r, 2},
whose volume of revolution about the z-axis generates
the original three-dimensional system, as illustrated in
Figure 1.

In the finite element method, the solution region
is discretized into small non-overlapping elements and
in each element a pre-assumed form for the unknown is
taken, being a function of coordinates and fixed triangle
vertices. These vertices, being referred to as nodes,
are usually shared by more than one element and it
is desirable to find the nodal values of the unknown
functions through a set of algebraic operations which
simultaneously extremize Equation 3.
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Figure 1. Typical solution region; the original
three-dimensional region is generated by revolution about
z-axis.

If the elements were chosen to be triangles, then
the variations of the discretized function over the
element e would be linear, so that:

Ue(r,z) = a® + b°r + 2, (4)

in which the e superscript refers to the element e and
constants a, b and ¢ are determined from:

a® 1 7z -1 v,
bl =41 r8 z§ V| = D" (5)
ct 1 rf 2z v

Here, the 7, j and k subscripts refer to the indices of the
three nodes belonging to the element e and 7§ and 2z}
correspond to_the radial and longitudinal coordinates
of the node [, belonging to the element e with [ standing
for 4,7 or k. This special way of discretization of the
unknown function results in a continuous form over the
entire solution region, while maintaining simple linear
form of Equation 4 over each individual element.

It is customary to define the shape functions
N¢, 1 =14,j or k, for the element e as:

Ne(r, 2) 1
T
Ne(r,2) = |N(r.2)| =D |7, (6)
Ne(r, 2) z

so that one has:
Ue(r, z) = NeT(T, 2)Pe. (M

Therefore, the gradient of the unknown function over
element e may be approximated as:

De. De. e
Vo = VN ¢ = [sz 7 Dg‘c] ¥° =B,
ki kj kk (8)

where, D, refer to the elements of the matrix D®.
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Plugging Equations 7 and 8 into Equation 3 gives:

() ~ > I¢(T°)
_ Z//(%\VTBETBC\IW
e

- qujTNeTNe\Ile)drdz, (9)

in which the summation is done over all elements and

J{ is the array of nodal values of the toroidal current
density function J; over the 4, j and k nodes of element
e; in this way, J; is discretized into piece-wise linear
functions similar to Equation 4. Also, S¢ denotes the
area occupied by element e. The numerical value of the
area of an element is obtainable from:

-1

s¢ = %'det(De) (10)

The variational property of Equation 3 requires that
the functional Equation 9 be stationary, with respect
to array ¥ of the nodal values of the unknown function.
Hence:

-8%2116(\1/6) =0, (11)

which turns into the set of linear algebraic equations:
1

3 / ~drdzBE B Y =110y / / N¢'NedrdzJ;.

e e U (12)

Now, the partial stiffness matrix K¢ is defined and the
partial force vector F¢ is defined as:

K° :// %drdzBeTBe, (13a)
S’e
Fe = pg / / N N°drdzJ¢ = poE°Je. (13b)

Se

Here, it can be observed that the 3 x 3 square matrices
K¢ and E¢ are symmetric. Fortunately, there are sim-
ple closed form expressions for evaluation of E¢ [12,13].
Also the double integral in K¢ can be directly evaluated
through algebraic expansion of the integral region. A
general approach for algebraic evaluation of integrals
arising in axisymmetric finite element problems has
been reported [18]. For instance, the basic triangular
elements of A- and B-type, as shown in Figure 2a, lead
to the following expressions:
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Figure 2a. Illustration of elementary triangular meshes
of A- and B-type.
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Se

for A-type element, (14a)
1 Ti T3
—drdz = (zx — z;) In-+4+1],
T r, — Tj T

Se

for B-type element. (14b)

For other triangular elements not being of the ele-
mentary forms presented in Figure 2a, combinations
of A-type and B-type elements can always be used.
Any triangular element can be set in a rectangle, with
three A or B type triangles remaining as illustrated
in Figure 2b. Hence, by subtraction of the integrals
belonging to the basic type elements from the surface
integral on the rectangle, which is simply known, the
unknown surface integral of the triangle is found.
Therefore, there is no need for numerical integration

Figure 2b. Enclosing an arbitrary triangle in a rectangle
with the aid of basic A- and B-type elements.
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to build up the final system of equations and efficient
evaluation of Equation 13 is always possible.

Hence, the system of Equation 12 can be rewritten
as:

K¥ =F, (15)

where the overall stiffness matrix, K, and force vector,
F, have the dimensions N x N and N x 1 (N being the
total number of nodes), respectively and are generated
by superposition of the corresponding partials, as given
by Equation 13. The N x 1 vector, ¥ = K™'F,
also denotes the array of unknown nodal values of the
poloidal flux function.

It is easy to check that the stiffness matrix, K, is
sparse and, therefore, little storage is needed to store its
non-zero elements. Also, it is symmetric with respect
to its major diagonal and, thus, approximately half of
the above storage would suffice to uniquely determine
K. The process of inversion of K can be achieved
through standard inversion techniques, however, the
best one is to employ the so-called iterative gradient
techniques [13]. The gradient techniques are more
efficient than other approaches for solution of linear
simultaneous equations, considerably for typical matrix
dimensions of 1000 and over and, more importantly, re-
sult in uniform error distribution. More specifically, the
conjugate-gradient method reaches the exact solution
(within the truncation round-off errors) in, at most, N
iterations for elliptic problems.

However, the above point is not the end of the
story and, in general, Equation 15 leads to erroneous
results as discussed in the next section.

PROBLEMS WITH THE FORMULATION
Singularity of Equation 15

At the first look, the set of linear algebraic Equations 15
cannot be solved, since the stiffness matrix, K is
singular. This is due to the fact that according to
Equation 1, the Grad-Shafranov equation is insensitive
to the choice of a reference for ¥. Therefore, some
nodes must be subject to a boundary condition of the
Dirichlet type, so that K is not singular. It is now
shown that ¥ must take on zero value on the z-axis.

In general, the Grad-Shafranov equation has
Green function solutions of the following form:

¥(r,z) = po

|
8 3

/G(r ') J (v )r'dr'd2’, (16)
0

in which r = 77+ 22 and G(r,r’) is the Green function
of Equation 2 {15]:

G(r,1')y = ——f—iQ; [1 + l—r—ﬂ] . (17)

2 2 2rr!
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Here, Q3 (z) is the Legendre function of the second
kind. It is possible to show that Equation 17 has the
asymptotic form near the z-axis [15]:

r2r'2
G(r,t') ~ < (18)
Alr2 + 124+ (2 - 2')%2
from which:
lim, ¢+ G(r,r') = 0. (19)

Accordingly, the poloidal flux function ¥(r,z) has to
take on zero value at 7 = 0. This shows that a
zero-boundary condition of the Dirichlet type over the
symmetry axis exists, which reads:

(0, 2) = 0. (20)

It is necessary to insert this boundary condition into
Equation 15 to avoid a singular coefficient matrix
K. Insertion of the boundary condition is possible
through removing the nodes near the symmetry axis
from Equation 15 and proper reduction of the order of
equations.

Non-Physical Neumann Boundary Conditions

Another problem with the system of Equation 15, is
the presence of a non-physical boundary condition of
homogeneous Neuman type over the borders of the
solution region. This difficulty arises in the form of
normal magnetic surfaces or poloidal flux contours at
the boundaries in the numerical solution. In mathe-
matical representation, one observes that:

a
—V¥ = 21
5, ¢ =0, (21)

in which n stands for the normal vector to the bound-
aries. Indeed, this boundary condition is imposed
by the variational formulation of the Grad-Shafranov
Equation 3, as explained below.

Taking the variation of ¥ in Equation 3 from both
sides, one can show that:

SII(T) = // (%vw.vw—mta\y) drdz.  (22)

Using the identity:
%V\I!.Vé\ll =V. (6—\I,V\I/) - 6—\IIA BV (23)

Equation 22 takes the following form:

STI(T) = — // <%A*\IJ + nth> §Udrd:
// (-w) drdz. (24)
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The second integral in Equation 24 can be rewritten

as:
// v. <6—‘I}V\IJ) drdz = 6—l1,8—\1]d3, (25)
T r On

where the contour integration is done in a counter-
clockwise sense in the (7, z) plane.

Setting Equation 24 equal to zero requires that
Equation 1 would hold. Therefore, in order to prevent
the effect of Equation 25 entering the solution, either
¥ should be fixed over the boundary, that is the case
only for the left boundary at r = 0 with Equation 20,
or its normal derivate should vanish, as stated by
Equation 21.

Physically, if the system is symmetric with respect
to its equatorial plane at z = 0, the solution region can
be halved at z = 0. In this case, Equation 21 must
hold at the bottom of the solution region in order to
maintain the mirror symmetry. However, the numerical
solution over the right and upper borders would be
meaningless, because of the fact that Equation 21
is here non-physical. To avoid this difficulty, the
infinite elements [12] should be used over the upper
and right boundaries (and the bottom boundary for
asymmetric systems with respect to z = 0). The
infinite elements virtually extend the solution region
to infinity, where both ¥ and V¥ tend to zero and,
therefore, Equation 21 is satisfied.

A typical infinite element is illustrated in F igure 3.
The definition of an infinite element relies on taking
three fixed reference points, which are not in a straight
line. The first point can be chosen to be the origin
of the system of coordinates at (0,0). However, the
second and third points vary with the position of the
infinite element. In order to preserve the continuity
of solution, it is necessary to choose two consecutive
boundary nodes to serve as these two points, e.g. at
(r1,21) and (rg, 22).

The triangular system of coordinates (p, £) for the

v

(r0,20) @
p=0

Figure 3. Infinite element used in the computation of
magnetic poloidal flux.
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infinite element, e, are defined as:
r=prt + s —19)] (262)
2= p[zf ez — 2t ] (26b)

This coordinate transformation will be utilized for
mapping the infinite element into a rectangular region,
so that the infinite element, e, occupies the area
extended from p = 1t0 p = co and from £ = 0to £ = 1.
This technique simplifies the evaluation of integrals.
Moreover, the flux function is assumed to behave as:

(o.€) = - [e0 + (1- 9], (260)

within the infinite element. This special definition
of variation of the unknown function on the infinite
element guarantees continuity of the solution on all
three borders of the element, as well as decaying the
solution and its derivative at infinity.

Now the contribution of the element integrals
corresponding to the infinite elements should be added
to Equation 12. Since J; = 0 outside the solution
region where the infinite elements are, therefore, the
infinite elements only affect the stiffness matrix, K.
Therefore, it would only be necessary to compute the
corresponding partial stiffness matrices, Ke.

Following similar approaches to those presented
in the previous section and changing the system of
coordinates to the triangular system in the double
integral, one can show that:

1 o0
1 v 0(r,z)
K¢ = B¢ B¢ dpdg,
O/I/p['rf +&(rs — Tf)] 9,6 (27)

in which the Jacobian of the triangular system of
coordinates is given by:

o(r, 2)
o(p,€)

Here, A° is the area of the triangle formed by the three
reference points. If the ordering of the reference points
is not so that the corresponding triangle passes through
them in a counter-clockwise sense, A¢ should be chosen
to be negative. This is because of the fact that
A® can be obtained indeed by matrix manipulations, .
where changing the order of rows changes the sign of
a determinant, corresponding to the A°. It can be
noticed that the partial stiffness matrix is symmetric
again.

Also, matrix B¢, as a function of coordinates, is
given by:

= 24°). (28)

=100 _ 106 _ ¢80 | 10¢
N A
p 9z poz —E%az—*-;z?z

Thus, the evaluation of the partial stiffness matrix
needs numerical integration.
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RESULTS

In this section, the results of the computation of a
developed, free-boundary equilibrium code are pre-
sented, which is based on the theoretical considerations
above. Here, a magnetic quadruple is assumed with
four magnetic coils at (2,21) with the unit current
outwards and (1,+2) with the unit current inwards.
The cross-sectional dimensions of magnetic coils are
supposed to be infinitely small. Therefore, the exact
solution for the poloidal flux, according to Equations 16
and 17, would be:

v = 2y |

2m

2+ 1+ (2 —2)°
2r

Vg
27

=

[7"2+17;T(z+2)2]

-

B &/;QE [r2_+4+(z—1)2]

4r

VT r2+4+(z+1)2]_ (30)

B \/—2_7rQ% [ 4r

The flux surfaces from the exact solution (Equation 30)
are plotted in Figure 4. The developed code, with
axisymmetric finite element, generates quite similar
flux surfaces, as observed in Figure 5. The computation
time for the axisymmetric finite element code has been
about 110 seconds for over 5,000 nodes. The distribu-
tion of nodes was uniform on a simple rectangular grid.
In comparison, the exact solution, as Equation 30, has
needed about 28 and 14 seconds for elliptic integral and

Poloidal flux of the magnetic quadrupole

r-axis (m)

[

z-axis {m)

[+ 4]

-

Figure 4. Exact poloidal flux contours of the magnetic
quadruple as computed by the Green function technique.
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Figure 5. Poloidal flux contours of the magnetic

quadruple as computed by the axisymmetric finite element
code.

hyper-geometric series representations of the Legendre
function, Q%(x).

If the problem also involves point sources, then
double integration, as suggested by Equation 16, is
needed to find the exact solution. In this case, the
efficiency of the Green function technique drastically
diminishes, while the axisymmetric finite element code
keeps to be as efficient as above.

The excellent efficiency of the code can be ob-
served with the aid of Figure 6. Here, the computation
time versus number of nodes is plotted. It can be easily
detected that the algorithm complexity of the code has
an order of roughly unity, that is, the computation
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Figure 6. Computation time vs number of nodes, which
grows almost linearly.
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Figure 7. Error distribution profiles at z = 0 and z = 0.5.

time grows almost linearly with the dimension of the
matrices or number of nodes.

In order to investigate the error distribution and
behavior, two profiles of the relative error function at
z = 0 and z = 0.5 have been plotted as shown in
Figure 7. It can be observed that the error blows up
near the z-axis, where » = 0. In order to have a lower
computational error, it is, in general, thus, necessary
to reduce the mesh size near the symmetry axis.

CONCLUSIONS

In this paper, an axisymmetric finite element method
for computation of magnetic poloidal flux in axisym-
metric magnetostatic machines was presented, which
has been based on the variational formulation of the
Grad-Shafranov equation. Inherent problems in the
computation of magnetic flux by this method and
proposed solution techniques to the difficulties were
characterized. The code shows excellent efficiency and
reasonable error distribution, as compared to the exact
numerical methods.
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