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High Radix Signed Digit Number
Systems: Representation Paradigms

G. Jaberipur* and M. Ghodsi!

Redundant signed digit number systems are popular in computationally intensive environments,
particularly because of their carry-free property, which allows for digit-parallel addition. The
time required for addition is particularly important because other arithmetic operations heavily
depend on it. Signed digit number systems with high radices are of particular interest because
of less memory requirement to represent a given number. But, the time required to perform
digit-parallel addition is, by a relatively large coefficient, logarithmically proportional to the
radix. Reduction of this coefficient is the prime goal of the study in this paper, where least cost
implementations are emphasized. A novel modification to the conventional carry-free addition
algorithm for signed digit numbers is presented and the impact of different representations of
signed digits on reducing the time required to perform digit parallel addition is investigated.
Three representation paradigms are considered, namely, signed-magnitude, two's complement,
and one's complement. Following the common practice, and in order to achieve better results,
the power-of-two radices is focused upon. With the new algorithm, the time required to derive
the transfer digit reduces to a small constant value, which does not depend on the radix.

INTRODUCTION values [3]:
Addition is widely recognized as a basis of other [T+1~I <a<r—1
arithmetic operations. Adequate redundancy in a 2 -7

number system provides for digit-parallel addition, i.e.
digit-wise addition of two numbers with no inter-digit
carry propagation. Necessary and sufficient condition
for digit-parallel addition has been studied in [1]. The
Signed Digit (SD) number system was first introduced
by Avizienis [2] where he proved the carry-free property
for radix r (r > 3) SD numbers with a digit set [-a, a].
In a number system with the carry-free property, a
carry generated in any digit position is absorbed in the
next position. In any hardware realization of carry-free

For example, in the Binary Signed Digit (BSD) number
system (r = 2) [4], there is not enough redundancy
in the digit set {—1,0,1}, to provide for carry-free
property. But BSD has the carry limited property [5].
In a number system with carry limited property, a carry
generated in any digit position propagates through a
limited number of consecutive digit positions. The
BSD number system, nevertheless, has been exten-
sively used for implementing all basic arithmetic op-
erations [6-8]. The reason is that addition of two BSD

addition based on binary adders, a generated carry, in
fact, propagates up to the most significant bit of the
next digit, i.e., the carry is absorbed by that digit,
so it can be said that there is no inter-digit carry
propagation. Adequate redundancy for the carry-free
property is assured by the following constraint on digit
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numbers is possible with carry propagation limited to
two binary digits, hence, the possibility of very fast
digit-parallel addition. But each binary signed digit
is represented by two bits (twice the 1 bit needed to
represent an unsigned binary digit). Thus, in BSD,
the extra memory requirement is maximum (100%) as
compared to SD systems with higher radices. The
Hybrid Signed Digit (HSD) number system provides
a framework for a trade-off between speed and area
(memory requirement) [9]. An HSD number is, ba-
sically, a binary number, except that some positions
may as well hold a “1” value (a BSD position).
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A carry generated in any position (BSD or binary)
may propagate up to the next, more significant, BSD
position. In the regular HSD number systems, the
number of binary positions between consecutive BSD
positions is constant. The major drawback of the HSD
number system is the severe asymmetry that exists
between the range of positive and negative values. For
this reason, the HSD representation is not considered
as one of the paradigms in this study. High Radix
Signed Digit (HRSD) number systems have the benefit
of lower memory requirement, while providing full
symmetry between representable positive and negative
values. But, the time required to add two high
radix signed digits is, by a relatively large coefficient,
proportional {or logarithmically proportional when a
carry accelerating technique [4] is used) to the number
of bits in the representation of one digit, where the
latter is logarithmically proportional to the radix. This
coefficient is called the high radix coefficient and the
possibilities for reducing it are explored. The relative
largeness of the high radix coefficient is due to the
complexity of the carry-free addition algorithm [10],
which takes several steps to perform the addition.
BSD, HRSD and the regular H$D are all special cases
of the Generalized Signed Digit|(GSD) number system
that is introduced in [5]. \

In this paper, the goal is| to find the least-cost
(i.e. minimal hardware) representation for signed
digits, with the least possible value for the high radix
coefficient. To accurately define what is meant here
by a minimal hardware implementation, a k-dependent
cell is defined as a hardware piece, whose delay depends
on k (linearly or logarithmically), where each signed
digit is assumed to be represented by (k + 1) bits.
Relevant examples relate to addition or addition-like
operations, such as comparison or zero detection, where
all can be implemented by a |(k + 1)-bit adder cell
(or k-bit in the case of sign-magnitude representation).
A minimal hardware implementation is one that uses
the minimum number of k-dependent cells, where the
same cell may be reused as needed. On the other
extreme, a maximal hardware implementation is one
that uses any number of k-dependent cells in parallel
and reuses a k-dependent cell only when it does not
increase the total delay. It will hFe shown that the value
of the high radix coefficient is actually equal to the
number of k-dependent cells in the critical path of the
implementation. Any implementation may have some
condition control circuitry with constant delay (that
does not depend on k). Three different representations
for signed digits are studied a d a novel modification
to the Conventional Ca,rry-Fr‘%e Addition Algorithm
(CCFAA) for HRSD numbers |is introduced [5]. The
organization of the paper is as follows: In the following
section, it is noted that CCFAA has four steps, where
each step includes some form of addition of two digits
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(i.e. addition, comparison, zero detection, increment,
or decrement). The time required to perform each
addition is dependent on the internal hardware rep-
resentation of the signed digits. To have a basis for
cost comparison of the cases studied in this paper,
an effort is made to parallel the steps of CCFAA
to the extent possible. Then, the modification to
CCFAA is introduced and its validity proven. The
novel Compare with Half Radix Algorithm (CHRA),
introduces some simplifications in the implementation
of the carry-free addition algorithm, which leads to the
reduction of the high radix coefficient, specially in a
minimal hardware approach. Furthermore, the sign-
magnitude representation of signed-digits is examined,
where it is shown that the value of the high radix
coefficient, on a minimal hardware approach, is as high
as 5. In the two last sections, it is shown that with
two’s complement and one’s complement representa-
tions of a signed digit, the high radix coefficient can be
substantially reduced, without increasing the hardware
cost.

CONVENTIONAL CARRY-FREE
ADDITION ALGORITHM (CCFAA)

The HRSD number systems provide for carry-free
addition. Table 1 depicts the different stages in the
addition of two HRSD numbers, where 7 is the radix
and « denotes the maximum absolute value for a digit
from the digit set [—a,a]. The addition algorithm
has four steps (as listed below), where each step may
contribute to the value of the high radix coeflicient:

Step 1: The parallel addition of digits in the same
position of two n-digit HRSD numbers, A and
B, which results in the position sum vector P;

Step 2: The derivation of the transfer vector 7', by
comparing the magnitude of the position sum
with @, where ¢; € {—1,0,1},%y is assumed to
be zero. A nonzero t, denotes an overflow and
the expression |t;41| = (|pi] > «) means that,
if (|p;| > @), then the absolute value of ¢;;; is
1, otherwise it is 0;

Step 3: The derivation of the interim sum vector W, by
possibly adding r or —r to the position sums;

Step 4: The derivation of the sum vector S, by parallel
addition of the interim sum vector W and the
transfer 7. The transfer selection mechanism
in Step 2 guarantees that no new transfer is
generated here.

Figure 1 depicts the derivation of t;4; and w;,
where t;,1 is the transfer to the (i + 1)th position, w;
is the (7 + 1)th element of the vector W, the solid slopes
serve as a graphical representation of Equation 3 in
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Figure 1. Derivation of ;47 and w;.
Table 1. Carry-free addition steps.
<ap_1|--+|ai|ao+|A = Z:;ol a; X rt
bp_1 {+-+|{b1| bo |B = :;_01 b; X rt
P: ppoa s p1 po pi=a;+b; Eq. 1
t; = | >
T ot t .| it1] (|P1|_ > a), Eq. 2
sign(ti1) =sign (p:)
W: wp_1 < wp wg w; =p; —tip1 xr |Eq. 3
S Sn—1 s 81 S0 S; = w; + ¢ Eq. 4

Table 1 and the interval tags, I; to Is, will be referred
to later.

Choice of o and Preservation of the Digit Set
[~a,a

For a given radix r, the choice of a € [[ZH],r — 1]
provides for several signed digit number systems from
the minimally redundant system with the carry-free
property (a = [ZH]), to the maximally redundant
(¢ = r — 1) system. The following lemma shows that
for the practical case of » = 2¥(k > 1) and also two
other impractical cases, the choice of o has no impact
on the memory requirement (i.e. the number of bits
needed) for representing a signed digit.

Lemma 1

For 2¥ — 2 < r < 2%, the memory requirement for the
digit set [—«, &, does not depend on a.

Proof

The number of digits in [—a, ], is 2a + 1. Using the
constraint on « (i.e., [Zf1] < a <7 —1), one can find
the range of 2o + 1, as 2[7H ] + 1 < 2a+1 < 2r — 1.
Combining the latter with the inequalities for r, leads
t0:

2k <20 +1< 2k .

From the inequalities for 2a + 1, it is obvious that
regardless of the value of «, the number of bits needed
to represent a signed digit is exactly k£ + 1.0
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Next, the sources of preservation of the digit set
[, ] under the carry-free addition algorithm are
studied (i.e. the possibility that the range of s; is
exactly equal to [—¢, a]).

Lemma 2

Preserving the digit set [, a] under carry-free addi-
tion, is exclusively due to position sums p; that satisfy
—a < p; < a, except for maximally redundant case
(¢ = r — 1), where |p;|] = 2« also leads to |s;| =
a.

Proof

For —a < p; < «, one has t;3; = 0 and, thus, w; = p;
and —a + 1 < w; € a — 1. Therefore, the range of
8i = w; +t; (where t; € {-1,0,1}), is [~a,a]. For
a < |p;| € 2a, by symmetry, only o < p; < 2a is
considered, where t;;7 = 1. o = 7 — j is assumed
for 1 < j < v - [2] and it is shown that the only
value for j, leading to the preservation of the digit set,
is 1. Substitution of p; by w; + r and a by r — 7 in
a <p; £2a,leads to -7 < w; <r—24. Now, 3; =
is possible, only if max(w;) =a-lorr—2j =r—j-1,
ie. j=1.0

Reduction of the High Radix Coefficient

Derivation of ¢,,1, in Equation 2 of CCFAA, involves
a comparison operation, which generally has the same
time complexity as that of an unsigned addition op-
eration. Therefore, four digit-parallel addition-like
operations are recognized in Table 1. The time required
for each addition is dependent on k (k = [logr],
where the number of bits in one digit is either k or
k + 1, depending on the value of «), so is the total
addition time of two signed digits. Therefore, the
total addition time can be defined as a function of
k, such as h x A(k) + ¢, where h stands for the high
radix coeflicient and ¢ is a constant, which does not
depend on k. A(k) may be a linear function of k,
where each digit-addition is implemented by a carry
ripple technique or may be logarithmic on k, where a
carry accelerating technique, such as carry look-ahead,
is used [4].

To reduce the high radix coeflicient, an obvious
approach is to parallel the steps of CCFAA to the
greatest extent possible, which considerably increases
the hardware cost of the implementation. The first and
second steps of CCFAA (Table 1), cannot be paralleled,
for obvious reasons. But, the rest of the computation
can be done at the same time with Step 2. The trick is
to compute three groups of sum values (depending on
different values of ¢;) in parallel. In each group, three
values are computed in parallel, depending on the three
possible values of t;11. The groups for ¢; € {-1,0,1}
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are:
(pi_ 1api_1+7”7pi—1_7")’ (pz

(pi+lpi+1l+rp+1-7).

p; +7,p; —r) and

In each group, depending on the value of ¢;;;, three
different values of the interim sum are added to t;. The
position sum, p;, is computed in Step 1 and the other
8 values may be computed in parallel with Step 2, by

8 extra adders. Next, one of

the groups is selected

by the value of t; and, then, the final sum is selected

by the value of ¢,11. The selec

ion process is done in

constant time. Therefore, in sudh a maximal hardware
implementation, only Steps 1 and 2 contribute to the

value of the high radix coefficie

nt. It will be shown in

the next sections, that the contribution of Steps 1 and 2

depends on the representation
specially in sign-magnitude representation.

of the signed digits,
When

implemented with minimal hardware, the contribution

of Step 1 is going to be more
considerable extra hardware, it
latter to 1.

To achieve the same effec

han 1. But, by using
is possible to limit the

t of reducing the high

radix coefficient, but with keeping the hardware cost

as low as possible, an algorithm
is followed.
introduced, through which der

optimization approach

In the next section, a novel algorithm is

ivation of the transfer

in Step 2 of CCFAA can be done in constant time,

without using extra hardware.

When the impact of

different representations of signed digits on the value of

the high radix coefficient is cons

idered, it will be shown

that the contribution of derivation of the interim sum

in Step 3 may also be reduced
using any extra hardware. In
following assumptions are made
efficiency:

o k = [logr] and r > 2, wh
each signed digit is represe
(zero padding or sign extens
necessary).

o |p;| = 2Fu; + v;z;, where u;
bit of |p;| and v;z; is the ur
composed of v;, the second

to zero, again, without
the next sections, the
for convenience and/or

ere it is assumed that
nted by (k + 1) bits
ion may be applied if

is the most significant
1signed binary number
most significant bit of

|p;| and z;, represents the (k — 1) least significant

bits of |p;|, such that 0 < x;

COMPARE WITH HALF
ALGORITHM (CHRA)

< 2k—1,

RADIX

In the following theorem, it is suggested that in Step 2
of CCFAA, |p;| may be compared with [r/2], instead
of a. Then, for 7 = 2%, the vector T may be derived
with minimal delay after P is computed, such that the

high radix coefficient is reduced

by 1.
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Theorem 1

In the carry-free addition algorithm, the transfer may
be derived by comparing |p;| with [r/2] (instead of a),
as:

1 when [7/2] < p; <2a

-1 when —2a <p; < —[r/2] . (1)
0  when —[7/2] < p; < [r/2]

tiy1 =

Proof

It is sufficient to show that |w;| < o for each of the
above three intervals for p;. Replacing p; by w; +7t;41,
leads to:

-+ [r/2] <w; <2a—7r, for tiy =1,

20 +r<w; < —={r/2]+r, for ti=-1,
and:

—[r/2] <w; < [r/2], for ti1 =0.

Enforcing [”2'11 < a <71 —1 in the above inequalities,
leads to |w;| < a — 1, in all three cases.0]

Note that for |p;| = [r/2] and for even values of
7, t;41 = 0 is also valid. It will be shown later that this
imprecision is indeed useful in the two’s complement
paradigm of representation of signed digits. CHRA is

particularly efficient in practice, where r = 2*.

Corollary 1
For r = 2%, the transfer is derived, with minimal delay,
by comparing p; with 2571 ie. |t;41] = u; V v; and
sign(t; 1) = sign (p;), where V stands for logical OR.O0
With CHRA, contrary to Lemma 2, position sum
values p;, satisfying —a < p; < «a, do not contribute
to preserving the digit set [—«,«], except for the
minimally redundant case a = [*$1], with odd values
of r, which is unfortunately not the case in Corollary 1.
But, in the maximally redundant case (¢ = r — 1),
preservation of the digit set [—a,a}, always holds by
Lemma 2 and the choice of @ = r—1, where 2¥—2 < r <
2% does not introduce any inefficiency, as compared to
less redundant cases (Lemma 1). The latter results are
summarized in the following corollary.

Corollary 2

Comparison with half radix algorithm preserves the
digit set [—a,«a] in the maximally redundant signed
digit number systems {&@ = r — 1). Furthermore, for
2k — 2 < r < 2% and, in particular, for the practical
case of r = 2%, the choice of @ = r — 1 does not increase
the memory requirement.U

SIGN-MAGNITUDE REPRESENTATION
OF HRSD NUMBERS

The addition of two sign-magnitude digits, as described
below, involves four steps by itself. All four steps in



High Radix Signed Digit Number Systems

a maximal hardware approach may be paralleled such
that the time required for a sign-magnitude addition is
in the same order as in a single step two’s complement
addition. But, in what follows, a time complexity
analysis of a sign-magnitude addition is given based
on a minimal hardware approach. Then, the impact of
the sign-magnitude representation of signed digits on
different steps of CCFAA is considered.

Derivation of the Position Sum

This step of CCFAA involves one sign-magnitude addi-
tion operation, whose contribution to the value of the
high radix coefficient, by the following analysis, is 2(1),
where the parenthesized figure relates to the maximal
hardware approach. This is reflected in the first column
and first row of Table 2.

Sign-Magnitude Addition

The addition of two sign-magnitude digits involves the
following four steps where it is assumed that each digit
is represented by a sign (1 bit) and a k-bit magnitude:

Step 1: Possible complementation of the second
operand: If the signs of the two operands
are different, the magnitude of the second
operand should be complemented before ad-
dition. Complementation involves an incre-
ment operation which may be deferred to be
fused later in Step 2 below, as an “always
high” carry-in signal. As such, this step
does not exclusively contribute to the total
time needed for addition of two sign-magnitude
digits, except for a sign-bit comparison and
a conditional bit-wise inversion. That is, the
contribution does not depend on k;

Step 2: Addition of the magnitudes of the two
operands: The contribution of this step to the
total addition time depends on k;

Step 3: Possible magnitude comparison of the two
operands: If the two operands have different
signs, then sign of the result is the same as
that of the operand with larger magnitude.
In a minimal hardware approach, one may
take advantage of the fact that magnitude
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comparison is necessary only when the signs
are not alike, where the actual operation in
Step 2 above is a subtraction of magnitudes.
For a non-zero result, the operand with a larger
magnitude can be determined from the sub-
traction result. For a zero result, the derived
sign, as such, may be positive or negative, but
unique zero representation requires a positive
sign for zero magnitudes. It is, therefore,
necessary to determine if the subtraction result
was zero or not. The time required for zero
detection of a k-bit operand depends on k.
The latter could be done in parallel with
Step 2 [11], but, staying with the minimal
hardware approach, one can reuse the adder
cell of Step 2 for zero detection. The trick is to
add 2% — 1 to the subtraction result and check
for the carry-out signal. A low signal indicates
that the subtraction result was zero. Now it
can be concluded that in a minimal hardware
approach, the exclusive elapsed time of this
step depends on k;

Step 4: Possible complementation of the result: If
the sign of complemented operand in Step 1
was originally positive, the addition result in
Step 2 should be complemented. The contri-
bution of this step in the total addition time
normally depends on k. But the post two’s
complement operation has been reported to
be avoidable in [11], without employing any
extra k-dependent cell. The trick is to bit-
wise complement the result when necessary
and, instead of increment operation being as
part of the complementation, add to it the
carry out of the magnitude addition. The
latter addition as a sort of end-around-carry
addition does not actually introduce another
k-dependent operation besides the magnitude
addition. Therefore, taking advantage of the
latter clever technique, the time required for
this step is not k-dependent, even in a minimal
hardware approach.

Summing up the partial contributions of the
above steps in the total sign-magnitude addition time,

Table 2. Contribution of each step of the carry-free addition (Table 1) to the value of the high radix coefficient h, where
the parenthesized figures relate to the maximal hardware approach.

Sign-Magnitude Two’s Complement | One’s Complement

CCFAA | CHRA | CCFAA CHRA CCFAA CHRA
Position Sum P 2(1) 2(1) 1(1) 1(1) 1(1) 1(1)
Transfer T 1(1) 0(0) 1(1) 0(0) 1(1) 0(0)
Interim Sum W 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Final Sum § 2(0) 2(0) 1(0) 1(0) 1(0) 1(0)
High Radix Coefficient h 5(2) 4(1) 3(2) 2(1) 3(2) 2(1)
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Table 3. Summary
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s of derivation of w; in the addition of two sign-magnitude signed digits.

Derivation of the Interim Sum
Interval for p; Pi Sign(p;:) | us lti+1| tit1 w; Sign(w;) jwiq|
I = [~2a, —2"] —2Ku; — vix; 1 1 1 -1 —U; T 1 VT
I =[-2F4+1,-a] | —2Hu; —viz; 1 0 1 -1 —v;z; + 2% 0 iz + 1
I3 = [~a+1,-1] —2Ru; — vix; 1 0 0 0 —; T 1 v;T;
Is = [0, —1] 2%, + viz; 0 0 0 0 Vi 0 viz;
Iy = [, 2F — 1] 2ku; +viz; 0 0 1 1 vix; — 2k 1 TiE + 1
Is = [2", 2a] 2k, + vz 0 1 1 1 VT 0 V;T;

it is concluded that in a minimal hardware approach,
two k-dependent addition operations (due to those of

Steps 2 and 3 above) contribute

to the total addition

time, while the k-dependent delay in a maximal hard-

ware approach equals that of on

y 1 addition.

Derivation of the Transfer and Interim Sum

Recalling Equation 2 of Table 1,

it is noted that deriva-

tion of the transfer involves a magnitude comparison

operation.

The comparison operation has the same

time complexity as that of a simple unsigned addition

and, thus, its contribution to the

value of the high radix

coefficient, as reflected in the first column and second

row of Table 2, is 1.
To analyze the time comp

the interim sum by Equation J

recognize six cases, depending
values of p;, denoted by I to
each case, as shown in Table
by replacing 2*u; + v;x; for
w; = p; — 7t;41 followed by subs
values (with regard to the resp
and t;41. The choice of r = 2%
practice and simplifies the derivi

In Table 3, it is noted th
when the number of “1”s in t

sign(p;), u; and |t;41], is odd, i.e

lexity of derivation of
of Table 1, one can
on the six intervals of
Ig, in Figure 1. In
3, w; can be derived
p;| and 2* for r, in
titution of the related
ected intervals) for u;
, follows the common
ation.

at w; is negative only
he three columns for

C.y

sign(w;) = sign(p;) ® u; @ |tip1]

To find an easy implementation {
Table 3 that |w;| = vz, except
both “1”, in which case |w;| =
the bit-wise complement of v;x;
be summarized in the following

|w;| = multiplex (viz;, % |tit1

or |w;|, it is noted from
when %; and |t;1,| are

v:x; + 1, where T;z; is

. This observation can
equation:

1 y Uiy + 1)5

where multiplex (z,c,y) resolves to & when the bit-

variable ¢ is “0” and to y otherwise.

involved in the derivation of |w;|
of CCFAA. Therefore, this step
not contributing to the value of

The operation
may be fused in Step 4
may be considered as
high radix coefficient,

even in a minimal hardware approach. Finally, Step 4

of CCFAA as a sign-magnitude addition contributes
another “2"(1 in the maximal hardware approach) to
the value of the high radix coefficient, making h, as
reflected in Table 2, equal to 5(2). Applying CHRA
reduces h to 4(1).

TWO’S COMPLEMENT
REPRESENTATION OF HIGH RADIX
SIGNED DIGITS

In this section, each signed digit is represented as a
two’s complement number. The range [—2%,2% — 1] of
a (k + 1)-bit two’s complement digit, covers the digit
set [~a,al, for [F1]<a<r-1landr= 2k,

Derivation of the Two’s Complement Position
Sum

To derive the position sum, the two (k + 1)-bit signed
digits represented in two’s complement format are
sign-extended (one bit to the left) and then two’s
complement addition is performed. The result will be
a (k + 2)-bit position sum. The contribution of this
operation to the value of the high radix coefficient, as
reflected in the third and fourth column and first row
of Table 2, is 1.

Derivation of the Transfer and the Two’s
Complement Interim Sum

The outcome of applying CHRA on two’s complement
signed digits (with 7 = 2*) is shown in Figure 2 and
also in Table 4.

Figure 2 is drawn for the maximally redundant
case &« = 7 — 1, in which the 3 bit numbers on the
intervals for p;, stand for the three most significant bits
of p; (i.e. sign (p;), u; and v;). In Table 4, columns 2 to
4 and 7 to 8 represent the three most significant bits of
p; and the two most significant bits of w; respectively,
x; stands for the (k — 1) least significant bits of p; and
the two’s complement representation of ¢, is shown
in the rightmost two columns, where the superscripts
denote the bit positions. Note that, by Theorem 1, the
choice of #;11 = 0 in the last row of Table 4 includes the
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Table 4. Derivation of w; and ti41 in the addition of two’s complement signed digits.

pi Sign(p;) | wi | vi | tiga w; wk 'wf_l t}+1 t?+1
T 0 0 0 0 x; 0 0 0 0
2F-1 g, 0 0 | 1 1 —2k pok=1l g 1 1 1 0 1
2k 4+, 0 1{o 1 z; 0 0 0} 1
2k 4 2k=1 4 4, 0 1|1 1 2k=1 4 o, 0 1 0 1
—2k+1 4 oy 1 0|0 -1 —2k 4 z; 1 0 1 1
~2k+1 4 ok~ oy 1 0 |1 1| =2k oklyg | 1 1 1
—2k+1 ok 4 oy 1 1]0 -1 z; 0 0 1 1
—ok+1 9k 4 ok=1 4 4 1 1 1 0 =2k 4 2k=1 4 4, 1 1 0 0
v, (i.e. the (k — 1) least significant bits of p;) and, also,
T = — — . .
wF=! = p¥~1, as can easily be seen in Table 4. What
rj2l  tip1=0 remains is w¥, which is computable by a simple 3-input
/ TV ATTTTTTTT logic, implementing the following equation:
] ¥
) ' '
100 —3r/2 101 /110 1+ 111 000 ' 001 010 ' 011 p: k . _ . .

=772 /2 pu 3,/'2 o — 2 w; = sign(ps); V sign(pi)vi V Tv;.

] ]

' —r/2 From the above equations, one can see that derivation
of the transfer and interim sum do not contribute
to value of the high radix coefficient, as reflected

T2 in the fourth column and second and third row of

Figure 2. Derivation of t,11 and w; for two’s complement
representation.

point with coordinates (—r/2, —r/2) of Figure 2. As
shown below, the latter choice is vital for simplification
of the derivation of t;4;. From Table 4, it can be
easily verified that the transfer ¢;,; can be computed
by a simple 3-input/2-output logic, as in the following
logical equations:

ti, = sign(p;) @,
t9 = (sign(p;) V@ V T)(sign(p:) V ui V v;).

The (k — 1) least significant bits of w; are equal to x;

Table 2. Finally, s; can be derived by a simple two’s
complement increment/decrement logic, whose share in
the value of the high radix coefficient is 1. The high
radix coefficient for two’s complement paradigm with
CCFAA and CHRA is, thus, h = 3(2) and h = 2(1),
respectively, where the figures in parenthesis refer to
the maximal hardware approach.

ONE’S COMPLEMENT REPRESENTATION
OF SIGNED DIGITS

A signed digit can be represented in one’s complement
format, pretty much the same as that shown in the
previous section for two’s complement signed digits.

Table 5. Derivation of w; and t;41 in the addition of one’s complement signed digits.

Pi Sign(p;) | ui | vi | tiga w; wh | wk? tiey |t

z; 0 0| o 0 x; 0 0 0 0

2k~1 4 g, 0 0 1 1 —2k 142kl 4 g1 1 1 0 1

2k 4 x; 0 1 0 1 x; 0 0 0 1

2k 4 2kl 4 g 0 1 1 1 2k=1 4 oy 0 1 0 1
—2k+l 41 4oy 1 0 0 -1 —2F 41 4 ay 1 0 1 0
okt 1 4okl 4 g 1 o | 1] 1 ok 41 4ok-1 g, 1 1 1 0
—2k+1 41 42k 4oy 1 1 0 -1 14 x; 0 0 1 0
—2ktl 1 4ok 4 ok-1 4 oy 1 1 1 0 —2F 114261 g, 1 1 0 ]
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Following the same analysis as in the previous section,
derivation of the position sum contributes a “1” to the
value of the high radix coefficient. Then, Table 5,
resembling the derivation of wj and t;4;, has been
built up similar to Table 4, where there are two
main differences between the two tables. First, one’s
complement encoding is used for t;4; in the last two

columns and, thus, derivation
t9., = sign(p:)(u; V v;). Second

of ¢9,, is simpler, as
the derivation of w;,

as seen in the second row and the row before last of

Table 5, requires an increment

But, since t; is available beford

decrement operation.
it is possible to do

the increment/decrement operation on w;, the incre-
ment/decrement may be fused in the computation of
s; = w; + t;. Therefore, high radix coefficient in this

case is also h = 3(2) and h = 2
value of high radix coefficient in

1), respectively. The
pne’s complement and

two’s complement paradigms, is| the same, but, two’s
complement representation of signed digits is naturally

preferable. The reason is the p

opularity of the two’s

complement representation in general, availability of

optimized standard adder cells

for two’s complement

binary representation and the ease of converting widely

used two’s complement numbers

equivalent and vice versa.

CONCLUSIONS
High radix signed digit numb

to their signed digit

er systems exhibit a

carry-free property, while economizing the memory

requirement, as compared to lo
number systems. In this paper

ficient is introduced as a measy
time required to perform carry-{

numbers with different represent
is on least-cost implementation,
by limiting the number of k-depe
a k-dependent cell is a (k + 1
comparator or zero detector (k
radix of the number system).

conventional carry-free addition
numbers is presented, in order td
coefficient. One of the steps

wer radix signed digit
the high radix coef-
ire for comparing the
ree addition of HRSD
ations. The emphasis
which is characterized
ndent cells to 1, where
-bit (or k-bit) adder,
= [logr] and r is the

A modification to the

algorithm for HRSD
reduce the high radix

in carry-free addition

involves comparing the magnitude of the position sum

with the maximum absolute v

alue (a) of the digit

set. A theorem is presented to prove that comparison

of the magnitude of position su
[r/2] instead of «, will produce

m with the half-radix
a valid transfer digit.

It is shown that the presented modified algorithm,

when applied to power-of-two radices (r =

1), simplifies the comparison o
time derivation of a simple lg
modified algorithm is applied to
complement and one’s complemn

2k k>
eration to a constant
gical equation. The
sign-magnitude, two’s
ent representations of

signed digits and the proposed method is designated as
the Compare with Half-Radix Algorithm (CHRA). It

G. Jaberipur and M. Ghodsi

is shown that use of CHRA, with two’s complement or
one’s complement representation of signed digits in a
minimal hardware (least-cost) approach, has the same
effect on reducing the high radix coefficient, as does
the maximal hardware (most costly) implementation of
CCFAA or CHRA with sign-magnitude representation.
A comparison table (Table 2) is presented for the
application of CHRA and CCFAA on the three signed
digit representation paradigms studied in this paper,
for both minimal hardware and maximal hardware
approaches. The table shows that the two’s com-
plement and one’s complement representations with
CHRA and the minimal hardware approach, lead to a
60% lower value for the high radix coeflicient (reducing
from 5 to 2) over the sign-magnitude paradigm with
the conventional carry-free addition algorithm. This
is achieved for power-of-two radices (r = 2%,k > 1)
and the maximally redundant (o = r — 1) signed
digit numbers (with the same memory requirement as
any less redundant case), while the digit set [—a,a]
is fully preserved. The two's complement paradigm
is preferred over one’s complement because of the
popularity of the two’s complement representation in
general. Some other even more efficient representation
paradigms of signed digits have been investigated
elsewhere [12,13].
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