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Research Note

Simulation of Interdendritic Liquid

Permeability for Low and High Solid Fractions

During Solidi�cation of Mushy Alloys

S.M.H. Mirbagheri1

A numerical model has been developed for the determination of liquid 
ow permeability through
columnar dendrite during growth and segregation in Al-Si alloys. Therefore, in the present work,
two separate computational models of grain growth and interdendritic liquid 
ow are coupled
for modeling of the permeability in partly solid alloy. Grain growth is simulated, using a Cellular
Automation Finite Di�erence (CAFD) for a 2D dendrite and 
uid 
ow by using a Computational
Fluid Dynamic (CFD) model for determining permeability. A new model has been presented for
calculation and modi�cation of dendrite permeability in high solid fractions. Simulation results
show which Si concentration variations, at each time step, could transform the dendrite shape.
Also, dendrite morphology could alert the interdendritic permeability factor.

INTRODUCTION

Casting engineers continually deal with macrosegrega-
tion, but, despite their e�orts, segregation sometimes
persists and can even reach unacceptable levels leading
to expensive scrap. In addition, macrosegregation in
ingots or casting parts can be an overriding factor
in limiting the size and production rate of the cast
product. Convection of interdendritic liquid through
the dendritic mushy zone in solidifying alloys is re-
sponsible for most of the macrosegregation in castings
and ingots. The pressure drop, due to shrinkage
and restricted feeding through dendritic structures, is
a major factor contributing to the porosity in cast
parts. However, experimental measurement of liquid

ow in the mushy zone and how it depends upon
processing parameters is very di�cult. For these
reasons, concurrent modeling of segregation and 
uid

ow is desirable. The microscopic 
ow of 
uid through
the mushy zone is usually modeled by Darcy's Law [1]:

V = �
K

�
rP; (1)

where rP is the pressure gradient, V is 
uid velocity,
� is viscosity and K is the permeability factor. Also,
a combined Navier-Stokes (N � S) equation, with a
Darcy term, is derived by Ganesan and Poirier [2] as
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follows:
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where fl is liquid fractions, �l is liquid density, [K]
is a permeability tensor and K is between zero and
in�nite, respectively, for solid fractions 1 and 0. When
fl = 1 or fl = 0, K will be in�nite and zero,
respectively. This often proves suitable, if the per-
meability is known; even if the assumptions used to
derive Darcy's law are not entirely satis�ed, an e�ective
permeability may give usable results when the length
scale under consideration is su�ciently greater than the
microstructural length scale. This macroscale e�ective
permeability depends upon the detailed 
ow pattern
at the microscale, which, in turn, depends upon the
shape and nature of the channels through which the
liquid 
ows. In the dendritic mushy zone, these shapes
are quite complex indeed and both measurement and
prediction of the exact 
ow patterns are di�cult.
Therefore, a suitable value for the permeability for
use in Equation 1 or 2 is often not known. It is
well established that growth rate, temperature gradient
and composition of material are the main factors
that a�ect dendrite morphology [3,4]. In dendritic
alloys, behind the paraboloid tip, secondary arms grow
in preferred orientation. Also, as time progresses,
tertiary arms may grow and their growth may cease
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as they encounter the di�usion �eld of branches of
neighboring dendrites [5,6]. Also, the interdendritic
liquid moves in a solid network with a non-uniform
volume fraction. In the interior of the mushy zone,
where the solid fraction is greater than about one-third,
Darcy's law can satisfactorily represent the momentum
equation [5]. However, Darcy's law gives erroneous
results closer to the liquid zone and it is necessary to
use an equation which includes inertial, di�usion and
Darcy terms (tensor permeability) [6]. Furthermore,
the solid network may not be coherent and, hence,
may be moved along with the liquid, resulting in mass
feeding [7]. Approaches for estimating permeability
include experimental measurement and analytic or
numerical solutions of the microscale 
ow patterns.

In the experimental method, special metallic al-
loys freeze over a range of temperatures. The solute
concentration ahead of the solid/liquid interface leads
to a dendritic growth of the solid phase throughout the
liquid phase, giving origin to a mushy zone where solid
and liquid coexist.

A �ne mesh of solid dendrites forms interdendritic
channels �lled with liquid metal. The tortuousness of
the interdendritic channels induces a pressure drop in
the liquid 
ow between the entrance and the bottom of
these channels. For typical dendrite arms spacing, the
liquid 
ow in this �ne mesh can be treated as a 
ow
through a �nely porous media and Darcy's law can be
applied to estimate the pressure drop in the channel.
Therefore, much research has focused on measuring the
permeability of alloys in the mushy zone [8].

Piwonka and Flemings [9] carried out the �rst
measurement of permeability, forcing liquid lead
throughout solidifying Al-4.5 wt. Cu%. Later,
some other works reported experimental measures of
the permeability of alloys under di�erent conditions.
Apelian et al. [10] measured the permeability of Al-Si
alloys using water as 
uid. Streat and Weinberg [11]
measured interdendritic 
ow rate in Pb-20 wt.% Sn
alloys using a Pb-Sn alloy as 
uid and gravity as the
driving force. Nasser-Ra� et al. [12] analyzed the
permeability of directionally solidi�ed Pb-20 wt. Sn%
alloy, with various primary and secondary dendrite
arms spacing, for liquid 
ow parallel and normal to
primary dendrite arms. Using directionally frozen
borneol-para�n organic alloy and an aqueous solution
as 
uid, Murakami et al. [13,14] carried out some
interesting measurements of permeability.

There are two commonly used analytical so-
lutions for calculating non-dimensional permeability
for creep 
ow through periodic or random arrays of
cylinders having simple (circular, hexagonal, square)
cross-sections. The lubrication model, developed by
Bruschke and Advani [15], is applicable for high solid-
fraction arrays and the point-particle (dilute) model,
developed by Gebart [16], is applicable for low solid

fraction arrays. However, so far, analytical approaches
are not feasible for more complex shapes approximating
real dendrite shapes.

Numerical methods have been used to model ac-
tual 
ow situations simulating dendritic structures [17-
23]. These studies have shown that the detailed
morphology of the dendrite at microscale has a sig-
ni�cant e�ect on the resistance to 
ow and, hence,
on e�ective permeability, which may be observed at
the macroscale. In spite of the published research,
determination of dendritic structural permeability, due
to the very complex microstructure of dendrites, still
remains a challenge for both mathematical and ex-
perimental methods. The detailed microscopic scale
models may not yet be feasibly applied to the whole
of the mushy zone, consisting of millions of individual
dendrite arms. However, a numerical study of the
permeability through the simulated microstructures
has not so far been approached systematically. To
understand the changes in the 
ow resistance, due
to the change of dendrite geometry shape, and how
this relates to the material properties and processing
parameters, a combination of micro models for solidi�-
cation and 
uid 
ow has been used. The velocity and
pressure from these results are then used to estimate
the e�ective permeability for arrays of dendrite shapes
in Al-Si di�erent alloys.

MATHEMATICAL MODELS

Relative motion between the solid and the liquid during
alloy solidi�cation is one of the most critical transport
phenomena associated with macro segregation and
micro structural development. In order to predict the
relative movement, as well as its ensuing e�ects, in a
solidifying alloy, accurate knowledge of the solid/liquid
interfacial drag and permeability over the entire range
of the solid volume fraction is required. Therefore, in
the present work, two separate computational models
of the grain growth and interdendritic liquid 
ow are
coupled for the modeling of permeability e�ective in
mushy alloys. The grain growth is simulated using a
Cellular Automation Finite Di�erence (CAFD) for a
2D dendrite, and 
uid 
ow by using a Computational
Fluid Dynamic (CFD) model for determining e�ective
permeability. The governing equations and details of
the numerical solution for each model are given below.

CAFD Model

The CAFD model was used to simulate grain forma-
tion [24,25]. The model of the grain growth is based
on local thermal and constitutional under cooling [26-
29]. The dendritic shapes were simulated assuming an
Al-Si binary system with a single nucleation site at the
centre of the system domain. The grain morphology
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and growth rate are controlled by the partitioning and
di�usion phenomena, as described in [29].

Solute Partitioning and Di�usion

Due to the di�erence between the solubility of solute in
the liquid and solid matrix phase, solute partitioning
occurs during the solidi�cation process. The solute
concentration gradient is the driving force behind the
solute di�usion within solid and liquid matrix phases.
Assuming local equilibrium, the total concentration of
solid solute per cell before eutectic is given by [28,29]:

CS = Cl
�
1� (1� k)fS

�
: (3)

Di�usion of Si is calculated using Fick's equation:

@

@t

�
fSkCl + (1� fS)Cl

�
= r:DerCl; (4)

where the e�ective di�usion coe�cient is De = (1 �
fS)Dl + fSkDS , k is the partition coe�cient and C
is the solute concentration. This equation was solved
using an explicit �nite-di�erence scheme. A weighted
average of the solute di�usion coe�cient in the liquid
and solid phases is applied in partly solid cells [29].

Growth Model

If the solid fraction within a cell is greater than zero,
partitioning can occur and the solute is rejected from
the cell into its neighboring liquid cells. The solute
concentration heterogeneity produced by partitioning
drives the di�usion, which tends to harmonize the
solute concentration. Partitioning and di�usion, as
mentioned above, change the solute concentration and,
therefore, the local liquidus temperature via the phase
diagram, as well as local undercooling. In each
solidifying cell, the change in the solid fraction is �rstly
determined by the KGT model [26], which calculates
the maximum growth rate, based on a given under-
cooling at a near absolute stability limit. The solid
fraction is further corrected by a di�usion-controlled
growth. Once the solid fraction reaches a critical
value, it can grow into its neighboring liquid cells,
providing the cells are under-cooled. When the solid
fraction of the cells reaches unity, the cell is considered
fully solidi�ed. A liquid cell may be captured by a
growing neighboring cell and become part of the solid
grain [29,30].

CFD Model

In the present work, a CFD code, SUTCAST, de-
veloped to determine 2D permeability by solving the
N�S equation using the SOLution Algorithm (SOLA)
method, which has been described in [31,32] is used.
In a solidifying alloy, the interdendritic liquid moves
in a solid network, in which the volume fraction of

liquid is not uniform. In the interior of the mushy
zone, (0 < fL < 0:66), the momentum equation can be
satisfactorily represented by Darcy's law. However, in
the �eld of dendritic solidi�cation that gives erroneous
results in the part of the mushy zone that is adjacent to
the full-liquid zone (where fL > 0:66), it is necessary to
use a comprehensive momentum equation with inertial
and di�usion terms, along with Darcy's term. Then, for
transient 
ow, N � S and continuity equations are [7],
as follows:

�L
D~V

Dt
= �rP + �L~g + �r2~V ; (5)

�L � �S
�m

�
@fL
@t

+ (~V ):rfL

�
+r:(~V ) = 0; (6)

where fS and fL are solid and liquid fractions, respec-
tively, and the density of the mushy zone is fS�S +
fL�L = �m, fS + fL = 1. It is clear when fL < 1,
Equation 6 leads to Equation 2.

The heat transfer equation for the mushy zone
may be written as:

�CP
@T

@t
= ��CP~�:rT +r:~q + q�; (7)

where:

q� = ��Hm

@fS
@t

; (8)

@fS
@t

=
@f

@T

@T

@t
: (9)

The fraction of solid in the mushy zone is estimated
by Equation 10. The CFD program assumes partial
mixing in the liquid and no di�usion in the solid phase
(DS = 0) [16,17]:

CS = kECL(1� fS)
1�kE ; (10)

CS
CL

=
Tm � T

Te � TL
; (11)

where:

kE =
k�

k� + (1� k�) exp
�
��R
DL

� :
Substituting Equation 11 into Equation 10 gives:

fS = 1�

�
Tm � T

Te � TL

�� 1
kE�1

�

; (12)

and substituting Equation 12 into Equation 9 gives:

@fS
@t

=
1

(Te�TL)(kE�1)

�
Tm�T

Te�TL

�� 2�kE
kE�1

�
@T

@t
:
(13)
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The release of latent heat between the liquidus and
solidus temperature is calculated by substituting Equa-
tion 13 into Equation 7. Therefore, the heat transfer
equation is given by:

�[C 00

P ]
@T

@t
= ��CP~�:rT +r:~q; (14)

where C 00

P can be considered as a quasi-speci�c heat
given by:

C 00

P =

2
4CP��Hm

1

(Te�TL)(kE�1)

�
Tm�T

Te�TL

�� 2�kE
kE�1

�3
5 :
(15)

To implement this equation in the CFD code, the
physical properties of the liquid, solid and mould
are assumed constant in the solidi�cation process.
However, in the mushy zone, the coe�cients of the
heat conductivity and the thermal capacity are as
kM = fLkL + fSkS and CM

p = fLC
l
P + fSC

S
P ,

respectively [33,34].

COMPUTING PROCEDURE

In the present work, two separate codes, the CAFD
program for simulation of the grain growth and the
CFD program for interdendritic liquid 
ow, are coupled
for modeling of the permeability e�ective in the mushy
alloys. During simulation of the interdendritic 
uid

ow for a high solid fraction, after solving the N � S
equations, the local permeability is updated in cells
at each time step, using the calculated pressure and
velocity �elds by adding Darcy's law. The updated
permeability is used to determine the new velocity
�elds and to satisfy the continuity equation in high
solid fractions by the iteration procedure. When the
continuity equation is satis�ed, �nal permeability will
be equal to e�ective (last iteration) permeability. The
computation procedure is as follows:

1. Go to the CAFD code. The calculations made for
each time step consist of the following steps:

(i) Initial settings are determined, including: mesh
generation, initiating arrays, the control pa-
rameter set up and physical-thermal property
parameters;

(ii) Semi-explicit approximations of Equations 3, 4
and 8 are used to compute the solute concen-
tration and solid fraction;

(iii) The dimensions (morphology) and properties of
dendrite are determined.

2. Go to the CFD code for calculation of the micro-

uid 
ow and permeability near the dendrite. The
calculations are made for each time step. The
basic procedure of advancing a solution through one
increment in time, �t, consists of the following steps:

(i) Semi-explicit approximations of Equations 2
and 5 are used to compute the �rst guess
for new time-level velocities, using the initial
conditions or previous time-level values for all
advectives, pressures, viscous accelerations and
permeability terms;

(ii) To satisfy the continuity Equation 6, pressure is
iteratively adjusted in each cell and the velocity
changes, induced by both pressure (�P ) and
permeability (�K) changes, are added to the
velocities computed in the previous iteration.
The pressure change for solid fractions 0 �
fS � 0:6 and the permeability change for 0:6 <
fS � 1:0 are calculated by Equations 16 and 17,
respectively: Where indexes t, b, l and r are
top, bottom, right and left, respectively.

�Pi;j;k = Di;j;k

�

�t

"
1

�x

�
1

�xl
+

1

�xr

�

+
1

�y

�
1

�yt
+

1

�yb

�#�1
;

low solid fractions; (16)
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high solid fractions: (17)

(iv) Finally, the temperature in each cell is calcu-
lated by means of Equation 14.

3. Repeat Step 1 for determining the new dendrite
properties and morphology in the new time step.

The 
owchart for computing procedures is given
in Figure 1 and details of these steps and the iteration
procedure are mentioned in Appendix.

COMPARISON TO ANALYTICAL AND

SIMULATION MODELS

The CFD code computations were carried out in a
square array of cylinders for code validation, as shown
in Figure 2. By imposing a 
ow velocity with low
Reynolds numbers in an x direction and periodic
boundary conditions at the top and bottom walls of
the cell (a quarter cell), the pressure drop across the
cell is calculated numerically by solving the full N � S
equations, using a system domain with dimensions
of 1 � 1 mm and 100 � 100 square meshes. The
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Figure 1. Algorithm of solution N �S equations for calculating permeability in low and high solid fractions (all terms are
de�ned in Appendix).

Figure 2. A portion of the unit cell for square array of
cylinders.

permeability (k) of the cell is determined from Darcy's
law. The e�ective permeability was normalized by the
square of the radius of the cylinder. The developed
CFD code was validated by comparing its predication
for the e�ective permeability of the square array of
circular cylinders with the asymptotic models of Gebart
and Braschke [15,16]. Figure 3 shows the results of the
comparison between the CFD code calculated values
for normalized permeability and the analytic models
for the case of a square array of cylinder for creep 
ow.
The CFD code predictions at high and low porosity are
in excellent agreement with the corresponding analytic
results of Gebart and Bruschke, respectively.

A FDM solver, Fluent, is used to solve the N �S
equation for the same conditions as described above.
The top and bottom walls of the unit cell were under
\no slip" conditions. The left and right walls were
\inlet" and \outlet", respectively. Figure 4 shows
a comparison of the drag force results between the
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Figure 3. Non-dimension permeability results between
the present code (SUT-cast) and analytical solutions [8,9]
for validating.

Figure 4. The drag force results between SUT-cast and
the 
uent code during dendrite growth.

present CFD code and the Fluent code, showing that
the present code gives the same results for this case.

RESULTS AND DISCUSSION

In the micro-macro modeling of the columnar solidi�ca-
tion of the binary Al-Si alloy, the temperature gradient
and growth rate are the main factors that a�ect the
dendrite morphology. The CAFD solver is capable
of considering all the factors during solidi�cation.
Initially, a nucleus is placed at the centre of a square
domain of 1� 1 mm. Then, the grain growth program
simulates dendritic morphology during solidi�cation,
based on the data of Table 1 [33] and growth parame-
ters, such as cooling rate and solute di�usion, at each
time step. Then, the 
uid 
ow program simulates the
pattern of 
ow near the dendrites produced by the
grain growth program for each separate solid fraction.

Table 1. Physical-thermal data for simulation of Al-Si
alloys permeability [33].

Al-0.1 Si% Al-1.0 Si% Al-10 Si%

ksl (w/m
�k) 250-190 121-91 81-89

CP (J/kg. �k) 900-990 963-1084 963-1078

TL (�C) 658 644 604

TS (�C) 642 577 577

� (kg/m3) 2690-2389 2695-2385 2670-2399

�Hm (k J/kg) 396.10 389.2 405.54

� (kg/m.sec) 0.001003 0.001010 0.001098

Finally, permeability is calculated by using Darcy's
law, based on the pressure �eld obtained from the CFD
code. Figure 5 shows the iso-pressure �elds simulation
results obtained around the dendrites of Al-Si alloys.
As observed, with increasing Si, the section-area of the
columnar dendrites changes from a rhombic toward a
cloverleaf morphology, which a�ects the 
ow pattern
and pressure �eld of the interdendritic liquid.

Figure 6 shows that the permeability logarithm
varies with Si concentration in the ranges (0.414-
0.423) of the solid fractions. As shown, an increase
in Si percentage leads to a decrease in permeability.
The permeability reduction is due to the evolution
of the dendrite morphology from a rhombic toward a
cloverleaf shape, as shown in Figure 5. As mentioned
in the introduction, drag force and permeability are
strongly dependent on the orientation of the pressure
gradient, with respect to the axes of the growth
dendrite. For this reason, the in
uence of the dendrite
rotation angle, with respect to the 
ow direction,
on permeability, was simulated. Figure 7 shows the
permeability simulation results for a dendrite with a
cloverleaf cross-section and a �xed Si percentage. As
observed, an increase in permeability increases the
rotation angle until 45 degrees, because the distance
between the cell wall and the tip of the dendrite has
increased. This e�ect is dependent on symmetry, arm
number, shape and perturbation of the dendrite. For
example, the rotation angle for a dendrite with a circle
section (zero perturbation) will not have any e�ect on
the permeability. Figure 8 shows both the e�ect of Si
concentration and dendrite rotation for a �xed solid
fraction. From Figure 8 it can be concluded that in a
solid fraction and �xed angle, there are di�erent values
of permeability, which expresses the magnitude of the
e�ect on dendrite shape.

CONCLUSION

1. In this investigation an algorithm was developed to
calculate the permeability of mushy alloys for low
and high solid fractions. To simulate permeability,
both the CFD and the CAFD codes were coupled.
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Figure 5. Iso-pressure (Pa) contours for 
ow parallel to
the axis of symmetry of a square cell in the Al-wt. Si%
alloys with solid fraction 0.24 and the length h = 1 mm at
Re = 0.1 with 100 � 100 elements.

Figure 6. E�ect of Si concentration on permeability
during dendrite growth. CA: Cellular automation code.

Figure 7. E�ect of angle between dendrite arm and
streamline on permeability in a �xed Si% during dendrite
growth.

Figure 8. E�ect of angle between dendrite arm and
streamline on the permeability in a �xed solid fraction.
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The CAFD created dendrite and the CFD calcu-
lated 
uid 
ow near the dendrite;

2. Comparisons between the calculated permeability
and experimental data extracted from di�erent
authors, permit one to conclude that the present
model, based on Equations 16 and 17, describes
satisfactorily the variation of permeability with
high solid fractions and dendrite morphology in Al-
Si% alloys;

3. Simulation results show that solute concentration
can convert dendrite morphology from rhombic to-
ward cloverleaf. These concentration variations are
in a power-law form. Consequently, the cloverleaf
dendrite morphology could decrease the permeabil-
ity and pattern 
ow, due to an increase in its drag
force;

4. Results of simulation show that in a �xed solid
fraction, 
ow pattern and permeability could alter
the dendrite shape and angle between the dendrite
axes with streamline.
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APPENDIX

Finite Di�erence Approximations

1. The �nite di�erence approximations of the momen-
tum transport equation are [31]:

Un+1
i;j = Un

i;j +�t

"
Pn+1
i;j � Pn+1

i+1;j

��x
+ gx � FUX

� FUY +VISX� PERX

#
; (A1)

V n+1
i;j = V n

i;j +�t

"
Pn+1
i;j � Pn+1

i;j+1

��y
+ gY � FVX

�FVY+VISY� PERY

#
; (A2)

FUX =
Un
i;j

2�x
[DUL +DUR

+ � Sign(U�)(DUL �DUR)];

PERX =
Un
i;j

Ki;j

�fi;j [DUL +DUR

+ � Sign(U�)(DUL�DUR)];

VISX = �

 
Un
i+1;j � 2Un

i;j + Un
i�1;j

�x2

+
Un
i;j+1 � 2Un

i;j + Un
i;j�1

�y2

!
;

DUL = Un
i;j � Un

i�1;j ;

DUR = Un
i+1;j � Un

i;j ;

U� = (DUR +DUL)=2;

where the superscript (n) stands for old time level
and (n + l) for the new time level. � = 0
or 1 is the control factor for upwind and centered
di�erencing, respectively. A similar method is used
for calculation of the advective 
ux terms, FUY,
FVX, FVY, the viscous 
ux term, VISY, and the
permeability term, PERY;

2. The �nite di�erence approximation to the continu-
ity equation is:

Di;j =
Un+1
i;j � Un+1

i�1;j

�x
+
V n+1
i;j � V n+1

i;j�1

�y

+Mi;j;k = 0; (A3)

(
Mi;j=

�L��S
�

(DFT+UFX+VFY) if 0hfLi;jh1

Mi;j = 0 Otherwise
;

DFT =
fn+1Li;j

� fnLi;j
�t

;

VFY = 0:5 (Vi;j + Vi;j�1)
fnLi;j+1 � fLi;j�1

2�y
;

UFX = 0:5 (Ui;j + Ui�1;j)
fnLi+1;j � fnLi�1;j

2�x
: (A4)
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3. The �nite di�erence approximation of the heat
transfer equation is:

Tn+1
i;j = Tn

i;j��tf(UTX+VTY)

+ (DQX +DQY)g; (A5)

UTX = 0:5
n
(1 + �)Ui�1;j(DTXL)

+ (1� �)Ui;j(DTXR)
o
;

DTXL =
Ti;j � Ti�1;j

�x
;

DTXR =
Ti+1;j � Ti;j

�x
;

DQX =
QXR�QXL

�CP�x
:

The VTY is found in a similar way to UTX. If cells
(i; j) and (i+ 1; j) are liquid cells, then:

QXR = �kR
Tn
i+1;j � Tn

i;j

�x
;

QXL = �kl
Tn
i;j � Tn

i�1;j

�x
:

DQY is found in a similar way. In the freezing
range, the speci�c heat and liquid in the new time
step (n + 1) in the CFD program, the �rst guess for
the new time level, namely, Un+1, V n+1 and Wn+1

are calculated by an explicit approximation with the
old time-level (n) values. In the �rst step of the
solution, therefore, the Pn+1 values in Equations A1
and A2 are replaced by Pn. Then, the guessed
velocities are put into the continuity Equation A3.
In order to satisfy the continuity Equation A3, the
velocities, as well as the pressures, should be ad-
justed iteratively with Equations 16 and 17 for the
computational cells with low and high solid fractions,
respectively.

For cells of low solid fractions (0 � fS � 0:6) in
each iteration, with �Pi;j determined, new estimates
for Pi;j and the velocities on the sides of the cell are

found, as follows:

Pm+1

i;j = Pm
i;j + �Pm

i;j ;

�Pi;j = Di;j

"
�t

�

 
1

�x

�
1

�xl
+

1

�xr

�

+
1

�y

�
1

�yt
+

1

�yb

�!#�1
; (A6)

Um+1

i;j = Um
i;j +

�t

�x
�Pm

i;j ;

Um+1

i�1;j = Um
i�1;j �

�t

�x
�Pm

i;j ; (A7)

V m+1

i;j = V m
i;j +

�t

�y
�Pm

i;j ;

V m+1

i;j�1 = V m
i;j�1 �

�t

�y
�Pm

i;j�1: (A8)

For cells of high solid fractions (0:6 < fS � 1:0) in each
iteration, with Ki;j determined, new estimates for the
velocities on the sides of the cell are found as follows:

Km+1

i;j = Km
i;j + �Km

i;j ;

�Ki;j;k = Di;j;k�t

" 
1

�x

�
1

�xl
+

1

�xr

�

+
1

�y

�
1

�yt
+

1

�yb

�!#�1
; (A9)

V m+1

i;j�1 = V m
i;j�1 �

Pi;j�1
��y

�Km
i;j ;

V m+1

i;j = V m
i;j +

Pi;j
�y

�Km
i;j ; (A10)

Um+1

i;j = Um
i;j +

Pi;j
��x

�Km
i;j ;

Um+1

i�1;j = Um
i�1;j �

Pi�1;j
��x

�Km
i;j : (A11)

The above velocities are then put into the continuity
equation again and the outlined procedures are re-
peated. Convergence of iteration is achieved when all
cells haveDi;j values satisfying the inequality, Di;j < ",
as shown in the 
owchart of Figure 1.


