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Improved Ant Colony Optimization

Algorithm for Reservoir Operation

M.R. Jalali1, A. Afshar� and M.A. Mari~no2

In this paper, an improved Ant Colony Optimization (ACO) algorithm is proposed for reservoir
operation. Through a collection of cooperative agents called ants, the near-optimum solution
to the reservoir operation can be e�ectively achieved. To apply the proposed ACO algorithm,
the problem is approached by considering a �nite horizon with a time series of in
ow, classifying
the reservoir volume to several intervals and deciding for releases at each period, with respect
to a prede�ned optimality criterion. Pheromone promotion, explorer ants and a local search
are included in the standard ACO algorithm for a single reservoir, deterministic, �nite-horizon
problem and applied to the Dez reservoir in Iran. The results demonstrate that the proposed
ACO algorithm provides improved estimates of the optimal releases of the Dez reservoir, as
compared to traditional state-of-the-art Genetic Algorithms. It is anticipated that further tuning
of the algorithmic parameters will further improve the computational e�ciency and robustness
of the proposed method.

INTRODUCTION

Ant Colony Optimization (ACO), called ant sys-
tem [1,2], was inspired by studies of the behavior
of ants [3]. Ant algorithms were �rst proposed by
Dorigo [3] and Dorigo et al. [4] as a multi-agent
approach to di�erent combinatorial optimization prob-
lems, like the traveling salesman problem and the
quadratic assignment problem. The ant-colony meta-
heuristic framework was introduced by Dorigo and Di
Caro [5], which enabled ACO to be applied to a range
of combinatorial optimization problems. Dorigo et
al. [6] also reported the successful application of ACO
algorithms to a number of bench-mark combinatorial
optimization problems. Montgomery and Randall [7,8]
introduced several alternative pheromone applications.
So far, very few applications of ACO algorithms to
water resources problems have been reported [9,10].
Abbaspour et al. [9] employed ACO algorithms to
estimate the hydraulic parameters of unsaturated soil.
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Maier et al. [10] used ACO algorithms to �nd a
near global optimal solution to a water distribution
system, indicating that ACO algorithms may form
an attractive alternative to genetic algorithms for the
optimum design of water distribution systems. In
this paper, a novel way of addressing the optimum
reservoir operation problem is proposed, making use of
an improved ACO algorithm. To do so, the reservoir
operation will be structured to �t an ACO model
and the features related to ACO algorithms will be
introduced. Performance of the proposed algorithm in
the operation of the Dez reservoir in Iran, as well as the
in
uence of the values of the algorithmic parameters
on the performance of the ACO algorithm, will be
described.

ANT COLONY BEHAVIOR

Ant colony algorithms have been founded on an ob-
servation of real ant colonies. By living in colonies,
ants' social behavior is directed more to the survival
of the colony as an entity rather than to that of an
individual member of the colony. An interesting and
signi�cantly important behavior of ant colonies is their
foraging behavior and, in particular, their ability to
�nd the shortest route between their nest and a food
source, realizing that they are almost blind. The path
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taken by individual ants from the nest in search for
a food source, is essentially random [4]. However,
when they are traveling, ants deposit on the ground a
substance called pheromone, forming a pheromone trail
as an indirect means of communication. By smelling
the pheromone, there is a higher probability that the
trail with a higher pheromone concentration will be
chosen. The pheromone trail allows ants to �nd their
way back to the food source and vice versa. The
trail is used by other ants to �nd the location of the
food source located by their nest mates. It follows
that when a number of paths are available from the
nest to a food source, a colony of ants may be able
to exploit the pheromone trail left by the individual
members of the colony to discover the shortest path
from the nest to the food source and back [5]. As
more ants choose a path to follow, the pheromone
on the path builds up, making it more attractive to
other ants seeking food and, hence, more likely to be
followed.

Generally speaking, metaheuristic population-
based algorithms [11] search for a global optimum
by generating a population of trial solutions. Ant
colony optimization, as a metaheuristic population-
based algorithm, has many features which are similar
to Genetic Algorithms (GAs). Table 1 compares some
common and/or similar features of ACO algorithms
with those of GAs, as described in detail by Maier
et al. [10]. The most important di�erence between
GAs and ACO algorithms is the way the trial solutions
are generated. In ACO algorithms, trial solutions are
constructed incrementally, based on the information
contained in the environment and the solutions are
improved by modifying the environment via a form
of indirect communication called stigmergy [6]. On
the other hand, in GAs, the trial solutions are in the
form of strings of genetic material and new solutions
are obtained through the modi�cation of previous
solutions [10]. Thus, in GAs, the memory of the system
is embedded in the trial solutions, whereas, in ACO
algorithms, the system memory is contained in the
environment itself.

ANT COLONY OPTIMIZATION (ACO)
ALGORITHMS: GENERAL ASPECTS

An interesting and very important behavior of ant
colonies is their foraging behavior and, in particular,
their ability to �nd the shortest route between their
nest and a food source, realizing that they are almost
blind. The path taken by individual ants from the nest
to the food source is essentially random [4]. However,
when they are traveling, ants deposit a substance called
pheromone, forming a pheromone trail as an indirect
means of communication. As more ants choose a path
to follow, the pheromone on the path builds up, making
it more attractive for other ants to follow.

In the ACO algorithm, arti�cial ants are permit-
ted to release pheromone while developing a solution
or after a solution has been fully developed, or both.
As stated, the amount of pheromone deposited is
made proportional to the goodness of the solution
an arti�cial ant develops. A rapid drift of all ants
toward the same part of the search space is avoided
by employing the stochastic component of the choice
decision policy and numerous mechanisms, such as
pheromone evaporation, explorer ants and local search.

Let �ij(t) be the total pheromone deposited on
path ij at time t, and �ij(t) be the heuristic value of
path ij at time t, according to the measure of the
objective function. Heuristic value is a measure of
objective function, which along with the pheromone
(�ij), will determine the transition probability from
option i to j, at time period t, as follows:

Pij(k; t) =

8<
:

[�ij(t)]
�[�ij (t)]

�

P
NC
j=1

[�ij(t)]
�[�ij (t)]

� if j 2 Nk(t)

0 otherwise
; (1)

where Pij(k; t) is the probability that ant k selects path
ij at time period t; Nk(t) is the feasible neighborhood
of ant k when located at time period t and � and � are
two parameters that control the relative importance of
the pheromone trail and heuristic value.

Let q be a random variable uniformly distributed
over [0,1] and q0 2 [0; 1] be a tunable parameter. The

Table 1. Similarities of ACO and genetic algorithms

Genetic Algorithm ACO Algorithm

Population size Number of ants

One generation One iteration

Trial solutions utilize the principle It is based on foraging behavior of

of survival of the �ttest ant colonies

Probabilistic process is governed by Probabilistic process is de�ned by pheromone

crossover and mutation intensities and local heuristic information

Encouraging wider search space is Wider search space is guaranteed by

achieved by mutation operator pheromone evaporation
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next option, j, that ant k chooses is [12]:

j =

8<
:
arg max

l2Nk(t)

n
[�il(t)]

�
[�il(t)]

�
o

if q � q0

J otherwise
; (2)

where J is a value of a random variable selected
according to the probability distribution of Pij(k; t)
(Equation 1). Equations 1 and 2 provide a probabilistic
decision policy to be used by the ants to direct their
search towards the optimal regions of the search space.
The level of stochasticity in the policy and the strength
of the updates in the pheromone trail determine the
balance between the exploration of new points in
the state-space and the exploitation of accumulated
knowledge [12]. To simulate pheromone evaporation,
the pheromone evaporation coe�cient, (�), is de�ned,
which enables greater exploration of the search space
and minimizes the chance of premature convergence to
sub-optimal solutions upon completion of a tour by all
ants in the colony. The global trail updating is done as
follows:

�ij(t)
iteration
 � (1� �):�ij(t) + �:��ij ; (3)

where 0 � � � 1; (1 � �) is evaporation (i.e., loss)

rate; and the symbol
iteration
 � is used to show the next

iteration.
There are several de�nitions for pheromone depo-

sition on path ij during time period t, ��ij(t) [4,12].
From three well known algorithms, namely; Ant Sys-
tem (AS), Ant Colony System iteration-best (ACSib)
and Ant Colony System global-best (ACSgb), the latter
was chosen in this study [13], in which:

��ij(t)=

(
1=Gk�gb if (i; j)2tour done by ant k�gb
0 otherwise

;
(4)

where Gk�gb is the value of the objective function for ant
k�gb, which is the ant with the best performance within
the past total iterations.

ACO ALGORITHMS FOR OPTIMUM
RESERVOIR OPERATION

To apply ACO algorithms to a speci�c problem, the
following steps have to be taken:

1. Problem representation as a graph or a similar
structure easily covered by ants;

2. Assigning a heuristic preference to generated solu-
tions at each time step (i.e., selected path by the
ants);

3. De�ning a �tness function to be optimized;

4. Selection of an ACO algorithm to be applied to the
problem.

In order to apply ACO algorithms to the optimum
reservoir operation problem, it is convenient to see
it as a combinatorial optimization problem with the
capability of being represented as a graph. The
problem may be approached considering a time series
of in
ow, classifying the reservoir volume to several
intervals and deciding for releases at each period, with
respect to an optimality criterion. As depicted in
Figure 1, links between initial and �nal storage volumes
at entire periods form a graph which represents a
feasible solution.

The heuristic value of this problem is de�ned as
minimum square deviation from target demand, which
is an indicator of the objective value as employed in
the transition rule (Equations 1 and 2):

�ij(t) = 1=([Rij(t)�D(t)]
2
+ c); (5)

where Rij(t) is release at period t (provided that the
initial and �nal storage volume are at classes i and
j, respectively); D(t) is demand of period t and c
is a constant to avoid irregularity (dividing by zero
in Equation 5). To determine Rij(t), the continuity
equation, along with the following constraints, may be
employed as:

Rij(t) = Si � Sj + I(t)� LOSSij(t); (6a)

Smin � Si � Smax; (6b)

Smin � Sj � Smax; (6c)

S1 = SNT+1; (6d)

where Si and Sj are the initial and �nal storage
volumes (class i and j), respectively; I(t) is the in
ow
to the reservoir at time period t; LOSSij(t) is the loss
(e.g., evaporation) at period t, provided that initial and
�nal storage are at classes i and j, respectively; Smin

Figure 1. Decision graph of ACO algorithm for optimum
reservoir operation problem.
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and Smax are the minimum and maximum storage al-
lowed, respectively, and NT is total number of periods.
The proposed model takes \end-of-period storage" as
decision variables. Therefore, the release associated
with Si and Sj may easily be determined using the
continuity equation, as de�ned by Equation 6a. Using
the transition rule (Equations 1 and 2), each ant is
free to choose the class of �nal storage (end-of-period
storage), if it is feasible through the continuity equation
and storage constraints (Equations 6). In another
words, selection of path ij at time period t will result
in release Rij(t), according to the continuity equation,
as de�ned by Equation 6a. Selection of path ij is
permitted, if, and only if, end-of-period storage (i.e.,
Sj) satis�es Constraints 6a and 6b and the resulted
release, Rij(t), is positive. Otherwise, option j is not
feasible and may not be taken at period t by ant k.

The �tness function is a measure of the goodness
of the generated solutions, according to the de�ned
objective function. For this study, �tness function is
de�ned as the Total Square Deviation (TSD) from the
target demand:

TSDk =
NTX
t=1

�
Rk(t)�D(t)

�2
; (7)

where Rk(t) is release at period t recommended by
ant k.

Jalali et al. [13] showed that from three di�erent
ACO algorithms, namely: the Ant System (AS), the
Ant Colony System-Iteration Best (ACSib) and the
Ant Colony System-Global Best (ACSgb), the ACSgb
provides better solutions compared to two others, as
applied to a reservoir management problem. In this
research, 3 improved versions of ACSgb are introduced
and tested. A simple 
ow diagram of the proposed
ACO algorithm for the optimum reservoir operation is
depicted in Figure 2.

IMPROVED ACO ALGORITHM IN
RESERVOIR OPERATION

As mentioned in Equation 1, a three-dimensional
(3D) pheromone, �ij(t), being de�ned as the total
pheromone deposited on path ij at time period t, may
cause a dimensionality problem in large scale and/or
multi-reservoir problems. In order to reduce the extent
of the dimensionality problem, one may assign the
pheromone to options, rather than paths. In this
case, a two-dimensional (2D) pheromone, �i(t), may
be de�ned as the pheromone deposited at option i and
time period t. Now, Equations 1 and 2 may be modi�ed
for the new scheme, as follows:

Pij(t) =

(
[�j(t+1)]

�[�ij(t)]
�

P
NC

l=1
[�l(t+1)]

�[�il(t)]
� if j 2 Nk(t)

0 otherwise
; (8)

Figure 2. ACO algorithm for optimum reservoir
operation.

j=

8<
:
arg max

l2Nk(t)

n
[�l(t+1)]

�
[�il(t)]

�
o

if q�q0

J otherwise
:
(9)

To improve the convergence of the results, Pheromone
Promotion (PP) is introduced as a new approach. Due
to pheromone deposition and evaporation (Equation 3),
a rapid convergence syndrome or stagnation problem
may prevail, if no improvement is gained after a few
iterations. Now, if a new solution with an improved
objective value is identi�ed, its pheromone must be
promoted to the maximum existing pheromone con-
centration (i.e., available global best solution). If the
existing pheromone concentration is very low, such an
improved solution may not be desirable for the agents
to follow. Therefore, to reduce the possibility of facing
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a stagnation problem, pheromone concentration, � , for
all new paths with better objective value, must be
promoted.

Under some circumstances, pheromone evapora-
tion may eventually eliminate a solution with some
locally positive decision elements. To minimize this
possibility, an anti-pheromone approach was proposed
by Montgomery and Randall [7]. In one of the
anti-pheromone approaches, Explorer Ants (EA) are
assigned to explore inferior paths randomly, to �nd
out paths with insigni�cant pheromone and reasonable
performance. With this approach, one may regenerate
solutions that have locally lost their pheromone, due to
evaporation during the last iterations. Assigning some
explorer ants at each iteration, they may take their
paths, as follows:

Pij(t) =

8><
>:

[�max��j(t+1)]
�[�ij(t)]

�

NCP

l=1

[�max��l(t+1)]
�[�il(t)]

�

if j 2 Nk(t)

0 otherwise

;
(10)

j=

8>><
>>:
arg max

l2Nk(t)

n
[�max � �l(t+ 1)]

�
[�il(t)]

�
o

if q � q0

J otherwise

;
(11)

where �max is maximum value of � , realized during the
last iterations.

In some circumstances, A Local Search (LS)
approach may cause a signi�cant improvement in the
�nal results, if employed after each iteration. In this
approach, which is, more or less, similar to crossover
in genetic algorithms, one, or a few, sections of the
generated solutions after each iteration are exchanged.
As an example, in a 3-opt local search algorithm [12],
two elements from two di�erent solutions are exchanged
randomly, which result in two new solutions. In the
present work, one of the solutions for a local search
application is the present best solution and the other
one selected randomly.

Finally, integration of the local search, explorer
ants and pheromone promotion may facilitate the
convergence of the scheme, as well as improve the
�nal results. In fact, explorer ants may generate a
string of solutions with relatively low total pheromone
concentration, which is an indication of a solution with
low desirability. However, within such an undesirable
string, some local sections may exist that reveal low
pheromone concentration, which might make some
other solutions more desirable, if they were substi-
tuted in those solutions. Combinations of a local
search with explorer ants provide such a possibility
and minimize the chance of losing good pieces of
information.

MODEL APPLICATION

To illustrate the performance of the proposed model,
the Dez reservoir in southern Iran, with an e�ective
storage volume of 2,510 MCM and average annual
demand of 5,900 MCM, is selected. For illustration
purposes, a period of 60 months, with an average
annual in
ow of 5,303 MCM, is employed. The
reservoir volume is divided into 14 classes, with 200
MCM intervals. To limit the range of values of the
�tness function, a normalized form of Equation 7 has
been used as follows:

TSDk =

NTX
t=1

�
(Rk(t)�D(t))=Dmax

�2
; (12)

where Dmax is maximum monthly demand. To make
the results at di�erent runs comparable, initial and
ending storages were �xed at 1430 MCM for all runs.
Therefore, the starting point for all ants was �xed
at the �rst period with an initial storage volume
of 1430 MCM. Feasible paths for the ants to follow
are constrained by the continuity equation and the
minimum and maximum permitted storage volume
(Equations 6).

Due to the limited number of iterations (i.e.,
end condition criteria) and presence of the random
parameter, q, in the transition rule (Equation 2), the
�nal results for the di�erent runs may not be the
same. Therefore, the model so developed was tested
with 10 di�erent runs. In order for results to be
comparable, the total number of ants (M) assigned to
the problem was 100, with � = 0:1, � = 1, � = 4 and
q0 = 0:9, as proposed by Jalali et al. [13]. To start with,
the pheromone was uniformly distributed all over the
de�ned paths (i.e., �0 = 1). To normalize the value of
the heuristic function, parameter c was chosen to be
unity (Equation 5). The total number of iterations at
each run was limited to 500.

Results of the model for di�erent improved algo-
rithms are presented in Table 2. Mean values of the
objective function at each iteration for 10 di�erent runs
are illustrated in Figure 3. As is clear, by reducing
the dimension of the pheromone from �ij to �i, inferior
results are obtained. In this case, the TSD for the best
result and its mean value for 10 runs exceeds those of
�ij by 20% and 30%, respectively.

To improve model performance, Pheromone Pro-
motion (PP), Explorer Ants (EA) and Local Search
(LS) operators were included in the proposed algo-
rithm. The mean value of TSD for 10 runs at each it-
eration for di�erent versions of the improved algorithm
is depicted in Figure 3 and Table 2. One may note
that the pheromone promotion is a great contribution
to model convergence. Individual inclusion of explorer
ants and local search have improved the best result and
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Table 2. Total Square Deviation (TSD) from target demand of 10 runs of several improved ACO algorithms in reservoir
operation problem.

Run 3D(a) 2D(b) 2D-PP(c) 2D-PP-EA(d) 2D-PP-LS(e) 2D-PP-EA-LS 3D-PP-EA-LS

1 1.317 1.695 1.509 1.560 1.439 1.296 1.347

2 1.249 1.716 1.630 1.357 1.560 1.407 1.318

3 1.317 1.509 1.806 1.713 1.560 1.296 1.317

4 1.333 1.716 1.626 1.350 1.350 1.360 1.249

5 1.308 1.715 1.710 1.497 1.740 1.350 1.317

6 1.317 1.643 1.681 1.385 1.439 1.407 1.333

7 1.296 1.793 1.593 1.535 1.619 1.296 1.249

8 1.317 1.664 1.642 1.576 1.630 1.350 1.356

9 1.271 1.837 1.728 1.751 1.580 1.382 1.308

10 1.354 1.779 1.668 1.318 1.829 1.407 1.296

Mean 1.308 1.707 1.659 1.504 1.575 1.355 1.309

The best 1.249 1.509 1.509 1.318 1.350 1.296 1.249

The worst 1.354 1.837 1.806 1.751 1.829 1.407 1.356

S.D.(f) 0.030 0.091 0.081 0.152 0.143 0.046 0.036

C.V.(g) 0.023 0.053 0.049 0.101 0.091 0.034 0.028

(a) 3D: Three Dimensional Pheromone; (b) 2D: Two Dimensional Pheromone; (c) PP: Pheromone Promotion; (d) EA: Explorer

Ants;(e) LS: Local Search; (f) S.D.: Standard Deviation; (g) C.V.: Coe�cient of Variation.

Figure 3. Convergence of several improved ACO
algorithms in reservoir operation problem (averaged over
10 runs).

their mean values for 10 runs by (13%, 11%) and (10%,
5%), respectively. It is also important to note that the
initial rate of convergence improved signi�cantly, when
LS and EA were employed.

Integrating LS and EA in the algorithm has
signi�cantly increased the initial and �nal rate of
convergence, as well as resulting in highly improved
results. In this case, the best result and mean value for
10 runs show 14% and 19% improvement, respectively,
over only pheromone.

To compare the performance of the proposed
improved ACO algorithm with that of the Genetic

Figure 4. Evolution of the total square deviation from
target demand resulted from genetic algorithm.

Algorithm (GA), the same model was solved using
the Fast Messy genetic algorithm of Boulos et al. [14].
For a population size of 100 and a 2000 generation,
using the best combinations of crossover and mutation
probability and by employing a real value coding, a
TSD of 1.38 was achieved. Results of the GA model
at each generation for the problem under consideration
are depicted in Figure 4. As is clear, the results of
the proposed ACO algorithm, integrated with PP, EA
and LS for 500 iterations and an agent size of 100,
show, approximately, a 6 percent improvement over
that of GA, with 2000 generations and 100 populations.
Periodic reservoir release values resulted from ACO
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Figure 5. Reservoir release values resulted from GA and
ACO models compared to demand series.

and GA compared to demand series are depicted in
Figure 5.

In order to examine the e�ect of three-dimensional
pheromone (i.e., assigning pheromone to path ij), the
same problem was solved integrating PP, EA and LS
operators in a 3D pheromone. Comparing the results
with those of 2D-PP-EA-LS, an improvement of 3.5
percent in the best result and mean value for 10 runs
was achieved, which may not be justi�ed on a large
scale or in multi-reservoir problems. Even though the
best result and average value for 10 runs in simple
3D and 3D-PP-EA-LS are the same, integration of
PP, EA and LS has signi�cantly improved the initial
convergence. As an example, in the �rst 40 iterations,
the rate of convergence has increased by more than 12
percent.

CONCLUDING REMARKS

While walking from one point to another, ants deposit
a substance called pheromone, forming a pheromone
trail. It has been shown, experimentally [4], that this
pheromone trail, once employed by a colony of ants,
can give rise to the emergence of a shortest path. In
general, the amount of pheromone deposited by an
arti�cial ant is made proportional to the goodness
of the solution an ant may build. To apply ACO
algorithms to the reservoir operation problem, one
may view it as a combinatorial optimization problem.
The problem may be approached by considering a
time series of in
ow, classifying the reservoir volume
to several intervals and deciding on the release at
each period, with respect to an optimality criterion.
Feasible paths for ants to follow may be constrained by
the continuity equation, as well as constraints on the
storage volume. Upon each tour completion, a �nite
number of feasible solutions will form, leaving a new
value for the pheromone.

Realizing the values of the �tness function, the

pheromones will be updated by a global update rule.
The inclusion of Explorer Ants (EA) and a Local Search
(LS), along with a new operator called Pheromone
Promotion (PP), improves the performance of the
classic ACO signi�cantly. The improvement includes
the �nal result, as well as the initial and �nal rate
of convergence. Application of the proposed model to
the Dez reservoir in Iran provided promising results.
From three di�erent pheromone updating algorithms
(i.e., Ant System, Ant Colony System-iteration best
and Ant Colony System-global best), the ACSgb was
employed in this research, which includes explorer
ants, pheromone promotion and local search operators.
Results of the model compare well with those of the GA
and global optimum. As for any search method, the
performance of the proposed model is quite sensitive to
setup parameters, hence, �ne tuning of the parameters
is recommended.

NOMENCLATURE

� pheromone persistence coe�cient

Pij(t) transition probability from option i to
option j at time period t

�ij(t) total pheromone deposited on path ij
at time t

�ij(t) the heuristic value of path ij at time t

�; � parameters that control the relative
importance of the pheromone trail
versus a heuristic value

q a random variable uniformly
distributed over [0,1]

q0 a tunable parameter 2 [0; 1]

�0 initial value of pheromone

k�gb the ant with the best performance
within the past total iterations

Gk�gb value of the objective function for the
ant with the best performance within
the past total iterations

Rij(t) release at period t

D(t) demand of period t

c a constant

S storage

I(t) in
ow to the reservoir at time period t

LOSSij(t) loss (e.g., evaporation) at period t
provided that initial and �nal storage
are at classes i and j, respectively

Smin minimum storage allowed

Smax maximum storage allowed

NT total number of periods

TSD total square deviation
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Rk(t) release at period t recommended by
ant k

Dmax maximum monthly demand

�max maximum value of � realized during
the last iterations
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