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Prediction of a Soil-Water Characteristic

Curve Using a Genetic-Based Neural Network

A. Johari1, G. Habibagahi� and A. Ghahramani1

In this paper, a Genetic-Based Neural Network (GBNN) is employed to predict the soil-water
characteristic curve of unsaturated soils. A three-layer network has been trained by genetic
algorithm and its topology is determined by trial and error. The network has �ve input neurons,
namely, initial void ratio, initial gravimetric water content, logarithm of suction normalized with
respect to air pressure, clay fraction and silt content. The network has �ve neurons in the
hidden layer and the only output neuron is the gravimetric water content corresponding to the
assigned input suction. Results from pressure plate tests carried out on clay, silty clay, sandy
loam and loam, compiled in SoilVision software, was adopted as a database for training and
testing the network. For this purpose, and after data digitization, a computer program coded
in visual basic was developed and used for the analysis. Finally, neural network simulations
are compared with the experimental results, as well as models proposed by other investigators.
The comparison indicates the superior performance of the proposed method for predicting the
soil-water characteristic curve.

INTRODUCTION

Limitations in describing the mechanical behavior of
unsaturated soils, based on a single e�ective stress
equation similar to the one proposed by Bishop and
Donald [1], have led to developing di�erent approaches
for modeling the observed behavior of these soils. The
engineering behavior of unsaturated soils can be inter-
preted in terms of two di�erent stress states, namely a
net normal stress (��ua) and matric suction (ua�uw).
When soil behavior is related to these stress states, it
is possible to propose more rational engineering design
procedures. The Soil Water Characteristic Curve
(SWCC), also known as the soil water-retention curve,
is an important part of any constitutive relationship
for unsaturated soils. SWCC, for an unsaturated soil,
de�nes the relationship between water content and the
corresponding suction.

SWCC can be considered as a continuous sig-
moidal function describing the water storage capacity
of a soil as it is subjected to various soil suctions. It
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also includes important information about the amount
of water contained in the pores at any soil suction and
the pore size distribution corresponding to the stress
state in the soil. SWCC and the unsaturated coe�cient
of permeability functions are required for solving tran-
sient water and solute transport problems associated
with the vadose zone. Unsaturated soil behavior,
such as shear strength, volume change, di�usivity and
absorption, as well as most soil properties such as
speci�c heat, permeability and thermal conductivity,
can also be related to the soil water characteristic
curve [2].

In this paper, GBNN is proposed for estimating
the soil water characteristic curve using basic soil prop-
erties such as grain size distribution, initial void ratio,
initial water content and the logarithm of suction,
normalized with respect to atmospheric air pressure.

AVAILABLE METHODS FOR

DETERMINING SWCC

Several methods are available for predicting the SWCC
of a particular soil. These are based on grain size
distribution and other soil properties. These methods
can be classi�ed into four major groups described
below:
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1. In the �rst group, water content at each suction
value is correlated to the soil properties, such as
grain size distribution and porosity. Generally,
in this process, a regression analysis is required
followed by a curve �tting procedure. Among
important contributions to this group are the works
of Visser [3], Gupta and Larson [4], Rawls and
Brakensiek [5], Hutson and Cass [6], Williams and
Ahuja [7], Reddi and Poduri [8], Tinjum et al. [9]
and Mbagwu and Mbah [10];

2. Methods in the second group propose correlations
between parameters of an assumed empirical equa-
tion for SWCC and the basic soil properties, such as
grain size distribution and dry density, using a re-
gression analysis. Among important contributions
are the works of Williams et al. [11], Cresswell and
Paydar [12] and Tomasella and Hodnett [13];

3. The third group involves physico-empirical model-
ing of SWCC. This converts the grain size distri-
bution into a pore size distribution, which, in turn,
is related to a distribution of water content and
the associated pore pressure. Among important
contributions are the works of Arya and Paris [14],
Havercamp and Parlange [15], Smettem and Gre-
gory [16], Fredlund et al. [17], Zapata et al. [18],
Simms & Yanful [19], Aubertin et al. [20];

4. Arti�cial intelligence methods, such as neural net-
work, genetic programming and other machine
learning methods, have recently formed the fourth
group. No signi�cant attempt on this subject is
cited in the literature so far.

In the following sections, fundamentals of the neural
network and genetic algorithm, which are essential
components for the proposed GBNN, are described in
more detail.

NEURAL NETWORK MODELING

A Neural Network (NN) is a computer-based modeling
technique for computation and knowledge representa-
tion inspired by the neural architecture and operation
of the human brain. NNs have experienced a consider-
able resurgence of interest in recent years, though they
were initially developed during the early 1940s.

An Arti�cial Neural Network (ANN) is con-
structed directly from experimental data, a fundamen-
tally di�erent approach to model material behavior
and, because of their ability to learn and generalize
interactions among many variables, ANNs have the
potential to model various aspects of material behavior.
The basic architecture of ANN has been covered by
Rumelhart & McClelland [21]. NN consists of a
large number of highly interconnected processing units.
Each processing unit (neuron), acting as an idealized

Figure 1. A typical ANN [22].

neuron in the human brain, receives input from the
units to which it is connected, computes an activation
level and transmits that activation to other processing
units (Figure 1).

A multi-layer perceptron NN has an input layer,
an output layer and a number of hidden layers con-
nected to each other, as illustrated in Figure 1. Weights
are assigned to the connections between these units.
The presence of hidden layers allows the networks to
represent and compute more complicated associations
between input and output patterns.

A multi-layer feed forward ANN must be trained
�rst and tested afterwards. During training, weights
are adjusted in an iterative process. Activation prop-
agation takes place in a feed-forward manner, from
input to output layers. Conventionally, error (the
di�erence between the network output and their target
values) is back-propagated through the network and
the weights are adjusted using a gradient descent
rule. With the successful completion of the training,
the iterative process reduces the error measure to a
minimum and the collection of connection weights is
captured. Such a neural network is ready to be used.
When presented with an input pattern, a feed-forward
network computation results in an output pattern
that is the result of the generalization and synthesis
of what it has learned and stored in its connection
weights. The drawback of Back Propagation Neural
Network (BPNN) is that there is a chance for the
search to be trapped in local minima during error
minimization and the algorithm may fail to capture
the global minimum of the error function. To overcome
this de�ciency, a genetic algorithm is employed in this
study to minimize the error function. This method
has the powerful capability of capturing the global
minimum. Details are explained in the following
section.
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GENETIC ALGORITHM

A Genetic Algorithm (GA) is a statistical method for
optimization and also searching. The characteristics
of this algorithm prevent one from calling it a simple
accidental searcher. The idea of this method, which
was inspired by the theory of natural evolution, was
�rst o�ered by Holland [23]. One important feature of
GA is its durability and adaptability, since it provides
a exible balance between e�ectiveness and necessary
characteristics for survival in di�erent environments
and under di�erent conditions. Besides, if the adapt-
ability of a system increases, it will be able to function
longer and more e�ectively [24].

Searching in this algorithm is usually done with
a group or population of binary or real strings, which
are included in the form of the decision variable. Each
string is analogous to a chromosome and each binary
or real bit is analogous to a gene on that chromosome.
There are three operations used in a simple GA:
Selection, crossover and mutation.

Selection

First, the objective function (�tness function) is eval-
uated for each string. Selection occurs when the
individuals with higher �tness values are assigned
higher probabilities of producing o�spring for the next
generation. Therefore, highly �t chromosomes will
have a larger number of copies in the succeeding
generation.

There are several di�erent types of selection used
in GA, such as Roulette-Wheel selection, Tournament
and Ranking. The �rst method uses probability based
on the �tness of the individual. If f(Si) is the �tness
of the solution i and

Pm

i=1 f(Si) is the total sum for all
the members of the population, then, the probability
that the solution will be copied to the next generation
is: f(Si)=

Pm

i=1 f(Si), where Si is the solution based
on individual (member) i.

In the second method, a random number of
solutions are taken from the population. The solution
with the higher �tness will win. This process is
repeated until the new population size is equal to the
old population size. In rank selection as the third
method, selection is based on sorting the �tness values
of the solutions of the population. Probability of
selection is proportional to �tness, where the worst
will have a probability of 0 and the best will have a
probability equal to 1.

Crossover

After selection, crossover takes place. This operation
works on one pair of chromosomes and can be per-
formed in the form of \single-point crossover", \two-

point crossover" or \uniform crossover". It should be
mentioned that the e�ect of each type of crossover
on the convergence rate of the algorithm is not ex-
actly determined and it depends on the problem at
hand. Basically, this operation does not operate on
all chromosomes of the population, since, if it did so,
there would be a high probability that the population
would lose certain characteristics. For this reason, the
user speci�ed probability (Pc) is mated by randomly
selecting place(s) to divide the two chromosomes and
then exchanging the pieces.

Mutation

In some cases, accidental changes, which are rare,
occur in the environment. Although, in most cases,
these changes (mutations) cause pre-term death of the
mutants, in some cases, these mutations are considered
as a success. In this algorithm, mutation randomly
switches a bit or bits in the chromosomes with the
user speci�ed probability (Pm) after crossover. This
speci�ed probability in every case is very small and
even considered less than 0.05. By the inuence of
this operator, if the original bit were zero, it would
change to one and, if it were one, it would change
to zero. Using these operations, more �t members of
the population are created over time and population
evolves to optimal or near optimal solutions. Figure 2
shows the structure of a simple genetic algorithm.

APPLICATION OF GA IN TRAINING

NEURAL NETWORKS

Based on the features of the GA, it can be used
for determining the optimal weights and also shape
(topology) of a NN. In ordinary NNs, the \back
propagation law" is used as a device for determining the
minimum of function with weight variables connecting

Figure 2. Structure of a single population evolutionary
GA.
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the layers. The logic of this law in multi-dimensional
space, which has numerous extremum, is like the
movement of a moving object that starts moving from
a point in this space. In spite of having di�erent
devices in this method for preventing the moving object
from situating in the local minimum, experience has
shown that this is not always improbable. While, in
using the GA, the starting point of movement in this
space is from di�erent points (equal to the number of
the population), reaching to the absolute minimum is,
therefore, more probable.

The error function (E) is de�ned as:

E =
1

P

PX
P=1

[(Op)� (Tp)]
2
; (1)

where Tp is the target value for the pattern (p) and Op

is the output value of network, given by:

Op =

NhX
j=1

wjk

NiX
i=1

wijI
p
i ; (2)

in which:

Wjk weights between hidden and output layers,
Wij weights between input and hidden layers,
Ipi input variable i for pattern (p),
Ni number of input neurons,
Nh number of hidden neurons.

Since GA is an algorithm that maximizes the objective
function, in order to minimize the error function, the
objective function is de�ned as:

F =
1

E
; (3)

where E is the error function de�ned by Equation 1.

Database

Results from pressure plate tests on clay, silty clay,
sandy loam and loam soil reported by di�erent re-
searchers and compiled by SoilVision [25] were adopted
for the analysis. Table 1 indicates the range of basic
soil properties adopted for this study. This database
consists of the results from 186 pressure plate tests,
together with their grain size distributions. Final

suction values were mostly in the range of 800 to 1700
kPa with few tests having suction values as large as
105 kPa. The results reported on these specimens were
then digitized to obtain the necessary database. For
digitization, an increasing incremental value of suction
was adopted. Hence, the suction value was doubled in
each increment. Initial suction value was �xed at 0.2
kPa. The database thus developed had a total number
of 2694 patterns. For normalization, each component of
the data set was normalized to lie in an interval of [0,1]
using a max-min approach.

APPLICATION OF GBNN FOR

PREDICTION OF SWCC

A computer program coded in visual basic for training
the network by GA was developed. Five parameters,
namely, void ratio, initial water content, logarithm
of suction normalized with respect to air pressure
[log(Ua� Uw)=pa], clay fraction and silt content were
selected as the input neurons. The output neuron
yields the gravimetric water content corresponding to
the assigned input suction. To �nd the optimum
number of hidden neurons, they were decreased from
a maximum of 10 neurons while checking the error
measure of the network. This resulted in a total
number of six neurons for the hidden layer. The
optimum neural network structure had the following
characteristics:

� Input neurons: Initial void ratio, Initial gravimetric
water content, log(suction/pa), clay fraction, silt
content and one bias neuron (pa is the atmospheric
air pressure);

� Output neuron: Gravimetric water content;

� Number of hidden neurons: 5 neurons plus a bias
neuron;

� Selection method: Roulette-Wheel.
Figure 3 shows the proposed network con�gu-

ration.
After the current population, plus all the new

children, has been formed, the program enters into
a new phase. In this phase, a number of individuals
are chosen to form a new population. In the
coded subroutine, the best individual from both
parents and children is kept in the new population

Table 1. Range of basic soil properties of specimens from SoilVision [25] for training model.

Void ratio: 0.458-2.846 Suction range (kPa): 0.2-104857.6

Speci�c gravity: 2.28-2.92 Clay (< 0:005 mm) (%): 4.4-76.7

Dry density (kg/m3): 702-1811 Silt (0.005 mm-0.075 mm) (%): 10.3-87.5

Water content range (%): 0.18-98.27 Sand (> 0:075 mm) (%): 0.1-55.3

Initial water content (%): 17.34-105.41
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Figure 3. The proposed neural network for the prediction
of SWCC.

regardless of being a parent or child. The remaining
members of the new population are determined by
the Roulette-Wheel selection method;

� Operations: The operations used in this study were
crossover and mutation. The crossover probability
(Pc) was selected as 0.9. The mutation probability
of chromosome i, mutation (i), was selected by
adopting a rule with the following formula [26]:

mutation(i) = (1� (1=sum square error(p)))�

(Pm-max� Pm-min) + Pm-min; (4)

where, sum square error (p) is the sum of squared
error for member p of the population; Pm-min is the
mutation minimum probability, selected as 0.001;
Pm-max is the mutation maximum probability,
selected as 0.01;

� Population members: 100 members;

� Total generations: 6800 generations.

RESULTS AND DISCUSSION

Model Training and Testing

From the 186 pressure plate tests used in this study,
131 tests were used for training the network and the re-
maining 55 tests were used for testing it. Consequently,
after digitization of the test result from a total number
of 2694 patterns generated, 1894 patterns were used
for model development and the remaining 800 patterns
were allocated for testing.

To �nd the optimum network, the sum square of
di�erences between the predicted water content and the
actual water content was monitored. GA generations
continued until this error measure did not decrease
appreciably. Figure 4 indicates the variation of error
measure (sum of absolute di�erences between predicted
and target values) during model development. The
network training error dropped from 194.5 in the �rst
generation to about 49.5 after 6800 generations and, in
testing, the error dropped from 79.7 to about 25 in the
same generation. The optimal weights thus obtained
are presented in Table 2.

The network was then used to simulate the SWCC
of the entire 131 pressure plate tests in the training

Figure 4. Variation of error measure during training and
testing.

Table 2. Optimal connection weights of GBNN.

Hidden

Neuron

Initial

Void

Ratio

Initial

Water

Content

[log(Ua � Uw)=pa] Clay % Silt %
Input

Bias

Output

Neuron

1 -12.92 17.83 19.87 7.580 17.05 -34.60 -10.75

2 -10.20 25.41 -28.80 26.54 0.15 6.80 1.07

3 8.670 10.06 -20.52 -3.74 -10.24 -8.29 7.78

4 -18.14 -0.13 -12.80 4.090 2.56 1.190 -2.72

5 4.710 -10.83 8.30 -2.54 -0.89 0.05 -4.79

Bias - - - - - - -0.04
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set and all 55 tests in the testing set. Figures 5
and 6 compare predicted gravimetric water content
with the actual data for training and testing datasets,
respectively. These �gures show a good correlation
between the predictions made using NN modeling and
the actual data for both training and testing data.

Comparison with Previous Works

As stated before, a number of methods have been pre-
sented by di�erent investigators for estimating SWCC.
Among these methods, the approach presented by
Fredlund et al. [17] is considered to give a more
reasonable estimate of the SWCC [18,27]. Therefore,
in this paper, the proposed model is compared to the
approach proposed by Fredlund et al. [17]. Fredlund et
al. [17] estimated SWCC from the grain size distribu-
tion curve and volume mass properties. The procedure,
as described in SoilVision software, consists of the
following �ve stages:

Figure 5. Actual versus predicted GWC for training
model data in GBNN (R2 = 0:94).

Figure 6. Actual versus predicted GWC for testing data
in GBNN (R2 = 0:91).

1. Trends in the \n" and \m" parameters are de-
termined by �tting the following equation to the
available dataset:

�w =�s

�
1�

ln(1 +  = r)

ln(1 + 1000000= r)

�

h 1

ln (e+ ( =a)n)

im
; (5)

where:

	 total soil suction (kPa),
e natural number, 2.71828,
	r total suction (kPa) corresponding to the

residual water content, �r,
a a soil parameter, which is related to the

air entry value of the soil (kPa),
n a soil parameter, which controls the slope

at the inection point in the SWCC,
m a soil parameter, which is related to the

residual water content of the soil.

2. A unimodal or bimodal equation is used for �tting
the grain size distribution curve. Therefore, the
grain size has a continuous �t and proper de�nition
of the extremes of the curve. Then, the grain
size distribution is divided into small groups of
uniformly size particles. An e�ective grain-size
diameter is calculated for each grain-size curve
segment, based on an equation of Vukovic and
Soro [28] given by:

1

de
=

3

2

�gl
dl

+

i=nX
i=2

�gi
di

; (6)

where:

dl largest diameter of the last fraction of the
material,

gl weight of the material of the last �nest
fraction in parts of total weight,

de e�ective grain diameter,
n total number of fraction.

3. The e�ective grain-size diameter is then plotted
against the \n" and \m" parameters. The \n"
and \m" parameters are determined for each soil
by �tting laboratory data with a least-squares
regression algorithm;

4. A packing porosity, np, is estimated using a neural
network trained on a SoilVision dataset using 653
developing model data and 72 testing data, for each
fraction. From packing porosity a void volume and
then an e�ective grain diameter (de) are calculated;
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Figure 7. Actual versus predicted GWC for training
model data using Fredlund et al. approach (R2 = 0:85).

5. From an e�ective grain diameter for each fraction
and each �tted curve in Stage 3, the \m" and
\n" parameter are determined and the SWCC is
predicted for that segment. In this estimation,
parameter \a" was kept constant at 100 kPa;

6. The whole SWCC is �nally generated by putting
together these segments.

Figures 7 and 8 compare predicted gravimetric
water content by Fredlund et al. [17] modeling with
the actual data for training and testing, respectively.

Table 3 presents the error in neural network pre-
diction compared with the aforementioned approach.
In this table, the average relative error is de�ned as:

Average relative error =
1

N

NX
i=1

����Ai � Pi
Ai

����� 100;

and the mean sum squared of the error is de�ned by:

MSSE =
1

N

NX
i=1

(Ai � Pi)
2;

where:

Ai actual value for data i,
Pi predicted value for data i,
N total number of data available in the database.

From Table 3 it can be concluded that the
proposed GBNN has a good capability to simulate the
SWCC.

In order to show the robustness of the proposed
method, simulation results were also compared on a
one-to-one basis. Figures 9 to 11 show SWCC for 3
specimens used in training the model. In these �gures,
GBNN prediction and prediction based on the method
suggested by Fredlund et al. [17] are compared with
the experimental results. From these �gures, it may
be concluded that the proposed GBNN has a good
potential for predicting SWCC with reasonable accu-
racy. Similarly, Figures 12 to 14 present the prediction
of GBNN for 3 typical test specimens. From these
�gures, it may also be concluded that the proposed
method is also capable of simulating new test results,
though not as good as tests used in the training phase.
The test results used to measure the performance of
the proposed GBNN model correspond, respectively,

Figure 8. Actual versus predicted GWC for testing data
using Fredlund et al. approach (R2 = 0:89).

Table 3. Comparing performance of GBNN with Fredlund et al. approach [17].

Training Data

Average Relative Error (%) MSSE R2�

Neural Network 12.94 0.0014 0.94

Fredlund et al. Approach [17] 34.73 0.0071 0.85

Testing Data

Average Relative Error (%) MSSE R2

Neural Network 14.26 0.0019 0.91

Fredlund et al. Approach [17] 35.39 0.0047 0.89

*: R2 is the correlation coe�cient (square of the Pearson product moment correlation coe�cient)



Prediction of a Soil-Water Characteristic Curve 291

Figure 9. Best simulation results among tests used for
training GBNN model (void ratio: 0.66, initial water
content: 24.05%, clay content: 46.23%, silt content:
51.20%).

Figure 10. Average simulation results among tests used
for training GBNN model (void ratio: 0.89, initial water
content: 32.89%, clay content: 18.43%, silt content:
79.66%).

Figure 11. Worst simulation results among tests used for
training GBNN model (void ratio: 0.96, initial water
content: 32.9%, clay content: 21.86%, silt content:
77.41%).

Figure 12. Best simulation results among tests used for
testing GBNN model (void ratio: 1.16, initial water
content: 43.59%, clay content: 40.04%, silt content:
48.33%).

Figure 13. Average simulation results among tests used
for testing GBNN model (void ratio: 0.70, initial water
content: 25.74%, clay content: 29.79%, silt content:
54.29%).

Figure 14. Worst simulation results among tests used for
testing GBNN model (void ratio: 0.96, initial water
content: 33.79%, clay content: 18.99%, silt content:
80.31%).
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to the best, average and worst simulations among the
training model and testing data sets. These results
indicate the robust feature of the GBNN to learn and
predict the SWCC without making any assumption or
simpli�cation a priori.

Sensitivity Analysis

To evaluate the model response to a change in in-
put parameters, a parametric study was carried out.
For this purpose, a typical specimen with basic soil
properties given in Table 4 was assumed. In order to
evaluate the inuence of each parameter, one param-
eter was changed within a range of � 5% or � 10%,
while keeping other parameters constant. Figures 15
through 18 indicate the results of this parametric study.
Figure 15 indicates the inuence of the clay fraction,
while silt content was varied accordingly to keep sand
content unchanged. As expected, with an increase in
the percent of clay content, the SWCC shifts to the
right indicating a higher suction required to drain the
pores to certain water content. Figure 16 indicates
the inuence of clay fraction when the silt percent was
constant. An increase in the percent of clay increases
the �ne percent of the soil and, therefore, a higher
suction is required to drain the water from the soil,
as predicted by GBNN. In Figure 17, silt fraction was
varied and replaced by sand content, keeping constant
the amount of the clay fraction. The prediction shows
that a small change in silt percent did not considerably
a�ect SWCC when it was replaced by sand. Figure 18

Figure 15. Inuence of clay content on SWCC (�xed
sand content).

shows the inuence of initial water content (or initial
void ratio since the soil is almost fully saturated at
very low suction values). The soil with a higher initial
void ratio is more compressible compared to the same
soil with a smaller void ratio. Hence, subjected to
an increment of suction, the soil with a higher void
ratio will lose more water compared with the same soil
having a lower void ratio.

CONCLUSION

In ordinary NNs, the \back propagation of error" is
used as an optimizing approach to determine the opti-

Figure 16. Inuence of clay content on SWCC (�xed silt
content).

Figure 17. Inuence of silt and sand content on SWCC
(�xed clay fraction).

Table 4. Basic soil properties of specimen used for parametric study.

Initial Void Ratio = 0.808 Initial Water Content (%) = 30.62 Dry Density = 1490.6 kg/m3

Clay (%) = 21.75 Silt (%) = 41.14 Sand (%) = 37.07

Gs = 2.64
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Figure 18. Inuence of initial water content on SWCC.

mum weights connecting the layers. Despite di�erent
measures available to prevent trapping in local minima,
experience has shown that this is not always successful.
However, using GA as the training rule, function
minimization starts from di�erent points (equal to the
population number) and, therefore, obtaining the ab-
solute minimum is more probable. Indeed, the method
is generally considered to give the global extremum.
Hence, in this paper, GA was used to minimize the NN
error function. A GBNN was developed to estimate the
SWCC for unsaturated soils. A database containing
the results of pressure plate tests carried out on a
wide variety of �ne grained soils and, thus, covering a
wide range of soil properties was employed to develop
the model. Test results were digitized and normalized
to obtain the necessary database. During the �rst
phase, the model was trained using the results from
131 pressure plate tests. In the second phase, the
model was tested using 55 additional test results to
which it had not been exposed during the �rst phase.
The model prediction indicated a reasonable accuracy,
both for the results used in the �rst phase, as well as in
the testing phase. Furthermore, a parametric study of
the model indicated the inuence of various parameters
such as clay content, silt percent, sand content and
initial water content. The results indicated that clay
content is the most important soil parameter. A
small change in clay content (replaced by an equivalent
amount of sand or silt) had a pronounced e�ect on the
SWCC. However, it seems that opposite changes in silt
or sand content (replacing sand with silt or vice versa)
does not a�ect the SWCC appreciably. More studies
are encouraged, especially in the following areas:

- Taking the hysteresis phenomena (wetting-drying
cycle) into account,

- Determination of hydraulic conductivity of unsatu-
rated soil from SWCC and its prediction by NN,

- Taking the inuence of fabric, stress history and
con�nement into account.
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