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Dynamics Modeling of \CEDRA"

Rescue Robot on Uneven Terrain

A. Meghdari�, S.H. Mahboobi1 and A. Lot� Gaskarimahalle2

This paper presents an e�ective approach for kinematic and dynamic modeling of high mobility
Wheeled Mobile Robots (WMR). As an example of these robots, the method has been applied to
the CEDRA rescue robot, which is a complex, multibody mechanism. The model is derived for
6-DOF motions, enabling movements in x, y and z directions, as well as for roll, pitch and yaw
rotations. Forward kinematics equations are derived using the Denavit-Hartenberg method and
Jacobian matrices for the wheels. Moreover, the inverse kinematics of the robot are obtained
and solved for the wheel velocities and steering commands, in terms of the desired velocity,
heading and measured link angles. Finally, the dynamics of the rover mechanism have been
thoroughly studied and analyzed. Due to the complexity of this multi-body system, especially on
rough terrain, Kane's method of dynamics has been used to model this problem. The proposed
approach and method can easily be extended to other mechanisms and rovers.

INTRODUCTION

Rescue operations and future outer space explorations
will require high mobility robots to perform intricate
tasks in challenging uneven terrain. In order to avoid
the presence of humans in unknown and hazardous
environments, from collapsed construction after an
earthquake to inspections on alien planets, autonomous
applications seem to be mandatory. Current motion
planning and control algorithms are not well suited to
rough terrain mobility. In fact, trajectory tracking is
mostly concentrated on planar motion, since it does
not generally consider the physical characteristics of
the rover and its environment.

Although lots of researchers have dealt with
the case of at surfaces, they have rarely considered
dynamic analysis for rough terrain and most of the
recent research in outdoor operations has discussed just
simple mechanisms. One of the earliest works on the
formulation of WMRs kinematics equations of motion
has been studied by Muir et al. [1]. They extended the
methodology to accommodate special characteristics of
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WMRs, such as multiple closed-loop chains, higher-
pair contact points between a wheel and a surface and
unactuated and unsensed wheel Degrees Of Freedom
(DOF). One of the valuable parts of the survey, utilized
in this paper, was the interpretation of the properties of
a composite robot equation to guarantee their existence
and to characterize the mobility of a WMR, according
to the mobility characterization tree.

Kinematic studies of six-wheel rocker-bogie
rovers, such as JPL Sojourner rover, have been pre-
sented in [2] and [3]. Tarokh et al. [4] have conducted
research on the direct and inverse kinematics of Rocky7
using the Denavit-Hartenberg algorithm. Although
it presented a relatively complete kinematics model,
terrain unevenness, which causes slippage and all of
the angular variations, has been ignored.

Also, dynamic modeling of a wheeled mobile robot
with suspension has been considered in [5]. Although
the approach is novel, no exact dynamic equation has
been derived from this research, thus, it cannot be
implemented on the control unit. Generally, no one
has presented a closed form dynamic equation for a
multi-wheeled rover without simplifying the problem.

In this paper, an e�ective approach for kine-
matic and dynamic modeling of high mobility Wheeled
Mobile Robots (WMR) has been presented. As an
example of these robots, the method has been applied
to the CEDRA rescue robot, which is a complex,
multibody mechanism [6] (Figure 1). The CEDRA
rescue robot is one of several laboratory robots made
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Figure 1. CEDRA rescue robot.

at the Center of Excellence in Design, Robotics and
Automation (CEDRA).

The main structure of this robot is based on a
shrimp-like mechanism, developed in EPFL [7], con-
sisting of three main parts (see Figure 2): Main body,
parallel bogies and front fork (a four-link mechanism):

1. Body: The main part of the robot, as a container
for electronic boards, batteries, camera, navigation
and victim detection instruments;

2. Parallel Bogies: This consists of two parallel four-
link mechanisms mounted on each side of the main
body, in order to stabilize it and increase the terrain
adaptability of the robot;

3. Front Fork: A four-link mechanism mounted in
front of the robot body that helps the robot in
climbing obstacles.

Using a D-H coordinate de�nition, the forward kine-
matics of the system have been evaluated in terms of
joint angles and wheel rotations. Then, the parameters

Figure 2. Three main parts of a shrimp mechanism.

are separated, according to the actuated and sensed
parameters, leading to the inverse kinematics of the
rover.

Another demanding objective is to model the
complicated dynamics of the CEDRA robot for use
on uneven terrain. Since the robot is a 6-wheel rover
with 2 steering commands and many linkages, Kane's
approach has been preferred to other methods. Con-
sidering really rough terrain modeling, the exibility of
the tire and ground interaction has also been considered
in the dynamic model.

KINEMATIC MODELING

The �rst step in the modeling of robots is kinematic
modeling. In this analysis, the motion of mass center
will be determined in terms of known wheel motions
and vice versa. Also, by setting a desired velocity for
the mass center, one can derive the actuators velocity
so that it can be utilized in the kinematic based control
of the system.

The approach that will be discussed here is the
basis for a kinematic analysis of WMRs on uneven
terrain. At �rst, a frame-work is constructed to
express the position-orientation of the desired points,
like wheel centers, contact points and joints. All these
coordinates are de�ned using the Denavit-Hartenberg
(D-H) method [8]. Then, by evaluating the trans-
formation matrices between the robot reference frame
and each wheel motion frame, the relative position of
the motion frame, with respect to the robot center
of mass, is derived. In order to obtain the robot
forward kinematic, Jacobian matrices for each wheel
are evaluated in a symbolic manner.

Coordinate De�nition

All the coordinate frames used in this article are right-
hand coordinate systems. The robot reference frame is
de�ned at the center of mass so that the x direction
refers to forward motion and the z-axis heads upward.
According to the D-H method [8], a coordinate frame
is introduced on each joint. Since CEDRA is a 6-wheel
robot, there are 6 separate open chains. Figures 3 and 4
depict the robot coordination.

A transformation matrix can be de�ned between
two consequent frames, using the D-H parameters, ai,
�i, di, �i:

i�1Ti =

2
664
c�i �s�ic�i s�is�i aic�i
s�i c�ic�i �c�is�i ais�i
0 s�i�1 c�i�1 di
0 0 0 1

3
775 ; (1)

where:

c�i = cos �i; s�i = sin �i;
c�i�1 = cos�i�1; s�i�1 = sin�i�1:

(2)
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Table 1 provides the D-H parameters corresponding to
the coordinate frames in Figures 3 and 4.

Then, by cascading the transformation matrices
in the chains, the position of each wheel is obtained in
the body coordinate, named the robot reference frame.
In fact, the transformation matrices are the augmented

Figure 3. Body and front fork coordinates.

Figure 4. Bogie coordinates.

Table 1. D-H parameters for wheel center coordinate
frames.

Frame ai �i di �i

Bl �l1 ��=2 �l3 0

Br �l1 ��=2 �l3 0

B �l1 � l5 0 �l6 0

F1 �l1 0 �l8 0

F2 �l1 ��=2 0 ��4

F3 �l1 0 0 �5

F4 0 �=2 0 �4 � �5

Wheel#1 l4 0 0 �1

Wheel #2 l4 0 0 � + �1

Wheel #3 �l4 0 0 �2

Wheel #4 �l4 0 0 � + �2

Wheel #5 0 ��=2 0 �3

Wheel #6 0 ��=2 0 �6

matrix of a 3�3 rotation matrix and a 3�1 translation
(position) vector.

For example, for the transformation from the
rover reference frame, R, to the wheel 1 axle frame,
one has the following:

RT1 =
R TBl

BlT1: (3)

However, in order to capture the wheel motion, one
needs two more coordinate frames. Two additional
coordinate frames are de�ned for each wheel, i.e.,
contact frame Ci and motion frame Mi, i = 1; � � � ; 6.
The contact coordinate frame, Ci, de�nes the location
of the wheel-terrain contact point. It is obtained by
a rotation of the wheel axle coordinate frame about
the z-axis, followed by a 90 degree rotation about the
x-axis. The z-axis of the Ci frame points away from
the contact point, as illustrated in Figure 5. The D-H
parameters for the Ci frames, i = 1; � � � ; 6, are provided
in Table 2.

The wheel motion frame, Mi, accounts for the
wheel roll and rotational slip. It is obtained by
rotating about the Ci frame's z-axis a rotational slip
(�i), translating along the negative z-axis by the wheel
radius (Rw) and, �nally, translating along the x-axis
for wheel roll (Rw:i) on a virtual inclined surface, as
illustrated in Figure 5. Corresponding D-H parameters
are provided in Table 3.

Now, one can write the transformation matrices
for each wheel's motion coordinate frame (Mi), in

Figure 5. Contact and motion frames.

Table 2. D-H parameters for contact coordinate frames.

Frame ai �i di �i

C1 0 �=2 0 ��1 �	1

C2 0 �=2 0 � � �1 �	2

C3 0 �=2 0 ��2 �	3

C4 0 �=2 0 � � �2 �	4

C5 0 �=2 0 �	5

C6 0 �=2 0 �	6
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Table 3. D-H parameters for motion coordinate frames.

Frame ai �i di �i

M1 �Rw:1 0 �Rw �1

M2 �Rw:2 0 �Rw �2

M3 �Rw:3 0 �Rw �3

M4 �Rw:4 0 �Rw �4

M5 �Rw:5 0 �Rw �5

M6 �Rw:6 0 �Rw �6

terms of the rover's reference frame (R). The trans-
formations for wheel 1 are as follows:

RTM1 =
R TBl

BlT1
1TC1

C1TM1: (4)

Forward Kinematics

In view of the fact that the inverse of the transforma-
tion matrix is equal to the inverse chain transformation
matrix, one has the following [4]:

R _TR =R TMi

Mi _TR: (5)

In contrast with Tarokh et al. [4] who have substituted
i = 0, the absolute rotations of the wheels, i, will
disappear from these equations, meaning that there
should not be any angular position in the velocity
distribution. Tarokh et al. [4] have substituted �i = 0,
but, in fact, there should not be any angular position
in the velocity distribution.

Using Z � Y � X Euler angles, � (heading),
p (pitch) and r (roll), the derivative of the rover
coordinate frame, R _TR, is found to have the following
form:

R _TR =

2
664
0 � _� _p _x
_� 0 � _r _y
� _p _r 0 _z
0 0 0 1

3
775 : (6)

The angles correspond to rotations about the rover's
reference frame (i.e., � about the z-axis, p about the
y-axis and r about the x-axis).

After factorization of the velocity components of
joint angles in the right side of Equation 5 and extract-

ing the velocity vector, v =
�
_x _y _z _� _p _r

�T
, the

Jacobian matrix for each wheel is derived as follows:

v = Ji _qi i = 1; � � � ; 6: (7)

For instance, for wheel 1, one has the following:

v =

2
66666666664

l4s(�1) Rwc( 1)c(�1) �l2c( 1) l3+l4s(�1)
�l3c( 1)

0 Rws(�1) �l1c( 1) 0
+l4c(�1+ 1)

l4c(�1) Rws( 1)c(�1) �l2s( 1) �l1+l4cs(�1)
0 0 �c( 1) 0
0 0 0 1
0 0 s( 1) 0

3
77777777775

2
664
_�1
_1
_�1
_ 1

3
775 : (8)

Inverse Kinematics

The actuated inverse solution is used by solving Equa-
tion 7 for the actuated wheel velocities. The outputs
of the trajectory tracking controller are generally the
rover forward velocity and turning rate. So, _xd and _�d
are introduced as the controller commands. Also, bogie
angles _�1 and _�2 and front four-link angle _�4 can be
measured relative to the body. It is assumed that the
path planning unit has provided a complete sense of the
terrain pro�le (Z = f(X;Y )) and one has _ 1(i = 1::6)
at the contact points. Moreover, the outputs of the
inverse kinematics unit should be the angular velocity
of the actuators, consisting of 6 wheel motors and 2
steering motors.

Because of the closed-link chains in the wheeled
mobile robot, it is not necessary to actuate all of the
wheel variables. To separate the actuated and unactu-
ated wheel variables, the wheel kinematic equation is
partitioned into two components, as follows [1]:

Eivd = Jai _qai + Jui _qui; i = 1; � � � ; 6: (9)

As an example for the 1st wheel, one has the following:

2
6666664

1 0 �l4s(�1) �l3 � l4s(�1)
0 0 0 0
0 0 �l4c(�1) l1 � l4c(�1)
0 1 0 0
0 0 0 �1
0 0 0 0

3
7777775

2
664
_xd
_�d
_�1
_ 1

3
775

=

2
6666664

Rwc( 1)c(�1)
Rws(�1)

Rws( 1)c(�1)
0
0
0

3
7777775 _1
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+

2
6666664

�l2c( 1) 0 0 0 0
�l3s( 1)�l1c( 1)+l4c(�1+ 1) �1 0 0 0

�l2s( 1) 0 �1 0 0
�c( 1) 0 0 0 0

0 0 0 �1 0
s( 1) 0 0 0 �1

3
7777775

2
66664
_�1
_y
_z
_p
_r

3
77775 ; (10)

where the left side refers to the controller commands
and the known parameters, Jai is the Jacobian of actu-
ated components and Jui is the Jacobian of unactuated
components.

Then, the actuated inverse solution is applied
in [1], as follows:

_qai=
�
JTai�(Jui)Jai

��1
JTai�(Jui)Eivd; i=1;� � �; 6;

(11)

where:

�(J) = J(JT J)�1JT � I: (12)

By substituting and simplifying the above equations,
the following is obtained:

_1 =
_xd � l2 _�d � l4 sin(�1) _�1 � (l3 + l4 sin(�1)) _ 1

Rw cos( 1) cos(�1)
;

_2 =
_xd � l2 _�d + l4 sin(�1) _�1 � (l3 � l4 sin(�1)) _ 2

Rw cos( 2) cos(�2)
;

_3 =
_xd + l2 _�d � l4 sin(�2) _�2 � (l3 + l4 sin(�2)) _ 3

Rw cos( 3) cos(�3)
;

_4 =
_xd + l2 _�d + l4 sin(�2) _�2 � (l3 � l4 sin(�2)) _ 4

Rw cos( 4) cos(�4)
;

_5 =
_xd � l6 cos(�3) _ 5

Rw(cos(�3) cos( 5) cos(�5)� sin(�3) sin(�5))
;

_6 =

_xd + l8 _�4 � (l8 + l9 sin(�4)) _�5

Rw(sin(�4��5��6) sin(�6)+cos(�4��5��6)�cos( 6) cos(�6))
:

(13)

As can be seen, the steering rate cannot be derived
through this method, since it is coupled with the
rotational slip.

Geometric Method for Steering Angles

Since steering and rotational slip cannot be distin-
guished for steerable wheels, one cannot use the Ja-
cobian approach for steering commands as is used for
the wheel rotation velocities. Therefore, a geometric
approach is used, which determines the desired instan-
taneous steering angle.

Due to the fact that the 4 bogie wheels are
nonsteerable, rotational slip plays an important role
in the direction of the wheel center velocity during
robot turning and each �xed wheel determines the
instantaneous turn center, as illustrated in Figure 6.

First, Rw _1 and _�1 components are rewritten for
�xed wheels, such as wheel 1:

_x1 = Rw _1

=
_xd � l2 _�d � l4 sin(�1) _�1 � (l3 + l4 sin(�1)) _ 1

cos( 1)
;

(14)

_�1 = _�1 = �
_�d

cos( 1)
: (15)

Each non-steerable wheel independently determines an
instantaneous turn radius and turn center location [4]:

ri =
_xi
_�i
; (16)

cturni =
R TCiri~yCi; i = 1; � � � ; 4: (17)

For wheel 1, one obtains the following:

r1=�
_xd � l2 _�d�l4 sin(�1) _�1�(l3 + l4 sin(�1)) _ 1

_�d
;

(18)

Figure 6. Coordinate frames for steering angle
calculations.
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cturn1 =
R TC1r1~yC1

=

2
664
c( 1) 0 �s( 1) �l1 + l4c(�1)
0 1 0 l2

s( 1) 0 c( 1) �l3 � l4s(�1)
0 0 0 1

3
775
2
664
0
r1
0
1

3
775

=

2
6664

�l1 + l4 cos(�1)

� _xd�l2 _�d�l4s(�1) _�1�(l3+l4s(�1)) _ 1
_�d

+ l2

�l3 � l4s(�1)
1

3
7775 : (19)

Here, there are four unique turn centers, which will be
uni�ed by an approximation method [4]:

cturnR =
1

4

4X
i=1

cturni : (20)

Now, using a geometric approach, the steering angles
will be found (see Figure 6). The vector, r, de�nes
the turn center relative to the steering wheel contact
coordinate frame. Then, this quantity is determined
for each steerable wheel, as follows [4]:

ri =
R T�1Ci cturnR ; i = 5; 6; (21)

where, cturnR is the estimated turn center calculated in
the previous section and RTCi is the transformation
matrix between the rover's reference frame and the
wheel, i, contact frame. Since the steerable axis is the
z-axis, one is only concerned with the projection of r
in the x� y plane.

The desired steering angle for steerable wheel i is,
then;

�i = a tan 2 (�sign(ryi)rxi; jryij) ; i = 5; 6: (22)

KANE'S METHOD

Kane's method, developed in the 1980's, is the most
recent approach to motion dynamic analysis [9]. This
method has demonstrated conspicuous predominance
over others, like Newton and Lagrange, in complex
problems. In fact, the e�cacy of this approach is
related to the lower number of equations, closed forms
of equations, ease of deriving the constraint forces
and better implementation of the numerical solutions,
especially in dealing with the multiplicity of masses in
the system. It is also widely used in nonholonomic
problems, since the Lagrange method cannot handle
nonholonomic constraints easily.

Kane's method uses the same list of de�nitions for
its concepts as the Newtonian method, but, in order to
distinguish the new expressions, a word \generalized"
appears as a pre�x to that concept. For a system with

n-Degrees Of Freedom (DOF) and m-generalized coor-
dinates, \generalized speeds" are de�ned as follows:

ur = zr(q; t) +

mX
i=1

yri(q; t) _q1; (1 < r < n); (23)

where _qi is the time derivative of q and yri and zr are
functions of q and time t. The word \speed" is to show
the scalar nature of the parameter.

The number of generalized speeds is equal to
the number of DOF. According to the de�nition of
generalized speed and by solving the equation for _qi,
one has the following:

_qs = Zs(q; t) +

nX
i=1

Ysi(q; t) _ui; (1 < s < m); (24)

where, Zs and Ysi are functions of q and time t.
Now, the partial linear velocity and the partial

angular velocity of point P are introduced, as follows:

~V Pr =
@~V P

@ur
; (25)

~!Br =
@~!B

@ur
; (26)

V P and !B are the velocities of point P . Also, the
velocity of any point can be derived from the linear
combination of partial velocities associated with that
point:

~V P = ~vP (q; t) +

nX
i=1

~V Pi ui; (27)

~!B = ~WB(q; t) +

nX
i=1

~!Bi ui: (28)

Like other methods based on the calculus of variation
(such as the Lagrange method), here, the generalized
forces are de�ned, which means the partial derivative of
active forces or torques inserting energy to the system.
These forces might be external or internal, like internal
friction forces.

Fr =
�X
i=1

~V ir :
~Ri +

X
j=1

~!jr:
~M j ; (29)

~Ri (1 � i � �) is for � active forces and ~M j (1 � j � )
is for  active torques. In this approach, inertial terms
are considered, due to the D'Alambert viewpoint of
dynamic equations, and can be written as follows:

~�
RB = �mB~a

B ; (30)

~�
MB = �(IB~�B + ~!B � IB~!B): (31)
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By summation of these equations for all bodies, one
obtains the following:

F �r =

�X
i=1

�
~V ir :

�

~Ri + ~!ir:

�

~M i

�
: (32)

Equilibrium equations associated with the D'Alambert
viewpoint will lead to Kane's equations and can be
represented as:

F �r + Fr = 0: (33)

Kinematic Constraints

To get a better sense of the dynamic problem, the De-
grees Of Freedom (DOF) and the required parameters
for a determined con�guration are discussed.

Consider the main body in 3D space with 6 DOF.
Adding 3 angular freedoms in the bogies and front fork,
6 wheel rotations and 2 steering angles allow the rover
to have 17 DOF in space. But, since it traverses on
the ground, 6 motions will be con�ned and the total
number of DOF will equal 11. In the condition of no
longitudinal slip, 6 other DOF will be limited and the
total DOF decreases to 5.

Here, a complete model of rover motion is to be
developed, in which slipping and skidding (i.e., longi-
tudinal and transversal slippage) will be considered.

To determine the robot con�guration completely,
11 independent parameters should be assigned, which
are chosen here to be _x, _y, _�, _1::6, _�3 and _�6 (steering),
as generalized speeds.

In order to �nd the ground reaction force, a
velocity is introduced at the center of each wheel.
Therefore, the normal force and total friction force on
the wheels can be derived.

Finally, the total number of generalized coordi-
nates equals 35 and their rate of change will be:

_q =

"
_�1;2|{z}
Bogie

_�4|{z}
Fork

_z _p _r Vwx|{z}
6

Vwy|{z}
6

Vwz|{z}
6

_x _y _� _i|{z}
6

_�3;6|{z}
Steering

#T
: (34)

Since the normal velocity of wheel centers relative to
the ground is a virtual velocity, an additional set of
generalized speeds is de�ned. If the terrain pro�le is
de�ned as Z = f(X;Y ), one will have the following:

uj =

2
4VwixVwiy
Vwiz

3
5 :rf; for : j = 12 � � �17: (35)

As mentioned above, one needs to �nd 18 constraints
to con�ne 35 generalized coordinates to 17 generalized

Figure 7. Closed-loop chains.

speeds. Figure 7 illustrates the schematic 2D sketch
of closed loop chains between the rover reference frame
and wheels. The other bogie has not been shown here,
so, there are six 3D constraints. _�5 has been omitted
from the generalized coordinates, hence, the relation
between _�4 and _�5 in the front fork is not considered in
the constraints.

In the kinematic part, the velocities of the wheel
centers have been de�ned in the rover reference frame,
R, using the D-H method described in the previous
sections. For example, for wheel 1, one has a closed
loop chain as follows:

Vw1�
h
I3�3

... 03�1

i
oTR

RTw1
�
0 0 0 1

�T
=0;

(36)

in which, oTR is the transformation matrix of the robot
reference frame, with respect to the global coordinate.

oTR=

2
6666664

c(�)c(p) c(�)s(p)s(r) c(�)s(p)c(r) x

�s(�)c(r) +s(�)c(r)
s(�)c(p) s(�)s(p)s(r) s(�)s(p)c(r) y

+c(�)c(r) �c(�)s(r)
�s(p) c(p)s(r) c(p)c(r) z

0 0 0 1

3
7777775 : (37)

Since Equation 36 presents 3 motion constraints,
18 constraint equations will be obtained by the closed-
loop chains.

Now, the constraint equations need to be rear-
ranged to construct a standard form of Equation 24.
For this purpose, the generalized coordinates are fac-
torized and, then, the de�nition of inputs are aug-
mented, leading to a 35� 35 matrix.2
64 A18�35

: : : : : : : : : : : : : :

017�18
... I17�17

3
75 _q35�1=

�
01�18

... u1 u2 � � � u17

�
;

(38)

or:

A1(35�35)(q) _q =

17X
i=1

Biui;

where:
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BTi =
h
01�(17+i)

... 1
... 01�(17�i)

i
; (39)

or:

_q = A�11 (q)
17X
i=1

Biui =
17X
i=1

Gi(35�1)ui:

DYNAMICAL ANALYSIS

In this section, a systematic procedure for the dynamic
modeling and formulation of WMRs is presented for 3D
motion on rough terrain. The analysis will be based
on Kane's method. Here, an approach for extraction
of Kane's items, like generalized inertial forces and
generalized active forces, has been demonstrated. As
an illustrative example, this method has been applied
to the CEDRA rescue robot.

Inertial Forces

Since a distributed mass analysis is very demanding
and does not seem to be reasonable in rover dynamics,
8 noticeable point masses are assumed consisting of 6
wheels, a front fork and a main body. The velocities
of these masses will easily be evaluated using the D-H
method explained in the previous section.

V wj =
h
I3�3

... 03�1

i
oTR

RTwj
�
0 0 0 1

�T
;

for j = 1::6; (40)

V FF =
h
I3�3

... 03�1

i
oTR

RTf4 [xFF 0 zFF 1]T ;
(41)

VMB =
h
I3�3

... 03�1

i
oTR

RTMB

�
xMB 0 zMB 1

�T
;

(42)

or:

V mj =
�

V
mj
3�35(q) _q35�1 =

17X
i=1

�
�

V
mj
3�35Gi(35�1)

�
ui;

for j = 1::8: (43)

The partial velocities of the wheel centers can be
expressed as:

~V pr =
@~V p

@ur
) ~V mjr = [

�

V
mj
3�35Gr(35�1)]: (44)

Also, accelerations associated with point masses are
found by the derivation of velocities, as follows:

amj =
d

dt
V mj

=

17X
i=1

8<
:
�
�

V
mj
3�35Gi(35�1)

�
_ui+

@[
�

V
mj
3�35Gi(35�1)]

@q
_qui

9=
;

=

17X
i=1

[
�

V mjGi] _ui+

17X
i=1

17X
k=1

2
4@[�V mjGi]

@q
Gk

3
5ukui:

(45)

Furthermore, one needs to evaluate the angular velocity
vectors of the wheels, the main body and the front fork:

!wj = oT rotation
R(3�3)

0
@
2
4 _r
_p
_�

3
5+

2
4 0
_j
0

3
5
1
A ; for j = 1::6;

(46)

!FF = oT rotation
R(3�3)

0
@
2
4 _r
_p
_�

3
5+

2
4 0
_�4 � _�5
0

3
5
1
A ; (47)

!MB = oT rotation
R(3�3)

2
4 _r
_p
_�

3
5 ; (48)

or:

!mj =
�

!
mj
3�35(q) _q35�1 =

17X
i=1

h
�

!
mj
3�35Gi(35�1)

i
ui;

for j = 1::8; (49)

where oT rotation
R(3�3) is the rotational part of oTR and the

corresponding partial angular velocity will be:

~!mjr = [
�

!
mj
3�35Gr(35�1)]; (50)

�mj =
d

dt
!mj =

17X
i=1

[
�

!
mj
Gi] _ui

+

17X
i=1

17X
k=1

"
@[
�

!mjGi]

@q
Gk

#
ukui: (51)

The generalized forces are derived by substituting the
above parameters in Equations 30 to 32.

F �1 = �

8X
j=1

�
mj(~V

mj
1 :~amj) + Ij(!

mj
1 �mj)

�
: (52)
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Gravity Force

The partial velocities associated with each weight force
exertion point are equal to the partial velocities of the
center of gravity of the bodies. Also, the weight forces
are simply described by:

~Fwj = �mjg

2
400
1

3
5 : (53)

Motor Torques

Inserted energy to the system is provided by the
motors; hence, the torque vector is de�ned as:

� =
�
�1 �2 �3 �4 �5 �6

�T
; (54)

and the angular velocities of these torques are:

!�j = _�j � _ ; j = 1; 2; 3; 4; 5;

!�6 = _�6 � _�: (55)

Now, by de�ning E in the form of:

Er =
h
�

!�1
�

!�2
�

!�3
�

!�4
�

!�5
�

!�6
i
TGr; (56)

the motor torques in dynamics modeling can be in-
cluded.

Ground Force

An interaction force is exerted under each wheel that
can be de�ned as:

F gj =

2
4F gjxF gjy
F gjz

3
5 : (57)

The velocity of the ground force action point is easily
evaluated using the motion coordinate frame, after
setting � to zero.

V cj =
h
I3�3

... 03�1

i
oTR

RTmj
�
0 0 0 1

�T

=

2
4V cjxV cjy
V cjz

3
5
3�1

=

2
664
�

V cjx
�

V cjy
�

V cjz

3
775 _q =

17X
i=1

0
BB@
2
664
�

V cjx
�

V cjy
�

V cjz

3
775Gi

1
CCAu;

for j = 1::6; (58)

V cjr =

2
664
�

V cjx
�

V cjy
�

V cjz

3
775Gr: (59)

And, eventually, the generalized force associated with
the contact points is:

F gr =

6X
j=1

V cjr : ~F gj (60)

Kane Formulation

The closed form equation for the dynamics of the rover
can be derived as follows:

17X
i=1

Mri(q) _ui +

17X
i=1

17X
j=1

Nri;j (q)uiuj + gWr(q)

+ F gr (q;
~F gj) = �:Er(q); r = 1::17;

(61)

where the coe�cients are:

Mr(q) =

8X
j=1

(mj [
�

V CjA�11 ]:[
�

V CjA�11 ]

+ Ij [
�

!jA�11 ]:[
�

!jA�11 ]);

Nr(q) =
8X
j=1

(mj [
�

V CjA�11 ]:
@[
�

V CjA�11 ]

@q

+ Ij [
�

!jA�11 ]:
@[
�

!jA�11 ]

@q
)A�11 ;

Wr(q) =

8X
j=1

mj [
�

V CjA�11 ]:

2
400
1

3
5 : (62)

The above equations are the closed form equations
of motion for the CEDRA rover, consisting of 17
equations, 17 generalized speeds and 18 ground force
components. Hence, one should �nd 18 constraint
equations. The dynamics of WMRs, in the presence of
slip, do not usually have an analytical solution, since in
non-slip conditions, a kinematic constraint restricts the
rotational motion of the wheel and, in cases of slipping,
a dynamic constraint relates the normal force with the
friction force. Therefore, a decision tree is needed for
the numerical solution. First, a rigid wheel on a rigid
terrain is considered:

(I) Wheel j doesn't slip:

(1) Because of skidding, transversal friction force
is equal to:

CF gjy = ��s
CF gjz ; (63)

where, CF gjz and CF gjy are the normal and
transversal ground reaction forces in the
contact coordinate frame;

(2) It is assumed that wheels do not lose their
contacts, so,

u12 = u13 = � � � = u17 = 0: (64)
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(3) The longitudinal motion of each wheel is
dependant on the wheel rotation.

Vxj = Rw _j ; j = 1::6; (65)

where the longitudinal velocity is the pro-
jection of V wj in the contact frame x-axis
direction.

With these 18(= 3 � 6) extra con-
straints, they can be solved simultaneously
with Equation 61. At each time step, 35
equations with 35 unknowns are solved and
all ground contact forces are determined.
Now, assumption I should be checked for
validity.q

(CF gjx )2 + (CF gjy )2

CF
gj
z

� �s: (66)

If Condition 66 doesn't hold for the obtained
forces, this time step should be solved once
again with assumption II.

(II) Wheel j slips:

(1) Friction force that is always in the direction
of motion is, as follows:

Vxj

Vyj
=

CF gjx
CF

gj
y

: (67)

(2) Equation 64 is valid for this case too;

(3) The dynamic constraint of contact force is:q
(CF gjx )2 + (CF gjy )2 = �Cs F

gj
z : (68)

Again, after solving 35 equations, one goes
through the next time step. Now, in a more
realistic approach, the ground exibility in
the constraints is considered. The method
does not change, except for the assumptions
made in the previous section. Since the
friction coe�cient changes its nature, Equa-
tion 63 does not hold in this case.

SIMULATION

The obtained equations can be used for various pur-
poses, such as: Dynamics optimization, checking avail-
able control strategies, inverse and forward dynamic
simulation and comparison between various rovers.
But, as far as there has been a focus on obtaining
the equations themselves, only a simpler simulation
is described. Due to the complexity of the 3D case,
the simulation illustrated here will concentrate on the
2D vertical plane. There are several reasons for this
2D simulation. The mechanisms (like bogies and front

fork) move in parallel planes and there is no linkage and
exibility in the 3rd dimension. Therefore, the rover
dimensions are more e�ective and more meaningful
in the planner analysis. Moreover, the �rst step
in the design of rovers is checking its capability of
climbing over obstacles and this model has been used to
develop climbing abilities through dynamical equations
of motion. In simulation, the robot is forced to pass a
bump generated by a function like \he�(

x
w
)2", similar

to the previous work [10]. The \h" is selected equal
to \w" and about 2.25 times the wheel radius. It is
assumed that all six wheels torques are equal. The
above mentioned task has been applied to the robot and
the results are shown in Figure 8. As can be seen, after
a transient response, it will follow the same behavior
as before. Consequently, the values of normal forces,
friction forces and their ratios have changed.

CONCLUSIONS

A general frame-work for kinematic and dynamic
analysis of rovers has been developed, consisting of
forward and inverse kinematics in a control oriented
approach and by deriving the dynamics equations
based on Kane's method. The analysis has been
applied to the CEDRA rescue robot as an illustrating
example. In order to reach a desired velocity on rough
terrain, the equations of the actuators' e�ort have been
derived.

This work has mainly focused on the detailed
steps of dynamic formulation rather than dynamic
analysis of the CEDRA robot. However, future work is
required to perform a more exact analysis of this robot
and to extend the application of this method.

Based on D-H and Kane's methods, a systematic
method for deriving equations of motion governing a
rover has been presented. The method is very e�cient
for numerical purposes.

In addition, it has been shown that the method
is capable of extracting exact symbolic equations for a
rover with one of the most complicated mechanisms,
including four closed chains. Also, it is capable
of calculating constraint forces easily and handling
them to generate traction control algorithms for high
velocities over uneven terrain. Both the kinematics and
kinetics are presented here and, also, this method o�ers
an appropriate set of coordinates to fully and easily
describe rover con�guration. This method, which can
be used in the selection of state variables, extraction
of rate equations and, also, in meaningful descriptions
of various terms of equations, is very useful and novel
in its own right. It must be mentioned that for 3-
dimensional motion, governing equations are highly
complicated and seem not to be handled and solved
symbolically. Hence, a numerical method may be used
to deal with the problem.
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Figure 8. Simulation results for ground forces and motor torques vs. time.

NOMENCLATURE

BTA transformation matrix from A to B

ai; �i and di joint parameters in D-H notation

�i joint variable in D-H notation

Bl left bogie coordinate frame

Br right bogie coordinate frame

B back coordinate frame

Fi ith front coordinate frame

Ci ith contact coordinate frame

Mi ith motion coordinate frame

Rw wheel radius

 i ground slope under ith wheel

i ith wheel absolute rotation

�i angular slip

_x; _y; _z robot velocities in direction of body
coordinate frame

�; r; p robot yaw, roll and pitch angles

_xd desired longitudinal velocity

v velocity vector

J Jacobian matrix

qi ith wheel parameter vector

Jai ith wheel actuated Jacobian matrix

Jui ith wheel unactuated Jacobian matrix

qai ith wheel actuated parameter vector

qui ith wheel unactuated parameter vector

ci instantaneous turn center for ith
unsteerable wheel

ri turn radius for ith unsteerable wheel

Fr sum of generalized non-inertia forces

u generalized speeds column vector

_q rate of change of generalized
coordinates

g gravitational acceleration

N wheel normal force column vector

_�d desired yaw rate

cturnR instantaneous robot turn center

mj mass of jth part

~V mjr rth partial mass center velocity of jth
part

~!mjr rth partial mass center angular velocity
of jth part

~V mj mass center velocity of jth part

~!mj mass center angular velocity of jth
part

~amj mass center acceleration of jth part
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~�mj mass center angular acceleration of jth
part

IB moment of inertia of body B around
the CM

F �r sum of generalized inertia forces

� wheels torque column vector
�

!
�i

corresponding angular velocity to ith
applied torque

_u rate of change of generalized speeds

F gjx ; F gjy ; F gjz components of ground reaction in
global coordinate frame

CF gjx ;C F gjy ;C F gjz components of ground reaction force in
the contact coordinate frame
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