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E�ect of Unsteady Friction Models and

Friction-Loss Integration on Transient Pipe Flow

A. Vakil
1
and B. Firoozabadi

�

When velocities in the piping systems change rapidly, spectacular accidents occur, due to
transient-state pressures where the elastic properties of the pipe and liquid must be considered.
This hydraulic transient is commonly known as water hammer. A conventional widely-used
technique for analyzing this phenomenon is the Method Of Characteristic (MOC), in which, by
introducing the characteristic lines, two ordinary di�erential equations, in lieu of the governing
partial di�erential equations, are produced. In the undisturbed form of the equations, the energy
dissipation is evaluated by the steady or quasi-steady approximation. But, there is experimental
and theoretical evidence which shows that the velocity pro�les in unsteady-ow conditions have
greater gradients and, thus, greater shear stresses, than corresponding values in steady-ow.
Moreover, the numerical integration of the friction-loss is based on the values at the previous
time step. This paper employs the External Energy Dissipator, Karney's method, to apply the
boundary conditions in a network. To investigate the e�ect of the unsteady friction formula,
the cross characteristic mesh, based on the Vitkovsky formulation, is completely derived and
incorporated in the network. At last, the e�ect of the weighting term in the integration of the
friction-loss term is examined. The paper shows that if the maximum head rise were to be
practically considered, it would not need the unsteady friction term to be taken into account.
Moreover, the weighting integration constant has the slightest e�ect on the text network.

INTRODUCTION

It has been shown, both theoretically and experi-
mentally, that in unsteady pipe ows, the energy
dissipation experienced by uid is by far greater than
that experienced by steady ows [1-4]. The steady or
quasi-steady friction approximation underestimates the
shear stress and fails to correctly predict the peculiar
events occurring. Therefore, advanced 1D and 2D
models have been developed [5,6]. The 2D models
stem from wave motion and turbulent di�usion are
robust to handle [7-9]. But, there are two main ap-
proaches in considering unsteadiness during transient-
state conditions in 1D models. One is based on the
past ow acceleration [1]; the other depends on the
instantaneous values of acceleration [10]. Referring
to these models, there is a signi�cant deviation from
uniform ow pro�les and the shear stress is out of
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phase with the mean velocity. To express deviation
from the steady-state conditions, Zielke related the
wall shear stress in transient laminar pipe ow to the
instantaneous mean velocity and to the weighted ac-
celeration history [1]. Since Zielke's model is memory-
consuming, other researchers have developed approxi-
mations to it [11-13]. Zielke's family of models is also
known as frequency-dependent friction models. The
Brunone model relates the unsteady shear stress to
instantaneous local acceleration @V

@t
and instantaneous

convective acceleration @V
@x

, by means of the coe�cient,
k, which can be estimated from Vardy and Brown's
shear decay coe�cient C� [14] or by trial and error.
This model is valid for a wide range of Reynolds num-
ber, including laminar or turbulent ows. The original
Brunone model has been shown to be erroneous in
predicting the acceleration phase. Vitkovsky improved
the Brunone model to be in agreement with any type
of acceleration or deceleration phase [15]. To reduce
the number of boundary conditions and facilitate the
calculation of transient conditions, Karney developed
an e�cient method, known as the External Energy
Dissipator (EED) [16].

This paper reviews the unsteady friction model,
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based on the Brunone model, and incorporates this
model into Karney's e�cient model. Results are
veri�ed on the test network presented in [16].

In the following section, the governing equation
will be reviewed. Then, method of characteristics,
the unsteady friction models and the external energy
dissipator (EED) will be presented. After that, the
cross characteristic method will be derived and a
comparison will be made between the quasi-steady and
Brunone models for two di�erent cases on the text
network, as described.

GOVERNING EQUATIONS

The momentum and continuity equations, describing
the unsteady pipe ow, are a set of 1D qausi-linear
hyperbolic partial di�erential equations [17,18]. These
equations can be written in the following form:

L1 = gHx + Vt + V Vx + ghf = 0; (1)

L2 = gHt + a2Vx = 0; (2)

in which:

x distance along pipe,
t time,
H = H(x; t) piezometric head,
V = V (x; t) uid velocity,
a wave speed,
g gravitational acceleration.

The head loss, due to uid friction per unit length,
�L, can be derived from the dissipation function [6]:

�L =
@u

@r

�
�
@u

@r
� �u0v0

�
; (3)

where u is the axial velocity, r is the radial coordinate,
@u
@r

is the velocity gradient in the radial direction

and �u0v0 is the Reynolds stresses for turbulent ow.
By applying the Hagen-Poiseulle velocity pro�le, the
energy loss per unit weight of liquid in a unit length
of pipe for steady-state ow conditions is given by the
following:

hf =
fV 2

2gD
; (4)

which is the same as the Darcy-Weisbach equation.
To consider the opposite direction of the ow,

Equation 4 is written as below:

hf =
fV jV j
2gD

: (5)

The behavior of the friction factor can be de�ned by
the implicit Colebrook-white equation [19].

METHOD OF CHARACTERISTICS

Equations 1 and 2 can be transformed into a set of
ordinary di�erential equations, which are valid only on
the appropriate characteristic lines [17,18]. The MOC
combines the continuity and momentum equations with
an unknown multiplier, �.

L = L1 + �L2: (6)

If the convective term is small and the head loss can be
approximated by Equation 5, the MOC can be de�ned
in terms of discharge, Q, and head, H , as follows:

C+ :

gA

a

dH

dt
+
dQ

dt
+ f

Q jQj
2DA

= 0; (7)

dx

dt
= a; (8)

C� :

�gA

a

dH

dt
+
dQ

dt
+ f

Q jQj
2DA

= 0; (9)

dx

dt
= �a: (10)

Equations 7 and 9 are now integrated along the C+

and C�, respectively (see Figure 1). To integrate the
friction term, a linearization is used as follows [16]:

Z i;t

i�1;t��t

Q jQj dx =
h
Qi�1;t��t

+ " (Qi;t �Qi�1;t��t)
i
jQi�1;t��tj�x: (11)

Two equations for the unknownsH and Q at (i; t) may

Figure 1. The x� t grid showing characteristics for
Equations 8 and 10.
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be written as:

Hi;t = Cc+ �Bc+Qi;t; (12)

and:

Hi;t = Cc� �Bc�Qi;t; (13)

where:

Cc+=Hi�1;t��t+Qi�1;t��t[B �R jQi�1;t��tj (1�")];
(14)

Bc+ = B + "R jQi�1;t��tj ; (15)

Cc�=Hi+1;t��t�Qi+1;t��t [B�R jQi+1;t��tj (1�")] ;
(16)

Bc� = B + "R jQi+1;t��tj ; (17)

where B = a
gA

, R = f�x

2gDA2 , A = cross-sectional area
of the pipe and " is the linearization constant.

The values of the constants Cc+ , Bc+ , Bc� and
Cc� are known from the previous time step. Therefore,
one can proceed in time by simultaneously solving
Equations 12 and 13.

UNSTEADY FRICTION MODELS

Original and Modi�ed Brunone Model

If the friction factor in Equation 5 is split into two
components, quasi-steady fq and unsteady component
fu, i.e., f = fq + fu, the Brunone model component
can be de�ned by [10]:

fu =
kD

V jV j
�
@V

@t
� a

@V

@x

�
: (18)

The Vitkovsky's modi�ed formulation, which takes into
account the correct sign of the convective term, is as
follows [10]:

fu =
kD

V jV j
�
@V

@t
+ a Sign (V )

����@V@x
����
�
; (19)

Sign(V ) takes +1 for V � 0 and �1 for V < 0.
The coe�cient, k, can be found empirically or

from Vardy's shear decay coe�cient, C�, as follows [14]:

k =

p
C�

2
;

C� = 0:00476 for laminar ow; (20)

C� =
7:41

Relog
( 14:3

Re0:05
)

10

for turbulent ow: (21)

Zielke Model

By taking into account distortion of the traveling wave
through frequency-dependent friction for an unsteady
friction term in discrete form, Zielke derives the follow-
ing equation [2]:

(fu)i;k=
32�

DVi;k jVi;kj
k�1X

j=1;3;���

(Vi;j+1�Vi;j�1)W ((k�j)�t) ;
(22)

where i and k refer to the ith cross-section and kth time
step, respectively. It should be noted that the weight
function, W , for the past acceleration, is a function of
the dimensionless time, � ;

W (�) = e�26:3744� + e�70:8493� + e�135:0198�

+ e�218:9216� + e�322:5544� ; (23)

for � � 0:02;

W (�) = 0:282095��
1
2 � 1:25000+ 1:057855�

1
2

+ 0:937500� + 0:396696�
3
2 � 0:351563�2; (24)

for � < 0:02;

where � = 4�
D2 t.

Since the method introduced by Zielke requires
storage of all velocities computed at the previous time
steps, the improved approximate method for simulating
frequency-dependent friction in transient laminar ow
has been devised [11-13].

EXTERNAL ENERGY DISSIPATOR (EED)

At boundary reaches, only one of the characteristic
equations is available in the two variables, therefore,
Equations 12 and 13 should be solved simultaneously
with the conditions imposed by the boundary. The
EED [16] reducing the number of boundary conditions
should be de�ned to close the systems of equations.
Based on the uniqueness of the head and continuity
at the frictionless junction (where boundary section
meet), Equations 12 and 13 lead to:

Hi;t = Cc �BcQext; (25)

in which:

Bc =

 X
i

1

Bc
+

i

+
X
i

1

Bc
�

i

!
�1

; (26)

and:

Cc = Bc

 X
i

Cc
+

i

Bc
+

i

+
X
i

Cc
�

i

Bc
�

i

!
�1

: (27)
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Equation 25 represents a single relationship between
junction head Hi;t and external ow Qext in a friction-
less junction. Generalized external dissipaters include
tank, connector, valve/ori�ce and reaching pipe. The
external ow can be expressed in terms of the head at
the junction as follows:

Qext = s�Es

q
s (Hi;t �H

p
c ); (28)

where, Hc
p is the head at the node side of the connector,

s = Sign(Qext) = �1 and Es and � are valve/ori�ce pa-
rameters. Karney shows that Qext takes the following
form:

Qext = �m+ s
p
m2 � n; (29)

where:

m =
(�Es)

2

2
:s(Bb +Bc + Cc

2); (30)

and:

n = (�Es)
2:s(Cb + Cc

1 � Cc); (31)

and:

s = Sign(Cc � Cb � Cc
1): (32)

The constants, Cc
1 and Cc

2 , Cb and Bb and Cc and
Bc, are the connector, tank and junction constants,
respectively and can be found in [16]. Karney shows
that the EED method simpli�es the programming and
reduces the code size and the simulation time [16].

CROSS CHARACTERISTIC MESH

The cross characteristic mesh is developed in [20],
based on the original Brunone model. Here, the same
procedure is introduced for the Vitkovsky formulation.
By neglecting the convective term with the modi�ed
Brunone model, the momentum equation can be rewrit-
ten in the following form:

L1 = Qt + gAHx +
fQjQj
2DA

+ k(Qt + a�AQx) = 0;
(33)

where �A = �1 for V Vx < 0 and �A = +1 for V Vx � 0.
Using Equations 33 and 2, Equation 6 will be

transformed into:

L = Qt + gAHx +
fQjQj
2DA

+ k(Qt + a�AQx)

+ �

�
Ht +

a2

Ag
Qx

�
= 0; (34)

or, in the rearranged form, as:

L=�

�
Ht+

gA

�
Hx

�
+(1+k)

�
Qt+

�a2+gAka�A
(1+k)gA

Qx

�

+
fQjQj
2DA

= 0: (35)

If one writes the following:

dx

dt
=

gA

�
=

�a2 + gAka�A

(1 + k)gA
: (36)

Equation 35 is transformed into the ordinary di�eren-
tial equation:

�
dH

dt
+ (1 + k)

dQ

dt
+
fQjQj
2DA

= 0: (37)

The solution of Equation 36 yields two particular values
for �:

� = �gAk

2a
�A � gA

2a
(k + 2): (38)

By using � as given by Equation 38, Equation 37, for
� = �1 may be rewritten as follows:

�dH

dt
+

a

gA
(1 + k)

dQ

dt
+ a

f

2gDA2
QjQj = 0; (39)

on
dx

dt
= �a; (40)

and:

dH

dt
+

a

gA

dQ

dt
+

a

1 + k

f

2gDA2
QjQj = 0; (41)

on
dx

dt
=

a

1 + k
: (42)

In the cross characteristic mesh, the intermediate
points will be met (see Figures 2 and 3). These points
are known as (i � 1; t�) and (i + 1; t�). The unknown
discharge and head at these points will be evaluated
from the time step, t��t and the desired values at the
time t will be estimated from the value at these points.
Multiplying Equations 40 and 42 by dt and integrating
along their appropriate characteristic lines yields the
following:

for the left side of the line, x = i;

C+ :

Z i�1;t�

i�1;t��t

dH+
a

gA

Z i�1;t�

i�1;t��t

dQ

+
f

2gDA2

Z i�1;t�

i�1;t��t

QjQjdx=0; (43)
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Figure 2. Cross characteristic mesh presented in the
previous section for �A = �1.

Figure 3. Cross characteristic mesh presented in the
previous section for �A = 1.

C� :

Z i�1;t�

i;t��t

dH � a(1 + k)

gA

Z i�1;t�

i;t��t

dQ

+
f

2gDA2

Z i�1;t�

i;t��t

QjQjdx = 0; (44)

for the right side of the line, x = i;

C+ :

Z i+1;t�

i+1;t��t

dH +
a

gA

Z i+;t�

i+1;t��t

dQ

+
f

2gDA2

Z i+1;t�

i+1;t��t

QjQjdx=0; (45)

C� :

Z i+1;t�

i+2;t��t

dH � a(1+k)

gA

Z i+1;t�

i+2;t��t

dQ

+
f

2gDA2

Z i+1;t�

i+2;t��t

QjQjdx=0: (46)

Using Equation 11 in integrating the last term in
Equations 40 to 42, the head-discharge relation will be
obtained as follows:

for the left side of the line, x = i;

C+ :

Hi�1;t� = Ci�1;t��t �Bi�1;t��tQi�1;t� ; (47)

where:

Ci�1;t��t = Hi�1;t��t

+Qi�1;t��t

�
B�R

2
jQi�1;t��tj (1�")

�
;

(48)

Bi�1;t��t = B +
R

2
" jQi�1;t��tj ; (49)

C� :

Hi�1;t� = Ci;t��t +Bi;t��tQi�1;t� ; (50)

where:

Ci;t��t = Hi;t��t

�Qi;t��t

�
B0 � R

2
jQi;t��tj(1� ")

�
; (51)

Bi;t��t = B0 +
R

2
"jQi;t��tj; (52)

for the right side of the line, x = i;

C+ :

Hi+1;t� = Ci+1;t��t �Bi+1;t��tQi+1;t� ; (53)

where:

Ci+1;t��t = Hi+1;t��t

+Qi+1;t��t

�
B�R

2
jQi+1;t��tj(1� ")

�
;

(54)
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Bi+1;t��t = B +
R

2
"jQi+1;t��tj; (55)

C� :

Hi+1;t� = Ci+2;t��t +Bi+2;t��tQi+1;t� ; (56)

where:

Ci+2;t��t = Hi+2;t��t

�Qi+2;t��t

�
B0�R

2
jQi+2;t��tj(1�")

�
;

(57)

Bi+2;t��t = B0 +
R

2
"jQi+2;t��tj: (58)

With B = a
gA

, B0 = (1 + k)B and R = f
2gDA2 .

Using the same procedure, the relation between
head and discharge at the point (i; t) can be found as
follows:

for the left side of the line, x = i;

C+ :

Hi;t = Ci�1;t� � Bi�1;t�Qi;t; (59)

for the right side of the line, x = i;

C� :

Hi;t = Ci+1;t� +Bi+1;t�Qi;t: (60)

It can be seen that the constants Ci�1;t� and
Bi�1;t� are functions of Qi�1;t� , which can be evalu-
ated by simultaneously solving Equations 47 and 50,
resulting in:

Qi�1;t� =
Ci�1;t��t � Ci;t��t

Bi�1;t��t +Bi;t��t

: (61)

The same procedure can be used to �nd Qi+1;t� , as
follows:

Qi+1;t� =
Ci+1;t��t � Ci+2;t��t

Bi+2;t��t +Bi+1;t��t

: (62)

TEST CASE AND RESULTS

The e�ect of the unsteady friction term is tested,
based on the example in [16]. The layout of the
system, consisting of seven pipes and seven nodes,
is presented in Figure 4. The data speci�cations
of the system are given in Tables 1 to 3. Table 1
contains the nodal steady-state data while Tables 2
and 3 refer to the pipe physical data, initial ows
and the data speci�cation for external dissipative
devices, respectively. The transient behavior of the
system, caused by the following operation of the
control valve located at node 7, is analyzed for
60 s [16]:

Case 1. The control valve opening, \�", decreases
linearly from � = 0:6 to � = 0:2 in 10 s (Figure 5).

Case 2. The control valve opening, \�", decreases
linearly from � = 0:6 to � = 0:2 in 10 s, maintained for
15 s and, then, increases linearly to its initial value of
� = 0:6 in 5 s (Figure 6).

The time step selected for the computer simulations
was approximately 0.1 s. The pipe system was dis-
cretized into 90 pipe reaches, according to [16]. In order
to validate the present code, results are compared with
the results of [16] and, then, the e�ects of the unsteady
friction term were investigated. Figures 7 and 8 show
the hydraulic grade-line elevation and external ow at
node 7 for Cases 1 and 2, respectively. There is close
correspondence between the results of the present code
and [16].

Figure 4. De�nition diagram for simple network.
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Table 1. Nodal steady-state data.

Node

Number

Elevation

(m)

Hydraulic

Grade-Line

Elevation (m)

Qexti

(m/s2)

Device

Description

1 150 200.0 -6.211 Constant head reservoir

2 100 195.0 +2.000 Constant demand

3 150 188.8 +0.000 Surge tank

4 150 175.0 +1.183 Constant head reservoir

5 100 183.4 +1.000 Constant demand

6 50 187.9 +0.000 Constant relief valve

7 25 151.9 +2.028 Control valve

Table 2. Pipe physical data and initial ow.

Pipe

Number

From

Node

To

Node

Initial Flow

(m/s2)

Length

(m)

Diameter

(m)

Wave Speed

(m/s)

Darcy

Friction

1 1 2 6.212 1001.2 1.500 996.3 0.012

2 2 3 1.708 2000.0 1.000 995.3 0.013

3 3 4 1.183 2000.0 0.750 995.0 0.014

4 3 5 0.524 502.5 0.500 1000.0 0.015

5 6 5 0.476 502.5 0.500 1000.0 0.015

6 2 6 2.503 1001.2 1.000 996.3 0.014

7 6 7 2.028 2000.2 0.750 995.3 0.013

Table 3. Data speci�cation for external dissipative device.

Valve/Ori�ce Tank/Reservoir Connector

External Flow

Device

E
��

m

5

2

s

� E
��

m

5

2

s

� Zbot

(m)

Ztop

(m)

Ar

(m2)
fr

Lc

(m)

Dc

(m)
fc

Qext1
5.0 5.0 150 201.5 1 0 0 > 0 0

Qext3
3.0 3.0 180 195.0 5.0 0.020 30 0.500 0.020

Qext4
1.0 1.0 150 173.6 1 0 0 > 0 0

Qext6
0.0 0.0 50 50.0 1 0 0 > 0 0

Qext7
0.0 0.0 25 25.0 1 0 0 > 0 0

Figures 9 and 10 show the hydraulic grade-line
elevation and external ow at nodes 7 and 6 for Cases
1 and 2, respectively. Figure 11 shows that, during
the �rst 20 s, the system has nearly the same response.
Also, it is shown that the peak head is identical in both
cases. After this time, each curve has its own behavior
and they are clearly di�erent. The reopening of the
control valve at node 7 causes an increasing demand at
node 7 and will result in a severe pressure drop. In this
case, a reversal in the ow direction of the surge tank
would occur. The e�ect of the valve can be regarded as
the perturbations to the system. If the perturbations to
the system are of the second case, damage to the system
will be far more. Figures 9 and 10 show the di�erences

when k increases. In both cases, k is changed from 0
to 0.2 and 0.4, where k = 0 refers to the steady-state
friction model. One signi�cance of coe�cient k is in
�ltering the curves, so that k can act as a low pass �lter.
These �gures show that damping e�ects will increase if
k increases. Another, and the most important, e�ect of
the unsteady friction term can be seen in the damping
of the pressure waves traveling along the system when
the valve is set to be closed. From the results of the
di�erent values for k, it can be slightly indicated that
the nature of the response depends more on how the
pressure peak decays from one cycle to the next, not
simply on the peak pressures for the �rst cycle. An
obvious shift of the head peaks can be seen in Figures 9
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Figure 5. Valve closing law for Case 1.

Figure 6. Valve closing law for Case 2.

Figure 7. Comparison between the hydraulic grade-line
elevation and the external ow at node 7 with [16] in
Case 1.

Figure 8. Comparison between the hydraulic grade-line
elevation and the external ow at node 7 with [16] in
Case 2.

Figure 9. Hydraulic grade-line elevation and external
ows at selected locations: Case 1.

Figure 10. Hydraulic grade-line elevation and external
ows at selected locations: Case 2.

Figure 11. Comparison between two cases for k = 0.
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Figure 12. E�ect of the weighting term in the integration
of the friction-loss: Case 1.

Figure 13. E�ect of the weighting term in the integration
of the friction-loss : Case 2.

and 10. In Figures 12 and 13, the dependence of the
results on the linearization constant is shown. From
these �gures it is clear that the tendency of the results
for di�erent values of " is the same. So, using the
previous time step values in the integrating of the
friction term will predict events reasonably enough.

CONCLUSION

The results from the quasi-steady friction model (k = 0
in the Brunone model) and the Brunone model have
been compared with each other for the closing of a
control valve at the downstream of a simple network.
The results showed the importance of considering the
unsteady friction term in the transient-state condition
during the design process. The more coe�cient k

increases in the Brunone model, the more it decays
the traveling pressure wave. Thus, knowing the best
value for k in each case depends on the empirical
results. On the other hand, if the maximum head rise

is practically considered, there is no need to pay for the
unsteady friction term, which considers the decay phase
and not the maximum phase. Moreover, for reducing
the number of boundary conditions, the EED method
has been used. This method can demonstrate many
complex devices in a general element (EED). Thus,
by using this method, the process of programming
will become simpli�ed, the code size will be reduced
and the simulation time will decrease. The e�ect of
the linearization constant has been incorporated in the
simple form of the friction term integration. It is seen
that the results did not have a clear dependence on
di�erent linearization constants in the integrating of
the friction term, from the explicit to implicit method
for the text network.

NOMENCLATURE

A cross-sectional area of the pipe

a wave speed

Bc+ constant

Bc� constant

B constant

B0 constant

Cc
1 ; C

c
2 connector constants

Cb; Bb tank constants

Cc; Bc junction constants

C� negative characteristic line

C+ positive characteristic line

Cc+ constant

Cc� constant

C� Vardy and Brown's shear decay
coe�cient

D pipe diameter

Es valve/ori�ce parameters

f Darcy-Weisbach friction factor

fq quasi-steady part of the friction factor

fu unsteady part of the friction factor

g gravitational acceleration

H piezometric head

Hc
p head at the node side of the connector

hf energy loss per unit weight

i ith cross-section

k constant

L pipe length

Q discharge

Qext external ow

R constant

r radial direction
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t time

�t time step

u0 uctuation of the u velocity in the
axial direction

V uid velocity

v0 uctuation of the v velocity in the
radial direction

W weight for the past acceleration

x distance along pipe

Greek Symbols

� unknown multiplier

� uid viscosity

� uid density

" linearization constant

� dimensionless time

� kinematic viscosity

�L headloss due to uid friction per unit
length
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