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Numerical Solution of Compressible Euler

Equations for Gas Mixture Applications

R. Kamali1, M.M. Alishahi� and H. Emdad1

A computer code, based on Euler Equations in generalized curvilinear coordinates, has been

developed to resolve binary perfect gas mixture ows. The capability of modeling various mixture

e�ects is built in the algorithm and the computer code. The Roe's numerical scheme is used to

discretize the convective terms of the governing uid ow equations, while a simple upwinding

method is applied for the equation of continuity of species. Some applications of binary gas

mixture ows, including nozzle cooling and thrust vectoring, are investigated and the role of

mixing phenomenon in these ows is classi�ed. Additionally, the inuences of using di�erent

gases on ow �elds are evaluated, especially in two-dimensional thrust-vectoring problems.

INTRODUCTION

Recent years have witnessed a growing interest in
developing suitable numerical methods for computing
the mixture of uid ows and their e�cient implemen-
tation in studying complex ow phenomena (e.g., [1-
10]). In 1996, a quasi conservative algorithm was
developed by Abgrall [6] to prevent pressure oscillations
in multicomponent ows. In 1997, Jenny, Mueller
and Thomann [11] showed that conservative Euler
solvers for gas mixtures produce numerical errors and
oscillations near to contact discontinuities.

For a mixture of perfect gases, a simple correction
of the total energy per unit volume was proposed by
Jenny, Mueller and Thomann [11] to avoid errors and
oscillations found near contact discontinuities. Ivings,
Causon and Toro [12] developed a hybrid high reso-
lution upwind algorithm for multicomponent inviscid
ows. Then, Shyue [8] developed a uid mixture type
algorithm for compressible multicomponent ow with
the Van der Waals equation of state.

Also, Abgrall and Karni [9] proposed a simple
algorithm for multimaterial ows consisting of pure
uids separated by material interfaces to remove the
oscillations generated at material interfaces. Marquina
and Mulet [10] developed a conservative extension of
the Euler equations for gas dynamics in Cartesian
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coordinates to reduce the oscillations near to gas
interfaces.

Most recent works have focused on the problems
consisting of pure uids separated by material inter-
faces (e.g., [1,2,9,13-16]). Understanding the dynamics
of uids consisting of several interpenetrating uid
components is also of great interest in a wide range of
physical ows, as well as in industrial applications. For
this purpose, in the present study, Euler equations, for
the mixture and conservation of the species, are solved
using Roe's method. Some typical ows are considered
in this study, which give rise to both theoretically and
computationally challenging problems.

In the present work, the inuences of using
di�erent sets of binary mixtures of gas are studied in
the context of a converging-diverging supersonic nozzle
problem. This paper focuses on proper modeling and
the appropriate numerical method for interpenetrating
a mixture of perfect gases.

MULTICOMPONENT FLOW EQUATIONS

For simplicity of exposition, the dynamics of a mixture
of two gases in two space dimensions will be considered.
An extension to more components or more dimensions
can be directly carried out. Let � denote the density
of the mixture and c the mass fraction of the �rst
component. Therefore, 1�c is the mass fraction of
the second component. Both components of gases
are assumed to be in thermal equilibrium and are
calorically perfect gases. cv1, cv2, cp1, cp2, 1 and
2 are the speci�c heat at constant volume, speci�c



218 R. Kamali, M.M. Alishahi and H. Emdad

heat at constant pressure and ratio of speci�c heat of
gas components, respectively. By standard thermody-
namic arguments [10], the ratio of the speci�c heat of
a mixture of gases is:

(c) =
cp

cv
=

cp1c+ cp2(1� c)

cv1c+ cv2(1� c)
: (1)

The equation of state expresses the pressure, p, in terms
of the density, �, the speci�c internal energy, e, and
mass fraction, c, i.e.:

p(�; e; c) = ((c)� 1)�e; (2)

where:

c =
�1

�
: (3)

In ows with negligible viscous e�ects, the uid
dynamics of this mixture are described by the Eu-
ler equations with an additional equation expressing
conservation of mass for the �rst component, which,
in conjunction with the conservation of mass for the
mixture, also implies conservation of mass for the
second component.

In a generalized curvilinear two-dimensional coor-
dinate system, the governing equations for the mixture
are as follows:
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where:
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8>>>><
>>>>:
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�uv
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9>>>>=
>>>>;
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where u and v are cartesian velocity and vector com-
ponents of the mixture, respectively and E is the total
energy per unit volume. Also,

F =
1

J
(G�x + F�y); (7)

G =
1

J
(G�x + F�y); (8)

where:

J =
@(�; �)

@(x; y)
= �x�y � �y�x: (9)

Using the above formulation, a computer code, based
on the explicit ux di�erencing of Roe's scheme, is
developed.

RESULTS

First Shock Tube Problem

To validate the computer code, the standard shock tube
problem for a binary perfect gas mixture is numerically
solved. The shock tube problem is de�ned as follows:

pl = 1; l = 1:4; cvl = 1; �l = 1; ul = 0; (10)

pr=0:1; r=1:2; cvr =1; �r=0:125; ur=0; (11)

where subscripts l and r denote left and right, respec-
tively.

Comparison of the obtained results with those of
Marquina and Mulet [10] in Figures 1 to 3, show good
agreement. Some di�erences in the gradient of Mach
number near the contact discontinuity can be observed
in Figure 3. This is mainly due to the �rst order scheme

Figure 1. Density distribution.

Figure 2. Pressure distribution.
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Figure 3. Mach number distribution.

and two-dimensional e�ects of the present method in
contrast to the �fth order scheme and one-dimensional
model of Marquina and Mulet [10].

The small amount of overheating in the vicinity
of the contact surface in Figures 1 and 3, is mainly
due to gas mixture e�ects, which is not present in the
conventional single uid computation.

The prepared algorithm and the computer code
are capable of modeling mixture e�ects in di�erent uid
ows. To present some of these inuences, several ow
�eld examples have been computed.

Second Shock Tube Problem

A second shock tube problem, for a binary perfect gas
mixture of He-Xe with the following properties, has
been considered.

pl = 1; l = 1:66; cvl = 1:0; �l = 1; ul = 0; (12)

pr = 0:1; r = 1:66; cvr = 0:03; �r = 0:125;

ur = 0: (13)

Although the speci�c heat ratios for two gases of this
mixture are the same, the speci�c heat at constant
volumes is too di�erent. Therefore, the results for this
case should be somehow di�erent from those of the �rst
example, shown in Figures 1 to 3.

Comparison of the results of the �rst and second
shock tube problems is shown in Figures 4 to 6. As can
be seen from these �gures, overheating in the vicinity
of the contact surface has vanished for the He-Xe gas
mixture. This is due to the same  in both components
of the mixture. Additionally, Figure 6 shows a small
di�erence in pressure distribution for both cases.

For the next example, wall-cooling of a two-
dimensional supersonic converging-diverging nozzle is

Figure 4. Density distribution for He-Xe and the �rst
example.

Figure 5. Mach number distribution for He-Xe and the
�rst example.

Figure 6. Pressure distribution for He-Xe and the �rst
example.
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considered. The problem properties are Nozzle area
ratio:

Ae

At

= 1:38; pr = 105 pa; Tr = 300 k;

and, at the inlet;

p0

pr
= 2:4;

T0

Tr
= 1:1;

where Ae and At denote exit and throat areas, respec-
tively, subscript r denotes reference and subscript 0
represents stagnation conditions.

Lighter gas enters from the main entrance at
the left and the heavier gas, as the coolant, is blown
from lower and upper walls, starting from x = 0:87
afterwards with Cartesian velocity components equal
to (75,10) m/s (Figures 7 and 8).

To show the e�ect of the various properties of
di�erent gases, two binary sets of gases (N2-O2 and
He-Xe) are selected as the media.

Figure 7 shows the concentration (
�N2

�N2+�O2
) distri-

bution for the mixture of N2-O2 and, similarly, Figure 8
shows the concentration ( �He

�He+�Xe
) distribution for the

mixture of He-Xe. Comparing these two �gures, it
is clear that the second type of mixture He-Xe has
a larger zone of mixing than that of the �rst kind
of mixture N2-O2. This is due to the e�ect of the
large di�erence in properties (m;Cp; R; � � � ) of He and
Xe. Note that mass di�usion is not allowed and this
mixing is only due to convective terms and di�erent
gas properties. Additionally, from Figures 9 and 10, it
can be concluded that Mach numbers in the supersonic
zone of He-Xe are smaller than those of N2-O2. The
case of a mixture of too di�erent gases is more e�ective
in reducing Mach number or eliminating the shock
wave. If the aim is just wall-cooling, the case of N2-O2

Figure 7. Concentration contours for N2-O2.

Figure 8. Concentration contours for He-Xe.

Figure 9. Mach number contours for N2-O2.

is more e�ective than that of He-Xe, which is due to the
almost similar properties of N2-O2. By using di�erent
gases, a larger mixing zone can be created, which causes
a large disturbance in the ow �eld. These e�ects
are also observed in Mach number contours seen in
Figures 9 and 10.

As the next example, the problem of thrust
vectoring is presented as follows. The nozzle geometry
and binary sets of uid properties chosen here are the
same as those in the previous example. This time,
the second gas is blown from the upper wall starting
after the throat and extends afterwards (Figures 11
and 12). Concentration contours for the mentioned
problems are shown in Figures 11 and 12. A larger
mixing region can be observed for the second case.
It might be expected that a larger normal force can
be extracted from this supersonic nozzle, using binary
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Figure 10. Mach number contours for He-Xe.

Figure 11. Concentration contours for N2-O2 gas ow.

Figure 12. Concentration contours for He-Xe gas ow.

Figure 13. Streamlines for thrust vectoring for N2-O2

gas ow.

Figure 14. Streamlines for thrust vectoring for He-Xe gas
ow.

uids with too di�erent properties. This is actually the
case. Larger deviations in streamline directions for the
He-Xe mixture provides more thrust vector capability
than that of N2-O2 mixture (Figures 13 and 14).

The change in direction of the thrust vector
was computed for both of these two mixtures, which
were held under the same conditions. The results
showed that the deviation of thrust vector in the N2-
O2 mixture is about 27� and about 55� for the He-Xe
mixture. In all of the above cases, the rate of blowing
was similar.

CONCLUSION

A computer code has been developed for numerical
computation of compressible two-dimensional Euler
equations in a generalized curvilinear coordinate to
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solve binary perfect gas mixture ows. The prepared
algorithm and computer code are capable of modeling
mixture e�ects in di�erent uid ows. It was shown
that using gases with large di�erences in their proper-
ties can be more useful in thrust vectoring applications
than for nozzle cooling problems, while, for the latter
case, it produces more mixing and, hence, more losses.
It can also be concluded that, regarding all limitations,
the choice of binary uid in di�erent applications plays
an important role in the overall performance of the
device.
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