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Numerical Solution of Compressible Euler

Equations for Gas Mixture Applications

R. Kamali', M.M. Alishahi* and H. Emdad'

A computer code, based on Euler Equations in generalized curvilinear coordinates, has been
developed to resolve binary perfect gas mixture flows. The capability of modeling various mixture
effects is built in the algorithm and the computer code. The Roe's numerical scheme is used to
discretize the convective terms of the governing fluid flow equations, while a simple upwinding
method is applied for the equation of continuity of species. Some applications of binary gas
mixture flows, including nozzle cooling and thrust vectoring, are investigated and the role of
mixing phenomenon in these flows is classified. Additionally, the influences of using different
gases on flow fields are evaluated, especially in two-dimensional thrust-vectoring problems.

INTRODUCTION

Recent years have witnessed a growing interest in
developing suitable numerical methods for computing
the mixture of fluid flows and their efficient implemen-
tation in studying complex flow phenomena (e.g., [1-
10]). In 1996, a quasi conservative algorithm was
developed by Abgrall [6] to prevent pressure oscillations
in multicomponent flows. In 1997, Jenny, Mueller
and Thomann [11] showed that conservative Euler
solvers for gas mixtures produce numerical errors and
oscillations near to contact discontinuities.

For a mixture of perfect gases, a simple correction
of the total energy per unit volume was proposed by
Jenny, Mueller and Thomann [11] to avoid errors and
oscillations found near contact discontinuities. Ivings,
Causon and Toro [12] developed a hybrid high reso-
lution upwind algorithm for multicomponent inviscid
flows. Then, Shyue [8] developed a fluid mixture type
algorithm for compressible multicomponent flow with
the Van der Waals equation of state.

Also, Abgrall and Karni [9] proposed a simple
algorithm for multimaterial flows consisting of pure
fluids separated by material interfaces to remove the
oscillations generated at material interfaces. Marquina
and Mulet [10] developed a conservative extension of
the Euler equations for gas dynamics in Cartesian
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coordinates to reduce the oscillations near to gas
interfaces.

Most recent works have focused on the problems
consisting of pure fluids separated by material inter-
faces (e.g., [1,2,9,13-16]). Understanding the dynamics
of fluids consisting of several interpenetrating fluid
components is also of great interest in a wide range of
physical flows, as well as in industrial applications. For
this purpose, in the present study, Euler equations, for
the mixture and conservation of the species, are solved
using Roe’s method. Some typical flows are considered
in this study, which give rise to both theoretically and
computationally challenging problems.

In the present work, the influences of using
different sets of binary mixtures of gas are studied in
the context of a converging-diverging supersonic nozzle
problem. This paper focuses on proper modeling and
the appropriate numerical method for interpenetrating
a mixture of perfect gases.

MULTICOMPONENT FLOW EQUATIONS

For simplicity of exposition, the dynamics of a mixture
of two gases in two space dimensions will be considered.
An extension to more components or more dimensions
can be directly carried out. Let p denote the density
of the mixture and ¢ the mass fraction of the first
component. Therefore, 1—c is the mass fraction of
the second component. Both components of gases
are assumed to be in thermal equilibrium and are
calorically perfect gases. cy1, Cu2, Cp1, Cp2, 71 and
~vo are the specific heat at constant volume, specific
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heat at constant pressure and ratio of specific heat of
gas components, respectively. By standard thermody-
namic arguments [10], the ratio of the specific heat of
a mixture of gases is:

_Cp _ Cpct cpa(l —c) (1)
cy et cp(l—c)

The equation of state expresses the pressure, p, in terms
of the density, p, the specific internal energy, e, and
mass fraction, ¢, i.e.:

p(p,e,c) = (v(c) — 1)pe, (2)
where:

_P

=" (3)

In flows with negligible viscous effects, the fluid
dynamics of this mixture are described by the Eu-
ler equations with an additional equation expressing
conservation of mass for the first component, which,
in conjunction with the conservation of mass for the
mixture, also implies conservation of mass for the
second component.

In a generalized curvilinear two-dimensional coor-
dinate system, the governing equations for the mixture
are as follows:
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where v and v are cartesian velocity and vector com-
ponents of the mixture, respectively and E is the total
energy per unit volume. Also,

F= (G, + Fg,), ™)
G = L(Gne +Fny), (8)
where:
_d&mn) _ 3
J = 3(x,y) = gzny fy"?z' (9)

Using the above formulation, a computer code, based
on the explicit flux differencing of Roe’s scheme, is
developed.

R. Kamali, M.M. Alishahi and H. Emdad

RESULTS
First Shock Tube Problem

To validate the computer code, the standard shock tube
problem for a binary perfect gas mixture is numerically
solved. The shock tube problem is defined as follows:

Y= 14, pL = ]-7 up = 07 (10)

b= ]-7 Coyp = ]-7

p,=0.1, v.=12 ¢, =1, p.=0.125, u,=0, (11)

where subscripts [ and r denote left and right, respec-
tively.

Comparison of the obtained results with those of
Marquina and Mulet [10] in Figures 1 to 3, show good
agreement. Some differences in the gradient of Mach
number near the contact discontinuity can be observed
in Figure 3. This is mainly due to the first order scheme
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Figure 3. Mach number distribution.

and two-dimensional effects of the present method in
contrast to the fifth order scheme and one-dimensional
model of Marquina and Mulet [10].

The small amount of overheating in the vicinity
of the contact surface in Figures 1 and 3, is mainly
due to gas mixture effects, which is not present in the
conventional single fluid computation.

The prepared algorithm and the computer code
are capable of modeling mixture effects in different fluid
flows. To present some of these influences, several flow
field examples have been computed.

Second Shock Tube Problem

A second shock tube problem, for a binary perfect gas
mixture of He-Xe with the following properties, has
been considered.

b = ]-7 M= 1667 Cyp = 107 pr = ]-7 up = 07 (12)

pr=01, ~ =166, c, =003, p,=0.125,

u, = 0. (13)

Although the specific heat ratios for two gases of this
mixture are the same, the specific heat at constant
volumes is too different. Therefore, the results for this
case should be somehow different from those of the first
example, shown in Figures 1 to 3.

Comparison of the results of the first and second
shock tube problems is shown in Figures 4 to 6. As can
be seen from these figures, overheating in the vicinity
of the contact surface has vanished for the He-Xe gas
mixture. This is due to the same = in both components
of the mixture. Additionally, Figure 6 shows a small
difference in pressure distribution for both cases.

For the next example, wall-cooling of a two-
dimensional supersonic converging-diverging nozzle is
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Figure 4. Density distribution for He-Xe and the first
example.
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example.
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considered. The problem properties are Nozzle area
ratio:

A,
—£ =1.38, pr = 10° pa, T, = 300 k,
Ay
and, at the inlet;
gy Dy
Dr T,

where A, and A; denote exit and throat areas, respec-
tively, subscript r denotes reference and subscript 0
represents stagnation conditions.

Lighter gas enters from the main entrance at
the left and the heavier gas, as the coolant, is blown
from lower and upper walls, starting from z = 0.87
afterwards with Cartesian velocity components equal
to (75,10) m/s (Figures 7 and 8).

To show the effect of the various properties of
different gases, two binary sets of gases (N2-O2 and
He-Xe) are selected as the media.

Figure 7 shows the concentration (—22—) distri-

PNy +PO,

bution for the mixture of N3-O and, similarly, Figure 8
shows the concentration (-#=—) distribution for the
mixture of He-Xe. Comparing these two figures, it
is clear that the second type of mixture He-Xe has
a larger zone of mixing than that of the first kind
of mixture N5-Oo. This is due to the effect of the
large difference in properties (m,Cp, R, ---) of He and
Xe. Note that mass diffusion is not allowed and this
mixing is only due to convective terms and different
gas properties. Additionally, from Figures 9 and 10, it
can be concluded that Mach numbers in the supersonic
zone of He-Xe are smaller than those of N»-Oy. The
case of a mixture of too different gases is more effective
in reducing Mach number or eliminating the shock
wave. If the aim is just wall-cooling, the case of N3-Oo
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Figure 7. Concentration contours for N3-Os.
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Figure 8. Concentration contours for He-Xe.
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Figure 9. Mach number contours for N»-Os.

is more effective than that of He-Xe, which is due to the
almost similar properties of N5-O,. By using different
gases, a larger mixing zone can be created, which causes
a large disturbance in the flow field. These effects
are also observed in Mach number contours seen in
Figures 9 and 10.

As the next example, the problem of thrust
vectoring is presented as follows. The nozzle geometry
and binary sets of fluid properties chosen here are the
same as those in the previous example. This time,
the second gas is blown from the upper wall starting
after the throat and extends afterwards (Figures 11
and 12). Concentration contours for the mentioned
problems are shown in Figures 11 and 12. A larger
mixing region can be observed for the second case.
It might be expected that a larger normal force can
be extracted from this supersonic nozzle, using binary
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Figure 13. Streamlines for thrust vectoring for N2-O»
gas flow.
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Figure 14. Streamlines for thrust vectoring for He-Xe gas
flow.

fluids with too different properties. This is actually the
case. Larger deviations in streamline directions for the
He-Xe mixture provides more thrust vector capability
than that of N3-Oy mixture (Figures 13 and 14).

The change in direction of the thrust vector
was computed for both of these two mixtures, which
were held under the same conditions. The results
showed that the deviation of thrust vector in the No-
05 mixture is about 27° and about 55° for the He-Xe
mixture. In all of the above cases, the rate of blowing
was similar.

CONCLUSION

A computer code has been developed for numerical
computation of compressible two-dimensional Euler
equations in a generalized curvilinear coordinate to
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solve binary perfect gas mixture flows. The prepared
algorithm and computer code are capable of modeling
mixture effects in different fluid flows. It was shown
that using gases with large differences in their proper-
ties can be more useful in thrust vectoring applications
than for nozzle cooling problems, while, for the latter
case, it produces more mixing and, hence, more losses.
It can also be concluded that, regarding all limitations,
the choice of binary fluid in different applications plays
an important role in the overall performance of the
device.
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