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Truck accidents are an issue of concern due to their severity. Logit modeling and Neural Network

modeling are performed to investigate factors such as vehicle, roadway, environment and driver

characteristics that can potentially contribute to the severity of truck accidents. The objective

of this study is to present models that can predict the severity of truck accidents and to identify

the important factors causing these accidents. Comparison between neural networks and logit

modeling are made using vehicle crash data on two-lane rural highways in Iran. A variety of

variables related to roadways, vehicles, environment and drivers, such as, driver fatigue, head-on

collision and lack of vehicle control, are found to have a signi�cant bearing on the severity of

truck accidents. Also, investigating the marginal e�ects of variables showed the same variables

to be signi�cant. The results of the comparison between the logit and neural network model

indicated that they both show similar patterns regarding the e�ects of di�erent variables causing

truck accidents, with the logit model providing better results.

INTRODUCTION

The impact that tra�c accidents have on society is
signi�cant. The individuals injured or the families of
those killed in tra�c accidents must deal with pain and
su�ering, medical costs, wage loss, higher insurance
premium rates and vehicle repair costs. For society
as a whole, tra�c accidents result in enormous costs
in terms of loss of productivity and property dam-
age. Clearly, e�orts to improve our understanding of
factors that inuence accident severity are warranted.
Although there have been numerous research e�orts to
understand tra�c accident severity, the relationships
between risk factors and accident severity are still not
completely understood. One of the major reasons for
this is that the causes leading to accident severity levels
are always complicated by the presence of multiple
factors, including characteristics of the individual (e.g.,
gender, age and use of restraint systems), the vehicle
(e.g., vehicle type), the environment (e.g., weather
conditions), the roadway (e.g., geometric designs) and
etc. (e.g., collision types). Safety issues relating
to large trucks have been of considerable importance
to highway engineers, policy makers and the general
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public. Large trucks have many unique operational
characteristics such as high gross weight, longer vehicle
length and poor stopping distance, which have an im-
pact on accident severity. Overall, accidents involving
trucks have an increased risk of producing a severe
injury or fatality, due to car/truck size disparity and
other factors. Although there has been an abundance
of previous research studies on truck safety, there
have been comparatively few studies concentrating on
factors contributing to the causes of truck accidents.
The objective of this research is to identify the im-
portant factors contributing to the occurrence of truck
accidents, using logit and neural network modeling.

LITERATURE REVIEW

Previous research on accident severity has been di-
verse, both empirically and methodologically. From an
empirical standpoint, numerous research studies have
focused on the casualty of accidents and attempted to
isolate the risk factors that have contributed to truck
accident severity [1-3]. Also, a number of studies have
attempted to identify driver characteristics (e.g., age
and gender) that may inuence accident severity [4-6].

From a methodological standpoint, a variety of
statistical approaches have been applied to study acci-
dent severity [6-10].

Many of these analysis methods are applied using
aggregate data. The disadvantage of using aggregate
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data is that it can result in a loss of information
on the relationships between accident severity and
contributing factors. Disaggregate data include, not
only the capability of testing a broad range of factors
that inuence accident severity, but also, the capability
of capturing powerful disaggregate information about
how individual factors inuence accident severity. One
commonly used disaggregate model is logistic regres-
sion, as applied by Jones et al. [11] and Lui et
al. [12]. In addition, O'Donnell et al. [13] estimated
an ordered logit model and an ordered probit model
to identify risk factors that increase the probability of
serious injury and death. Shanker et al. [14] applied
a multinomial logit model to analyze single-vehicle
motorcycle accident severity.

Most of the research studies that speci�cally
examine accident characteristics have focused on safety
issues for truck con�gurations [15-18]. Braver et
al. [19] examined the accident involvement rates for
di�erent truck con�gurations (e.g., singles and doubles)
to identify whether one con�guration is signi�cantly
safer than the other. Jovanis et al. [20] statistically
compared the accident involvement rates for motor
vehicle accidents to identify whether large trucks have
higher fatality and/or injury rates than other types
of vehicle. Campbell [21] addressed the issue of a
minimum age for drivers of large trucks by comparing
the fatal accident involvement rates against driver age.
Another study by Khasnabis et al. [22] used a time
series analysis to forecast truck accidents. Saccomanno
et al. [23] used generalized log-linear models and
Miao [24] applied Poisson and negative binomial regres-
sion models to explore the relationships between truck
accident occurrence and highway geometric designs and
other factors (e.g., tra�c characteristics).

Although most of the research dealing with the
analysis of large trucks has focused on the occurrence of
truck accidents, there have been relatively few studies
that have concentrated on the severity of accidents
involving trucks. In one of these, Golob et al. [25]
statistically compared the mean number of injuries
and fatalities by collision type and the number of
involved vehicles for truck-involved freeway accidents.
Alassar [26] used a log-linear modeling approach to ex-
amine the accident severity of truck-involved accidents
and identi�ed the contributing factors (e.g., collision
types and road class) for fatal and injury accidents.
Finally, Chira-Chavala et al. [27] applied logit models
to study the four types of factor, with great e�ect,
on truck accident severity. They found that collisions
with passenger cars, collisions on dry surface roads at
night and collisions on undivided rural roads usually
resulted in higher fatality and injury ratios. Nukoolkit
et al. used a neural network to investigate the e�ect
of di�erent variables on accident severity to identify
dangerous accident patterns [28].

METHODOLOGY

Injury severity in truck-involved crashes relates to a
variety of factors. The nature of single vehicle crashes
indicates that the set of factors a�ecting severity may
be very di�erent from those of the crashes involving
multiple vehicles. The severity of a single-vehicle
accident, for example, a run-o� the road accident, is
related to what the vehicle and the driver experience
outside the roadway. In multiple vehicle collisions,
severity is highly related to the type of collision,
size/weight ratio of impacting vehicles and points of
contact, etc. In this study, multiple vehicle collisions
that involve trucks are studied. Logit models and
Neural Network Modeling are estimated to identify
the set of factors that a�ect the severity of multiple
truck-involved accidents. Additionally, the models are
used to provide a numeric relationship between the
factors and the marginal probability of a fatal or injury
accident, given that the crash has occurred.

ACCIDENT DATA

In this analysis, the 1996-1998 accident data on 10
undivided two-lane rural highways in Iran with a total
length of 836 kilometers was analyzed. The data is
obtained from Accident Report forms that are collected
by the Highway Patrol Police at accident scenes. The
accident records contain a broad range of information.
Although it would be desirable to have information
about the number of highway segments and total
accidents per segment, the original data do not provide
such information. It should be noted that lack of this
information does not a�ect the modeling process since
there is no need to identify the factors contributing to
the severity of truck accidents in such detail. The total
reported number of accidents that occurred on two-lane
rural roads during 1996-1998 was 19353, out of which
were 3524 accidents that involved trucks and 2961
were multiple vehicle accidents (i.e., trucks involved in
accidents with other vehicles). Of the 2961 accidents,
2486 (84%) cases were property damage only accidents.
446 (15%) cases were injury and 29 (1%) cases were
fatality accidents.

Although it is more appropriate to group accident
severity into di�erent categories, such as fatal, injury
type A, injury type B, etc., severity data are grouped
into only two categories of injury/fatality and property
damage only accidents. This is done to insure a su�-
cient number of observations for estimation purposes
since the percentage of fatal accidents is low.

After screening out the records for incomplete
information, 62 cases of accident data were omitted,
resulting in a database of 2899 accident cases for this
analysis. Of this data, 2434 (84%) are property damage
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only and 465 cases (16%) are injury/fatality accident
data.

MODELING

Logit Modeling

Logit structures are one of the common models for the
study of decision-making, based on increasing utility
consideration constraint. In logical models, people
are assumed to behave logically and make the most
desirable selections. The assumption of being logical is
based on certain �xed functions, but, because individ-
uals may not be aware of all the parameters of utility
functions, a random factor is used to show and analyze
desire. It is assumed that individuals, by assessing
and selecting from competing choices, maximize their
utility functions [29]. However, all aspects of the utility
function cannot be observed or measured. In practice,
the utility function, Ui, has two parts, the measurable
part, Vi, and the random error part, Ei, such that [30]:

Ui = Vi +Ei: (1)

The de�nite part of the desirability function depends
on the properties of the choice, economic and social
characteristics of the person deciding and Ei, the error
part, is used for parameters that cannot be observed.

Using the random desirability function, the selec-
tion of one choice among a collection of choices follows
this probability:

pi = pbUi > Uj ; 8j 6= ic; (2)

In the above equation, pi is the probability of choosing
\i". By knowing the error distribution of i, the
probability of choosing i can be de�ned. If part of
i error has an independent distribution and is of the
Gumble type, then, it can be shown that:

pi =
exp(Vi)PA

j exp(Vj)
; (3)

where Pi is the probability of choosing i from the
collection of choices, (A), and Vi is the de�ned part
of the function. Vi is usually shown as:

Vi = �i + �1iX1i + �2iX2i; (4)

where:

Vi utility that can be measured (for choice i),
Xji jth property of choice i,
�i constant part of function (for choice i)
�ji jth property weight of choice i.

The results of the logit model evaluation contain the
following indicators:

L(0) = Log likelihood function when all the coe�-
cients are zero, meaning that each alternative has an
equal likelihood of being chosen,

L(c) = Log likelihood function for only the constant
terms in the utility function, which is equal to the
market share of each alternative studied,

L(�) = Log likelihood function at convergence (esti-
mated parameters),

�2c = 1�L(�)
L(c) = Explanatory power of the model when

compared with the market share of each alternative.
It is a measure of goodness of �t,

�2 = 1 � L(�)
L(o) = Explanatory power of the model

compared with the case in which no information is
available, meaning each alternative is equally likely
to be chosen.

It is always assumed that in logit models the
choices are independent of each other, so that the
property of selecting one choice is independent of the
existence of other choices. Logit models are suitable
for situations when the objective is to predict the
occurrence or non-occurrence of a variable among
di�erent variables. It is used to estimate probabilities
for binary data or discrete ordinal data. In this
study, two severity classes of property damage only and
fatal/injury accidents are used. A logistic regression
was applied using SPSS (Statistical Package for Social
Scientists) [31]. The logistic regression can predict the
presence or absence of a characteristic or outcome (i.e.,
fatal/injury or property damage only), based on the
values of a set of predicting variables.

The formulation of the logit model is as follows:

PFIA =
eVFIA

eVFIA + eVPDA
; (5)

PPDA =
eVPDA

eVFIA + eVPDA
; (6)

PFIA =
1

1 + eVPDA�VFIA
; (7)

PPDA = 1� PFIA; (8)

where:

PFIA the probability that an injury or fatal
accident will occur,

PPDA the probability that a property damage
only accident will occur.

With this de�nition, the variables with a negative sign
show an increase in accident severity and variables with
a positive sign show a decrease in accident severity in
an injury/fatality function.

To identify the independent variables, �rst, the
correlation coe�cients between them are examined and
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some of the variables with high correlations are omitted
in order to minimize the problem of multicolinearity.
Then, based on the signi�cance of each variable and
values of L(�) for the model, the �nal variables are
selected. Of the 75 di�erent variables which were
originally examined, 25 are �nally selected, which are
signi�cant, with 95% con�dence, and which are shown
in Table 1. The correct percentages of the model for
predicted versus observed values are shown in Table 2.
In this table, zero value indicates fatal/injury accidents
and the value of 1 indicates property damage only
accidents. As shown for the case of injury/fatality
accidents, the model correctly predicated 103 cases
(22.2%) of all injury/fatality accidents. For the case
of property damage only, the model prediction was not
correct in only 61 cases.

The results from estimated model coe�cients, as
presented in Table 1, in the \roadway characteristic"
category, curve radius and longitudinal grade indica-
tors with values of -0.679 and -0.698, respectively, show
that, with an increase in their values, the severity of
truck accidents increases. This may be as a result
of restricted sight distance at highway curves and
the di�culty of maneuvering, excessive speeds on the
downgrade and lack of ability to brake. However, the
positive value of the lane width indicator (i.e., 0.453)
shows that in two-lane highways with lane width less
than 7.4 meters (both directions), truck accidents are
less severe, due to lateral restriction, which causes them
to travel at lower speed.

In the \temporal characteristic" category, the
negative value of the night time indicator (i.e., -0.479)
shows that truck accidents are more severe at night.

In the \environmental characteristic" category,
negative values of the dry road surface indicator (i.e.,-
0.480) and the wet road surface indicator (i.e., -0.801)
show that although both types of pavement condition
have an e�ect on the severity of truck accidents, the
severity increases for wet surfaces. This may be a result
of the hydroplaning phenomenon, causing the truck to
skid.

In the \driver characteristic" category, all indica-
tors have negative values, ranging from -0.624 for lack
of truck driver attention to -2.282 for driver fatigue,
which was the major cause of severe truck accidents.

The defect in the truck braking system with a
negative value (i.e., -0.769) and, also, eroded tires with
a negative value of -0.500 in the \vehicle characteristic"
category show that they both have an e�ect on the
severity of truck accidents.

In the \accident characteristic" category, the
indicator values ranged from -1.9818 for lack of ve-
hicle control to +1.548 for side-end collision. In this
category, lack of vehicle control, head-on collision and
exceeding the speed limit caused severe truck accidents,
while side-end accidents are not so severe.

Neural Network Modeling

Arti�cial neural network applications have recently
received considerable attention. The methodology of
modeling or estimation is somewhat comparable to
statistical modeling [32]. A typical neural network is
composed of input units, X1; X2; : : : , corresponding to
independent variables (in our case, accident character-
istics), a hidden layer known as the �rst layer and
an output layer (second layer), whose output units,
Y1; Y2; : : : , correspond to dependent variables (severity
of accidents).

Hidden units of H1; H2; : : : correspond to inter-
mediate variables. These interact by means of weight
matrices, W (1) and W (2), with adjustable weights.
The values of hidden units are:

Hj = f
�X

k
W

(1)
jk Xk

�
: (9)

One multiplies the �rst weight matrix by the input
vector X = (X1; X2; : : : ) and, then, applies an acti-
vation function, f , to each component of the result.
Likewise, the values of the output units are obtained
by applying the second weight matrix to the vector
H = (H1; H2; : : : ) of hidden unit values and, then,
applying activation function f to each component of
the result. In this way, one obtains an output vector,
Y = (Y1; Y2; : : : ):

Yi = f
�X

j
W

(2)
ij Hj

�
: (10)

The activation function, f , is typically of sigmoid form
and may be a logistic function, hyperbolic tangent, etc.
Usually, the activation function is assumed to be the
same for all components but it is not necessary. Values
of W (1) and W (2) are assumed at the initial iteration.
An interactive learning process improves the accuracy
of the estimated output. In this process, the outputs
for various input vectors are compared with targets and
an average error term, E, is computed:

E =

PN

n=1

�
Y (n) � T (n)

�2
N

; (11)

where:

N number of observations,
Y (n) estimated value for n = 1; 2; : : : ; N ,
T (n) observed value for n = 1; 2; : : : ; N .

After one pass through all observations (the training
set), a gradient descent method may be used to calcu-
late the improved weight values, W (1) and W (2), that
makeE smaller. After re-evaluation of the weights with
the gradient descent method, successive passes can be
made and the weights further adjusted until the error is
reduced to a satisfactory level. The computation, thus,
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Table 1. Estimated model coe�cients.

Characteristics Estimated Coe�cient Sig.

Roadway

Curve Indicator (CI)
(1 if accident occurred on horizontal curve, 0 otherwise) -0.679 0.000
Grade Indicator (GI)
(1 if accident occurred on grade, 0 otherwise) -0.698 0.028
Lane Width Indicator (LWI)
(1 if lane width less than 7.4 (m), 0 otherwise) 0.453 0.001

Temporal

Night Time Indicator (NTI)
(1 if accident occurred at night time, 0 otherwise) -0.479 0.000

Environmental

Dry Road Surface Indicator (DRSI)
(1 if accident occurred on a dry roadway surface, 0 otherwise) -0.480 0.001
Wet Road Surface Indicator (WRSI)
(1 if accident occurred on a wet roadway surface, 0 otherwise) -0.801 0.000
Snowy Weather Indicator (SWI)
(1 if accident occurred in snowy weather, 0 otherwise) 1.116 0.017

Driver

Driver Education Indicator (DEI)
(1 if driver was not educated, 0 otherwise) -0.632 0.000
Driver Fatigue Indicator (DFI)
(1 if driver was sleepy and tired, 0 otherwise) -2.282 0.000
Driver attendance to driving laws indicator (DAI)
(1 if driver did not attend, 0 otherwise) -0.624 0.013
Driver Controlling Indicator (DCI)
(1 if driver was in hurry, 0 otherwise) -0.874 0.001
Driver Fault Indicator (DFAI)
(1 if driver did fault on purpose, 0 otherwise) -1.022 0.009

Vehicle

Defect in brake system indicator (DBI)
(1 if vehicle had defect, 0 otherwise) -0.769 0.059
Eroded Tire Indicator ETI
(1 if tires were eroded, 0 otherwise) -0.500 0.002

Accident

Head On Indicator (HOI)
(1 if the collision type was head-on, 0 otherwise) -1.147 0.000
Side End Indicator (SEI)
(1 if the collision type was side end, 0 otherwise) 1.548 0.011
Side to Side Indicator (SSI)
(1 if the collision type was side to side, 0 otherwise) 0.809 0.000
Following too Closely Indicator (FCI)
(1 if following too closely was the cause, 0 otherwise) 0.534 0.022
Right of Way Indicator (RWI)
(1 if not paying attention, 0 otherwise) -0.554 0.001
Vehicle Control Indicator (VCI)
(1 if not able to control the vehicle was the cause, 0 otherwise) -1.9818 0.000
Exceeding Speed Limit Indicator (ESLI)
(1 if exceeding speed limit was the cause, 0 otherwise) -0.9485 0.028
Encroaching left lane while passing (LLEI1)
(1 if encroachment was the cause, 0 otherwise) -0.9472 0.000
Encroaching left lane (LLEI2)
(1 if encroachment was the cause, 0 otherwise) -0.7599 0.000
Wrong turning maneuver (TMI)
(1 if wrong turning maneuver was the cause, 0 otherwise) -0.8540 0.045
Driving with rear gear (RGI)
(1 if rear gear driving was the cause, 0 otherwise) 1.1725 0.007
Constant 3.668 0.000

Variable Value Variable Value

N = No. of observation 2899 L(c) -1276.52
L(O) -2009.433 �2 0.48157
L(�) -1041.744 �2

c
0.18392
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Table 2. Percentage correctly predicted by the �nal model.

Observations Predicted

0.00 1.00 Percentage of correct prediction

0.00 (injury/fatal) 103 362 22.20

1.00 (property damage only) 61 2373 97.5

Total percentage of correct prediction by the model 85.4

Table 3. Percentage of correct prediction in the training set of neural network model.

Observations Predicted

0.25 0.75 Percentage correct

0.75 (injury/fatal) 352 90 20.03

0.25 (property damage only) 2286 71 96.2

Total percentage of correct prediction by the model 84.8

Table 4. Percentage of correct prediction in the testing (unseen) set.

Observations Predicted

0.25 0.75 Percentage correct

0.75 18 5 21.7

0.25 73 4 94.8

Total percentage of correct prediction by the model 78.68

has two modes, the mapping mode, in which outputs
are computed and the learning mode, in which weights
are adjusted to minimize E. Although the method
may not necessarily converge to a global minimum,
it generally gets quite close to unity if an adequate
number of hidden units are employed.

As mentioned in logit modeling, two severity
classes are used. For comparison purposes, the same
variables are used in neural network modeling. The
objective is to present an e�ective and e�cient neural
network prediction model, which automatically pre-
dicts either the injury/fatality or property damage only
outcome, when a crash takes place. The accuracy
of the prediction model plays an important role in
detecting dangerous accident patterns. There are a
total of 2799 training records and 100 testing records
(unseen set) for neural network evaluation. The
unseen set are the data which are not trained by the
model. For representation to the network (training
set), 0.75 is introduced for fatal/injury accidents and
0.25 is introduced for property damage only accidents.
The obtained numeric, Y , (Accident Severity Index)
will be in the range of [0,1], where a value greater
than 0.5 implies that the outcome of a crash will be
likely more toward injury/fatality than the property
damage only accident. In the proposed approach, the
network was trained with the popular gradient-base
back-propagation algorithm. The network consists of

25 input nodes, 14 hidden nodes, and one output node.
The input and output nodes have a linear activation
function and hidden nodes have a sigmoid function.
The learning process ends when pre-de�ned prediction
accuracy is met. Then, the performance of the trained
network is measured by applying unseen testing data to
the network. The results are shown in Tables 3 and 4.

As shown in Table 3, for the training set, the
model only predicts 90 cases of injury/fatality correctly.
For the case of property damage, it predicts 2286 cases
out of the total of 2357 cases correctly. In Table 4, for
the unseen set (100 cases), the model predicts 5 out of
23 cases of injury/fatality accidents and 73 out of 77
cases of property damage only correctly.

Marginal E�ect

The coe�cients of the logit model do not provide the
marginal e�ects of the independent variables. That is,
one cannot determine the e�ect of an injury/fatality of
a unit change in independent variables from the model
coe�cients alone. In order to compute the marginal
change in the probability of an injury/fatality accident,
a value of zero or 1 is assigned to each variable, while
the value of other variables is kept at their mean
values [33]. The same procedure is used to compute
the marginal e�ect of each independent variable in the
neural network modeling. Table 5 shows the marginal
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Table 5. Marginal e�ect of variable in logit and neural
network modeling.

Variable Neural Network Logit Function

CI 0.02779 0.08264

GI 0.01103 0.08861

LWI -0.01491 -0.04352

NTI 0.02535 0.05154

DRSI 0.01818 0.04713

WRSI 0.24398 0.10082

SWI -0.02165 -0.07361

DEI 0.02198 0.07516

DFI 0.04950 0.43355

DAI 0.00425 0.06109

DCI 0.01047 0.09774

DFAI 0.02313 0.14457

DBI 0.01590 0.10044

ETI 0.02328 0.04435

HOI 0.06186 0.16086

SEI -0.02696 -0.08997

SSI -0.02178 -0.06806

FCI -0.01402 -0.04542

RWI 0.01304 0.06365

VCI 0.06108 0.35903

ESLI 0.01694 0.13208

LLEI1 0.04356 0.12240

LLEI2 0.01366 0.09354

TMI 0.04031 0.11483

RGI -0.02367 -0.07973

e�ects of each variable in both logit and neural network
models. Comparison between marginal e�ects shows
that each variable has a similar sign (i.e., \+" or \-\)
in the two models, meaning that the models have the
same predicting patterns.

Driver fatigue has the largest marginal e�ect on
the severity of truck accidents, with a value of 0.443
for the logit model and 0.049 for the network model.
Lack of vehicle control, with a marginal e�ect of 0.359
for logit and 0.061 for the neural network, and head
on accidents, with a value of 0.160 for logit and 0.061
for the neural network, were observed. The lowest
marginal e�ect was observed for driving while backing
up, with the values of -0.079 for the logit model and
-0.023 for the neural network.

CONCLUSION

The models show that driver fatigue has the highest
e�ect on the severity of truck accidents. Also, lack
of vehicle control is one of the major causes of truck

accidents. Of the di�erent types of accident, head on
accidents had the highest severity. Not obeying tra�c
laws was the fourth major cause of accident severity.
Exceeding the speed limit and reencroaching onto the
left lane while passing were the following causes of
severity in truck accidents.

It also indicates that longitudinal highway grades,
driving at night and wet road surfaces increase the
possibility of severe accidents. Also, drivers with a low
education level, defects in the brake system, eroded
tires, not respecting other drivers' right of way and the
use of wrong turning maneuvers are important factors
in accident severity. Variables such as snowy weather,
side end accidents, narrow lane width and following too
closely do not prove to be e�ective on accident severity.

The main policy implications are that there is a
potential for constructing rest areas that reduces the
severity of truck accidents, which may also have a
positive e�ect on the lack of vehicle control resulting
from driver fatigue. To reduce the number and severity
of head on accidents, it is recommended to separate
opposing tra�c directions through the use of a median.
A greater presence of tra�c law enforcement o�cials
on the highways and strict law enforcement can also be
e�ective in reducing the severity of truck accidents.

The marginal e�ects of di�erent variables on the
logit and neural network model indicate that both
models show the same pattern of change in value and
sign for each variable.

The models validation, based on percentages of
correct results, as shown in Tables 2 and 4, indicates
that logit modeling provides a higher percentage of
correct prediction.

In neural network modeling, the individual rela-
tions between the input and output variables are not
developed by engineering judgments, so that the model
tends to be a black box on the input/output table
without analytical basis. As mentioned in computing
the marginal e�ects, the e�ect of each variable (sign
and value) on accident severity is computed, which is
a new application of neural network modeling.
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