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Entrapped Air in Long Water

Tunnels During Transition from a

Pressurized to Free-Surface Flow Regime

A.R. Kabiri Samani�, S.M. Borghei1 and M.H. Saidi2

Air-water two-phase ow usually occurs during a sudden rise in water level at a tunnel or during
the falling of the water level at an upstream reservoir while entering the conduit. When this
happens, di�erent ow patterns are generated, due to the hydraulics of ow and uid properties.
An analytical/numerical model, based on the assumption of a rigid incompressible water column
and a compressible air bubble, is derived, to simulate pressure uctuation, void fraction, air/water
ow rate and water velocity in a closed conduit, including water depth at the upper reservoir, due
to air bubbles becoming trapped in the water, for the highest possible number of ow patterns.
It is a comprehensive model, which can generate di�erent hydraulic situations in closed conduits
such as tunnels and culverts, based on a hydraulic approach. The boundary conditions are a
system of algebraic or/and simple di�erential equations. The steady solution of the governing
di�erential equations is, generally, performed as the initial data. The frequency of pressure
uctuation and air/water ow rate predicted by the model is in close agreement with the results
of the experiments and the numerical model referred to in the literature. Hence, the present
model, which is simply derived due to one-dimensional assumptions, shows itself to be a good
tool for predicting the characteristics of a two-phase ow.

INTRODUCTION

The study of two-phase uid ow behavior in hydraulic
structures, such as; pressurized ow tunnels, culverts,
sewer pipes, bends and other similar conduits, is of
great importance. A two-phase mixture owing in a
pipe can exhibit several interfacial geometries, such as:
bubbles, slugs and/or �lms, depending on the uid
and hydrodynamic properties of the ow. The main
variables, which can produce a variety of ow patterns,
are the relative discharge rate of uids and the pipe
slope. The highest number of ow patterns that are
attainable with air and water, are strati�ed, wavy and
slug. The most basic pattern among them is strati�ed
ow. This occurs when water and air ow separately,

*. Corresponding Author, Department of Civil Engineering,
Sharif University of Technology, Tehran, I.R. Iran.

1. Department of Civil Engineering, Sharif University of

Technology, Tehran, I.R. Iran.

2. Department of Mechanical Engineering, Sharif Univer-

sity of Technology, Tehran, I.R. Iran.

i.e., water is at the bottom of the pipe and air is over
the water with minimum interaction. Then, wavy ow
evolves when air owrate is increased from strati�ed
ow and uniform waves move along the pipe. If air
ow is further increased, the wavy water begins to hit
the top of the pipe and the result is slug ow.

Ample studies have been conducted to explain
and simulate two-phase air-water ow and the e�ects
of air on uctuation characteristics of ow in a pipeline
system. As a result, much e�ort has been devoted
to improving analytical and computational methods
for the prediction of local hydraulic conditions in
gas/liquid two-phase ows.

The classic work of Martinelli and Nelson [1],
assumes the ow regime to be always turbulent and,
therefore, have developed a model for pressure drop
due to friction. A more useful method in the calcu-
lation of ow in a closed conduit is given by Cunge
and Wenger [2], based on existing similarities with
the Saint-Venant equations between open channel and
closed conduit ow. A �ctitious narrow slot is added
at the top of the pipe so that both free surface and
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pressurized ow can be analyzed by the Saint-Venant
equations. The e�ect of air on uctuations of ow
characteristics in pipeline systems has been of interest
to many researchers, such as Holly [3], Albertson and
Andrews [4], Martin [5], McCorquodale and Hamam [6]
and Li and McCorquodale [7].

Yevejevich [8] pointed out the possibility of
trapped air pockets in and the sudden release of an air-
water mixture at upstream manholes of storm sewers,
during ow transitions. Yen [9] identi�ed the mecha-
nism of transition from free surface to pressurized ow
as one type of hydraulic instability in pipelines.

Hamam and McCorquodal [10] proposed a rigid
water column approach to model mixed ow pressure
transients. The model assumes the water column to
be incompressible and the ow uniform but unsteady.
An air bubble is trapped inside the water after the
occurrence of interfacial instability between air-water
ow. Lin and Hanratty [11] studied the criterion for
the initiation of slugs with a linear stability theory.
The general equations for a two-phase ow have been
derived assuming di�erent models, such as homoge-
neous and separate air-water mixtures. Lockhart
and Martinelli [12] have found a correlation between
e�ective parameters for each phase. Their approach
is based on the assumption of conventional friction
pressure drop equations, which can be applied to each
phase of the ow path.

Zhou et al. [13] have investigated ow transients
in a rapid �lling horizontal pipe containing trapped
air in sewer pipes and Woods et al. [14] studied the
mechanism of slug formation in downwardly inclined
pipes. Soleimani and Hanratty [15] studied the critical
liquid ows for the transition from the pseudo-slug and
strati�ed patterns to slug ow. They considered the
stability of a strati�ed ow with a VLW (Viscous Long
Wavelength) theory and the stability of a slug, to have
an explanation for the observed critical liquid height
at the transition to slugging for air and water owing
in a horizontal pipe. Zhang et al. [16] have developed
a uni�ed mechanistic model for slug liquid holdup and
the transition between slug and dispersed bubble ows.

Issa and Kempf [17] simulated the slug ow in
horizontal and nearly horizontal pipes with a two-uid
model. They concluded that when the two-uid model
is invoked, within the con�nes of the conditions under
which it is mathematically well-posed, it is capable of
capturing the growth of instabilities in a strati�ed ow
leading to the generation of slugs.

It has been demonstrated by many investigators,
both by experimental and numerical methods, that
trapped and released air during rapid �lling or sur-
charging can cause a tremendous pressure surge in the
system and, eventually, may cause failure in systems.
All the above literature indicates that hydraulic in-
stability may occur during the transition from free-

surface to pressurized ow in a pipe. Although there
are extensive previous works on the instability of water
waves inside a closed conduit, there are no exact guide-
lines or criteria for predicting the e�ects of the ow.
Several studies have been implemented to identify the
characteristics of a two-phase liquid-gas ow, especially
in �elds such as the petroleum industry, but, there
is little study on the mechanism and inuence of air
entrainment into scaled-up water pipelines, such as
water tunnels and culverts. Even reviewing reference
books and reports, such as USBR manuals [18], for
the relation of the headwater (h1) and discharge of
the conduit, shows that there is a gap of knowledge
for a certain range of h1, i.e.; between the upper
and lower boundaries of free-surface and pressurized
ow conditions. In this range, the sudden change
of boundary condition can induce release of an air-
water mixture inside the conduit. Since air entrainment
causes severe pressure uctuations, which may damage
the pipeline and cause other related problems, such
as bursting air bubbles and erosion, detailed study is
de�nitely required. The most interesting property of
this kind of ow, which di�ers from transient ow, such
as a water hammer, is that air has a periodic e�ect on
the ow. On the other hand, pressure uctuations, in a
period of time related to the hydraulic properties of the
ow, are continuously repeated for constant reservoir
headwater.

Issa and Kempf [17] showed that when the com-
pressibility of a gas is included in the calculations, slugs
generate more readily and at the right frequency. Thus,
more realistic solutions could be reached.

Lack of solid and comprehensive design meth-
ods for predicting and calculating the properties of
two-phase ow has left engineers without essential
information for proper design of two-phase systems,
specially in hydraulic structures, such as; pipelines,
tunnels and culverts. There is no doubt that much
more investigation is needed to increase knowledge
of this area of science. Hence, in this study, a
new analytical/numerical model has been developed
to investigate the e�ects of both rapid rising and
dropping of the water level at a reservoir on the ow
through a horizontal or inclined pipe, while the ow is
changing from a free surface to pressurized regime and
vice-versa. This paper attempts to describe the air
bubble and water behavior, applying initial hydraulic
properties and one-dimensional ow assumptions. The
ow is divided in water columns, which correspond to
evolving control volumes. Applying the momentum
and continuity equations for each control volume and
interface leads to a system of di�erential equations
for each stage of the ow formation. This system of
equations can be solved using the Finite Di�erence
(FD) method. In order to assess the results from the
analytical model, void fraction, air to water ow rates
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(Qa=Qw), water velocity and pressure uctuations are
compared with the experimental investigations of Desai
and Arsiwalla [19], Zhou et al. [20] and the numerical
results of Tarasevich [21].

METHODOLOGY

The transition from pressurized to free-surface ow,
which occasionally occurs in water tunnels and cul-
verts, is classi�ed into six stages, as shown in Figure 1.
Rigid body theory and deformable control volume were
used to obtain the equations of motion for the six
stages. For stage `a', the convectional pressurized ow
equation is used. Stage `d' includes the initiation of
instability inside the uid. It refers to the tendency
of the ow to return to its original state after being
perturbed, due to the hydraulic properties of ow and
uids. For stage `f', the ow pattern is strati�ed,
which can be solved using a separate ow model applied
to each phase, including the e�ect of interfacial shear
stress.

Apart from stages `a' and `f', which are steady
and can be solved using the one-phase ow theory,
and stage `d', which is the threshold of instability of
water waves, the continuity and momentum equations

are developed for stages `b', `c' and `e'. The total
di�erential equations for each stage can be derived and
solved, using the FD method. The traveling surge and
the stationary air bubble are analyzed continuously
during the time, in order to compute pressure uctua-
tions, velocity and void fraction. In the following, the
theory of each stage is developed. The assumptions
for the air and water phases are: Application of
constant viscosity, no surface tension, a compressible
air bubble and an incompressible water column. The
reason being that the variety of temperature, which
a�ects the viscosity, is small. The advantage of this
approach is that the initiation of air release and the
formation of each ow pattern are allowed to occur
naturally from any given initial condition. The initial
conditions are as part of the calculation for the previous
stage and slug ow, automatically, as a product of
computation, is developed. Hence, there is no need
for phenomenological models.

Pressurized Flow Regime

At this stage, the ow is completely pressurized and
usually occurs when h1=D � 1:5 (USBR, [18]). Where,
h1 is the upstream reservoir water head and D is the

Figure 1. Stages of ow transition from pressurized to free-surface ow.
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conduit diameter or height (for a non-circular conduit).
The governing equation for the ow is Darcy-Weisbach,
Manning or similar relations.

Releasing Air Bubble

The sudden �lling of a partially full conduit or the
dropping of an upstream reservoir water level, could
result in the release of air from the water. When
the trapped air bubble reaches the upstream end of
the conduit, a sudden release of air may cause severe
pressure uctuations. In order for the trapped air to
escape into the atmosphere, the pressure inside the
bubble has to exceed a certain threshold. After partial
release of air, the pressure inside the bubble drops
below the threshold value and the remaining air under-
goes compression and expansion. The next release of
the air-water mixture occurs when the pressure inside
the air bubble drops below the threshold value again.
The threshold pressure for air release is related to h1,
(Figure 2) and is equal to:

Pt = Kp(h1 � D

2
)w; (1)

where Pt is the threshold pressure for air release, Kp is
the dimensionless threshold pressure coe�cient (equal
to 1 [22]) and w is the speci�c weight of water. The
rate of change of air mass of the bubble would be:

va
d�a
dt

+ �a
dva
dt

= ��aQa; (2)

where va, �a and Qa are volume, density and the
discharge of air, respectively. As mentioned, the air
bubble is assumed to be compressible, so the relation-
ship between air density and pressure inside the bubble
would be:

�a =

�
Pa + Patm

C

�1=

; (3)

Figure 2. Model and control volume of releasing the �rst
air bubble into water.

where Pa is the air bubble pressure, Patm is the
atmospheric pressure and C is constant, which can
be determined by substituting the initial amounts of
bubble pressure and density (in this study C = 1:0 �
105) and  = 1:2 [7]. Di�erentiating Equation 3, with
respect to time, gives:

d�a
dt

=
1

C
(
Pa + Patm

C
)1�1= dPa

dt
: (4)

Applying the continuity equation to the deformable
control volume of water column 1 (Figure 2), gives the
rate of change of air bubble volume as:

dva
dt

= V2A+A
d(h1 � D

2 )

dt
� Vw(A�Ac); (5)

where V2, A, h1, Vw and Ac are velocity of water
column 1, cross sectional area of conduit, pressure head
at upstream, velocity of the moving critical wave and
cross sectional area of water column 1, respectively.
Also, the rate of air release (Qa) can be simulated by
the ori�ce equation:

Qa = Cda(A�Ac)

s
2Pa
�a

; (6)

where Cda is the air release coe�cient and is equal to
0.65 [20]. Combining Equations 2, 4, 5 and 6, the rate
of change of pressure inside the bubble becomes:

dPa
dt

=
C

va
(
Pa + Patm

C
)1�1=

�
��a

h
V2A+A

dh1
dt

� Vw(A�Ac)
i
� �aQa

�
: (7)

On the other hand, the acceleration of water column
1 (Figure 2) can be derived by applying the continuity
and momentum equations to the deformable control
volume as:

dV1
dt

= �gS0 � f1V1 jV1j
8R1

+
V1
AcLb

�
�Adh1

dt
+ V2A

� Vw(A�Ac)
�
+
V2 jV2j
Lc

� V2 jV2 � Vwj
Lc

�
hPa(A�Ac) + (Pa � Pt

z )Ac

�wLb(A�Ac)

i
;

(8)

where f1 is the steady state friction factor (Darcy-
Weisbach coe�cient) for water column 1, V1 is the
velocity of water column 1, g is the acceleration due
to gravity, Lb is the length of air bubble and �w is the
density of water. The acceleration of water column 2
can be obtained in a similar form, which will be derived
for the next stage. Using the initial conditions, taken
at the previous stage, such as discharge and headwater,
for the beginning of the air bubble spell, the air release
pressure can be calculated by solving Equations 1, 5, 7
and 8, simultaneously.
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Figure 3. Characteristics of control volume of fully developed slug ow.

Fully Developed Slug Flow

Slug ow is the most complicated pattern in a two-
phase ow and includes extreme conditions. Mc-
Corquodale and Hamam [6] simulated the transition
from free-surface to pressurized ow by assuming a
hypothetical, stationary air pocket inside the pipe.
Using their assumption on the fully developed slug ow
model, the ow is then divided into three rigid water
columns with uniform velocities (Figure 3). Each water
column is assumed to be enclosed by a �xed control
volume. Continuity and momentum equations are then
derived for each water column, the interface between
columns and the headwater (at the upper reservoir).

It is assumed that the length of water column 1 is
constant, so, the �xed control volume approach can be
used to derive the continuity and momentum equations.
Since water columns 2 and 3 change in size as the air
bubble moves downstream, the �xed control volume
concept cannot be used. Instead, a deformable control
volume should be used to describe them. The general
momentum equation for a deformable control volume
can be written as:

X
Fe =

@

@t

Z
c.v.

�wV dv0 +

Z
c.s.

�wV VndA: (9)

For the acceleration of water column 3, it is assumed
that the air pocket travels downstream at a constant

velocity, Vb, and the control volume of the column is
deforming continuously. The summation of external
forces on the rigid water column 3 (Figure 3) is:

X
Fe = ��3�DL3 +AL3wS0 +Aw

h
h1 � V 2

3

2g

�K3
V3 jV3j
2g

i
� �wgHA; (10)

where �3 is conduit wall shear stress (�3 = �V jV j=2),
L3 is the length of water column 3, H is the pressure
head at the downstream end of water column 3 and K3

is the loss coe�cient of the conduit for water column 3
and is equal to 0.5 for the entrance and 0 otherwise.
The right hand side of Equation 9, for water column 3,
is:

@

@t

Z
c.v.

�wV3dV0 +

Z
c.s.

�wV3VndA = V3
dM3

dt

+M3
dV3
dt
��wV3 jV3jA+ �wV3 jV3 � Vw jA: (11)

The rate of change of the mass of Column 3 is
dM3=dt = ��wVwA and the mass of it is M3 =
�wL3A. Since Equations 10 and 11 are equal, then,
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the acceleration of water column 3 would be:

dV3
dt

=
g

L3

h
h1�V

2
3

2g
�K3

V3 jV3j
2g

i
�Pa+

wy1Ac

2A

�WL3
+gS0

�f3V3 jV3j
8R3

� V3 jVwj
L3

� V3 jV3j
L3

+
V3 jV3 � Vwj

L3

� (V3 � Vw)(V1 � V3)

L3
; (12)

where f3 is the steady state friction factor (Darcy-
Weisbach coe�cient) for water column 3, V3 is the
velocity of water column 3 and y1 is the depth of
water column 1. In the derivation of acceleration of
water column 1, the velocity of the moving bubble
is superimposed on the �xed length control volume
(Figure 3). Applying the momentum equation to the
�xed control volume gives:

wLbA1S0 � �1(
A1

R1
)Lb =M1

dV1
dt

+ V1
dM1

dt
: (13)

As �a is of the 1/1000 order of the �w, so, the
air pressure forces, due to friction, can be omitted.
Applying equations (dM1=dt = �wA(V3 � V2)) and
(M1 = �wAcLb) for the rate of change of mass and the
mass of water column 1, respectively, and substituting
these into Equation 13, the acceleration of water
column 1 is obtained as follows:

dV1
dt

= gS0 � f1
V1 jV1j
8R1

� V1A(V3 � V2)

AcLb
: (14)

Acceleration of water column 2 is derived in a similar
procedure to that of water column 3. The summation
of all external forces at water column 2 (Figure 3) gives:

dV2
dt

= � g

L2

�
h2 � V 2

2

2g
�K2

V2 jV2j
2g

�
+
Pa +

wy1Ac

2A

�WL2

+ gS0 � f2
V2 jV2j
8R2

+
V2Vw
L2

+
V2 jVw j
L2

� V2 jV2j
L2

+
V2 jV2 � Vw j

L2
� (V2 � Vw)(V2 � V1)

L2
; (15)

where f2 is the friction factor for water column 2 L2

is the length of water column 2 and K2 is the loss
coe�cient of the conduit for water column 2, which
is equal to 1.0 for the pipe exit and 0 otherwise. The
rate of change of the water level, at the upstream and
downstream reservoirs of the conduit, are:

dh1
dt

=
Qi � V3A

Ar1
; (16)

dh2
dt

=
V2A�Qo

Ar2
; (17)

where Ar1 and Ar2 are the areas of the upper and lower
reservoirs, Qi is the inow rate to the upper reservoir
and Qo is the outow rate from the lower reservoir (If
the length of the tunnel is large or water is discharged
into the atmosphere, then, dh2=dt becomes zero).

Applying the continuity equation to the �xed
control volume of the air bubble (Figure 3) gives the
rate of change of air bubble volume as:

dva
dt

= (V2 � V3)A�Qa; (18)

where Qa is the air ow rate and is zero, provided no
air release mechanism, such as slot, exists along the
conduit. Using the ideal gas equation of state with
the assumption of a pseudoadiabatic compression and
expansion process, the air pressure of the bubble, Pa,
is:

Pa = P0(
v0
va
) � Patm; (19)

where P0 is the initial absolute air pressure, v0 is the
initial volume of the air bubble and  is equal to 1.2
for pseudoadiabatic processes. The pressure transients
associated with the traveling compressible bubble can
be simulated by solving, simultaneously, Equations 12
and 14 to 19, using the FD approach. The initial
conditions for the simulation are:

P0 = Pa + Patm; (20)

va = Lb(A2 �Ac); (21)

h1 and h2 are taken from the previous stage and V3 is
equal to V2, also taken from the previous stage.

Transition from Slug to Wavy Strati�ed Flow

Flow stability is a property of the dynamics of uid
ow. It refers to the tendency of the ow to return to
its original state after being perturbed. The dispersion
equation, which gives the magnitude of a perturbation
as a function of space (x) and time (t), is satis�ed by
an exponential solution [17],

	 = 	0e
i(kx�!t); (22)

 stands either for the pressure (p), the density (�),
the velocity (u) or the void fraction (�).  0 is the
amplitude of the original perturbation, k is the complex
wave number and ! is the complex frequency.

When the traveling surge pushes air downstream
and creates water waves, this may form interface
instability, which is usually called Kelvin-Helmholtz
instability. When the waves depart from the crown
of the conduit, the ow is at the beginning of a change
from a pressurized to free-surface regime and, when
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the waves hit the top of the conduit, the ow becomes
unstable and evolves into slugging. Based on the
small amplitude waves between water and air, Milne-
Thomson [23] proposed an equation for the instability
condition as:

jVa � Vwj�
s
�w
�a

tanh

�
2�Ha

L

�
+tanh

�
2�Hw

L

�

s�
1� �a

�w

�r
gL

2�
;

(23)

where Ha and Hw are hydraulic depth of air and
water ow, respectively. Barnea and Taitel [24] used a
linear analysis to study the onset of instability for both
inviscid and viscous ow, using the \two-uid model".
The criterion they found is:

jVa�Vwj<K
s
�w��a
�a�w

(�a�w+�w�a)g cos�
A
dAw

dh

;
(24)

where �a and �w are gas and liquid fractions, respec-
tively, K = 1 for inviscid ow and A and Aw are the
pipe and water cross sectional area, respectively.

McCorquodal and Hamam [6], developed the
following overall instability criterion for the transition
from pressurized to free-surface ow:

Fi =
jVa � Vwjp

gHw
� Fc; (25)

where Fi is the interfacial Froude number and Fc is the
critical Froude number for the transition from pres-
surized to free-surface ow. The condition, as stated
in Equation 25, is checked during the computation
of stage `c', in order to determine the occurance of
interfacial instability and the progress to stage `e'.

Wavy Strati�ed Flow

Applying the momentum equation to water column 2
(Figure 1e), the rate of change of velocity would be:

dV2
dt

=
gZ � VwV2

L
�
��
Ke +

fL

4R2

�
� 1

�
V 2
2

2L

� gh2
L

+ gS0; (26)

where Ke = 1:0 is the exit loss coe�cient, f is
the steady state friction factor and Z is the pressure
head on the interfacial instability generation. The
velocities superimposed on the control volume of the
ow transition yields to:

Vw(A�Ac) = AcV2 �AV2: (27)

The conservation of linear momentum on the control
volume gives:

Z = �Acy1
A

+D +
Ac(V1 � V2)

2

g(A�Ac)
� P

w
: (28)

The corresponding air velocity, Va, is:

Va =
Qa

A�Ac
: (29)

Equations 26 to 29 are used to simulate the pressure
uctuations in the above regime and can be solved by
the FD approach. As for initial conditions; given h2, V1
is determined from the Manning's equation of uniform
ow and V2 is determined from Equations 27 and 28.

Gravity Strati�ed Flow

This is when the ow is almost uniform and the uid
interface is close to a straight line, thus, uniform ow
equations can be applied to determine water and air
ow rates and velocities, applying the interfacial shear
stress in momentum equations. Of course, the \two-
uid model" [25] can also be used for modeling a
strati�ed smooth ow, based on the separated ow
model.

RESULTS

This section presents the results of the calculations
for the highest possible number of ow patterns using
the analytical/numerical model obtained earlier. The
aim of the computations is to verify that the model
is capable of predicting the initiation, growth and
development of slugs in an automatic manner, starting
from a steady-state ow (pressurized or free-surface
ow) as an initial condition.

The predictions are compared with the various
experimental and numerical data of air-water systems,
which have been presented by previous researchers.
The results presented herein are comprised of each
ow regime characteristic, such as; slug velocity, void
fraction, pressure uctuation, variation of discharge
due to headwater and variation of water level as a
function of inow and outow with time.

The comparison between computed and measured
data shows good agreement, considering the complexity
of two-phase ow regimes and the simplicity of the one-
dimensional model.

Figure 4 shows the typical predicted void fraction
of a slug ow at a horizontal conduit with time. For this
result, the pipe has a 10 cm inner diameter and is 10
m in length. Water and air discharge rates are 4.0 and
1.0 lit/sec, respectively, for a constant h=D of 1.1. The
position is taken at the mid-point of the pipe (5 meters
from each side). It was seen that the time period of a
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Figure 4. Variation of calculated void fraction as a
function of time.

slug surge with this geometry and with these hydraulic
conditions is 1.81 sec and the maximum void fraction
is 0.3.

Many such computations were carried out with
di�erent combinations of water and air ow rates,
to establish the conditions under which slug initiates
and develops. The ow pattern map predicted by
the computations is shown for a horizontal pipe in
Figure 5. This �gure illustrates the envelopes of water
velocity versus air velocity for di�erent possible ow
patterns, which occur in a horizontal tunnel. Similar
patterns have been introduced using experimental and
mathematical results by [25,26]. An interesting result
is that by increasing the velocity of air, water velocity
decreases in a slug and wavy ow, while, in the case of
strati�ed ow, increasing air velocity has a direct e�ect
on water and increases water velocity too. Although,
from Figure 5, general conclusions can be reached, for
speci�c situations, further investigations are needed.

Figure 6 illustrates the measured [19] and cal-
culated void fraction versus air/water discharge ratio.

Figure 5. The envelopes of water velocity versus air
velocity for di�erent possible ow patterns.

Figure 6. Measured [19] and calculated void fraction
versus air/water discharge ratio.

The experimental set-up, which was used to observe
the ow patterns of a two-phase ow, consisted of
a 270 cm long pipe, with a 2.5 cm inner diameter.
The water and air ow rates were obtained by using
an ori�ce plate and a rotameter. To calculate void
fraction, the data from [19] were used as primary
estimates in the governing equations (Equations 8, 12,
14, 15 and 26) and the air and water velocities and
discharges were calculated. The achieved velocities
and discharges were used in the conservation of mass
equation, then, the void fraction was calculated and
compared with the measured data (Figure 7). The
four air ow rates, which were used in Figure 6, are
0.3, 0.44, 0.93 and 1.36 lit/min. Figures 7a and 7b
compare computed and experimental water velocities
and the air/water ow rate ratio, and the experimental
data, are given by [19]. Figure 7c compares the
measured [19] and calculated void fraction for di�erent
air/water ow rates. The majority of the computed
results are within a �10% bound, which is acceptable
for experimental data. Thus, the good agreement of
the measured and calculated results in these �gures
shows the applicability of the analytical and numerical
solution.

Also, the model is run for the variation of nor-
malized headwater (h1=D) versus time, for di�erent
values of reservoir inow (the reservoir is assumed
to have a �xed area, as shown in Figure 8). The
boundaries of this �gure are Qi = 0, when there is
no inow to the reservoir and the water level naturally
drops, due to pipe discharge (passing the transitional
region from pressurized to free-surface ow) and the
minimum inow discharge of Qi = 8:5 lit/sec, which
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Figure 7. Calculated (present study) versus
measured [19] for di�erent parameters.

undergoes ow to be pressurized. The pipe's inner
diameter is taken as 0.1 m and its length as 10 m.
The same geometry is used for Figures 9 and 10. The
upper limit of headwater for free-surface ow was 0.8 D
and the lower amount for pressurized ow was 1.5 D.
Applying these geometrical conditions, the inow that
is the limit for making pressurized ow inside the
pipe, is 8.5 lit/sec. Figure 9 illustrates computed
headwater as a function of the pipe inow rate. In this
�gure, the pressurized and free-surface ow regimes are

Figure 8. Calculated headwater as a function of time and
the inow discharge to the reservoir.

Figure 9. Calculated headwater as a function of pipe
ow rate (Equations 12 and 16).

taken from available equations (Darcy-Weisbach and
Manning) and the transition region is calculated by the
present model.

Figure 10 shows the calculated headwater as a
function of the Froude number (Fr = Qw=(gD

5)0:5)
inside the pipe. From Figures 8 to 10, it can be
seen that the transition of ow, from pressurized to
free-surface, makes the ow wholly unstable. From
these �gures, it is obtained that increasing the inow
rate, increases the perturbations of headwater and
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Figure 10. Calculated nondimensional headwater
(Equations 12 and 16) as a function of Froude number.

these perturbations will damp more quickly for lower
amounts of inow rate. From another point of view,
within these limits, at lower head, the ow tends
more towards an increase in discharge against less
variation of head while, for higher head, the variation
of discharge is less and the head increases rapidly.
Therefore, the transition zone is unstable and the ow
has a tendency to pass it quickly. The other result
to be concluded is that, during transition at the lower
water levels, variation in water ow rate is faster, but,
at upper water levels, this result is reversed. Beyond
a value of 0.82 for headwater, the Froude number is
unity and the perturbation initiates. This phenomena
is mentioned in [27].

More experimental data and numerical results
have been checked with the present model. Figure 11
illustrates calculated and measured [20] pressure uc-
tuations for stage `b', in which the �rst air pocket is
released into the water. Zhou et al. [20] studied the
e�ect of an upstream pressure head by implementing
two reservoir pressures of 275 and 137 kPa and testing
two di�erent initial water column lengths of 5 and

Figure 11. Measured [20] and calculated (Equations 1, 5,
7 and 8) pressure transients by time for releasing trapped
air.

8 m. To determine the e�ects of air release on pressure
transients, they tested �ve ori�ce diameters of 0, 2, 4,
6 and 9 mm. Their set-up included a simple domestic
water supply pressure tank, the pipe being 8.96 m long
with an inner diameter of 35 mm and the point of study
being the upstream end of the conduit. It can be seen
that the pressure suddenly increases up to 10 times that
of the hydrostatic pressure. From this �gure, a good
agreement between results can be seen, except between
0.6 to 0.9 seconds. In this range, the solution diverges
locally but, very soon, becomes the same or agrees with
measured data. The di�erence between the results is
mainly due to \dissipation error". This type of error
usually occurs when the 1st order di�erential equation
is assumed as the governing equation. Even so, the
computed and measured data have good agreement
within �10%.

Figure 12a shows the time history of calculated
pressure uctuations using the model developed by the
authors and the data calculated with the numerical
model of [21]. Tarasevich presented a method of
calculation for two-phase ows, based on the method
of characteristics. This method uses a two-scale joint
grid: One for a liquid phase and the other for a gas
phase. It can be seen that the predicted maximum

Figure 12. Pressure variation versus time.
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Table 1. Design example.

Area (Ar1) (m
2) Inow (Qi) (m

3/s) D (m) S0 Qp (m
3/s)

400000 0 4 0 120

pressure, by the present model, is fairly close to
Tarasevich. Although the scatter in results is wider
for fully developed slug ow pressure uctuations, the
agreement between the results is fairly good, as seen in
Figure 12b. In this �gure, the error function, de�ned as
100(PT �PC)=PT , is shown with time, which is within
-0.79 and 0.33 (PT and PC are the pressure uctuations
by Tarasevich and the present model, respectively).
Since the present model is relatively simple and one-
dimensional, it is, therefore, a good tool for predicting
an air-water two-phase ow.

CONCLUDING REMARKS

Predicting di�erent two-phase ow patterns is highly
necessary to avoid unfavorable situations, likewise,
concerning slug ow in systems, which may cause severe
wear. The analytical/numerical model, which has been
derived to simulate pressure uctuations, void fraction,
air and water velocities and air/water ow rate, due
to released air bubbles from the water, is based on
the assumption of rigid, incompressible water columns
and compressible air bubbles. Since the compressibility
of air is important to the generated slugs at the
right frequency, the model uses the compressibility of
air bubbles. This is a comprehensive model, which
can generate di�erent hydraulic situations in a closed
conduit, such as tunnels and culverts, based on a
hydraulic approach. The boundary conditions are a
system of algebraic or/and simple di�erential equations
and the steady solution of the considered problem acts
as the initial data.

The results, such as pressure uctuation and
air/water ow rate predicted by the present model,
are in close agreement with those recorded in the
laboratory experiments (Figures 6, 7 and 11) and
numerical results (Figure 12). Hence, the developed
model shows to be a good tool with which to predict
the characteristics of two-phase ows. Transition
of ow from pressurized to free-surface makes ow
completely unstable. The other result to be concluded
is that, during transition at the lower water levels, the
variations of water ow rate is faster, but, at upper
water levels, this result is vice-versa. Beyond a value
of 0.82 for h1=D, the Froude number is unity and
the perturbation initiates. As the main result of this
study, the following relation, to predict the transition
time period and headwater uctuations as functions
of inow to the upper reservoir and pipe discharge, is

proposed:

h1
D

=

�
0:5366(

Qi

Qp
)2 + 0:03(

Qi

Qp
) + 1:0935

�

e
0:001

h
�0:5(

Qi
Qp

)2+0:044(
Qi
Qp

)�0:0787
i
t
:e�0:2i!t

dh1
dt

=
Qi �Q

Ar1
: (30)

Equation 30 is valid for 0:8 � h1=D � 1:5 and Ar1 =
constant (constant area for the reservoir with depth).
For example, assume a reservoir and conduit pipe
with geometry and hydraulic parameters, as shown in
Table 1, with very steep slopes for reservoir walls in
order to have a constant area. By substituting these
parameters in Equation 30, the transition time from
pressurized to free-surface ow is about 8938 sec. This
transition will cause severe problems, such as increasing
the maximum pressure of the conduit up to 10 times
that of the steady-state ow condition and should be
avoided or suitably controlled.
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NOMENCLATURE

A cross sectional area of the bottom
outlet entrance

An cross sectional area of water columns

Ac cross sectional area of water column 1
for the releasing air stage

C constant

Cda the air release coe�cient

D conduit diameter

Fc critical Froude number for transition
of pressurized ow to free surface ow

Fe external forces acting on the control
volume

Fi interfacial Froude number

H pressure head at the downstream end
of the water column 3

H 0 pressure head at the upstream end of
the water column 2

Ha hydraulic depth of air ow
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Hw hydraulic depth of water ow

Kn loss coe�cient of the conduit for
columns

Ke exit loss coe�cient

Kp threshold pressure coe�cient
(dimensionless)

L length of interfacial instability wave

Ln length of water columns

Lb length of air bubble or water column 1

Mn mass of water columns

P air pressure in front of the interfacial
instability wave

P0 initial absolute air pressure

PC pressure uctuations calculated by the
present model

PT pressure uctuations calculated by
Tarasevich

Pa air pressure inside the air bubble

Patm atmospheric pressure

Pt threshold pressure for air release

Q1 inow at upstream end of bottom
outlet

Qa rate of air release

Rn hydraulic radius of water columns

S0 conduit slope

V ow velocity

Vn velocity of water columns

Vw velocity of the moving critical wave
(interfacial instability wave)

Z pressure head on the interfacial
instability generation

f friction factor of the conduit wall

fn steady-state friction factor of water
columns

h1 pressure head at bubble front of a slug
ow

h2 pressure head at slug front of a slug
ow

v0 initial volume of the air bubble

va volume of the air bubble

yn depth of water columns

 a constant equal to 1.2 for
pseudoadiabatic processes

w speci�c weight of water

�a air density inside the bubble

�n wall shear stress of water columns

c.s. control surface

c.v. control volume

n the subscript which notates di�erent
water columns and is equal to 1, 2,
and 3
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